
ADVANCED OPERATING 
SYSTEMS

Threads, Duality, SEDA



An introduction to Programming 
with Threads (1989)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

2



An introduction to Programming 
with Threads

 What kind of paper is this?

� A tutorial

3



Two key OS functions

 Multiplex resources

� Allow multiple users or programs to use the same set of 
hardware resources (processors, memory, disks, network 
connection) safely and efficiently

 Provide abstractions

4



Operating System Abstractions

 Abstractions simplify use of the hardware by 
applications

 Abstractions simplify application design by

� Hiding undesirable properties

� Adding new capabilities

� Organizing information

5



Example Abstraction: file

 What undesirable properties do files hide?

� Disks are slow!

� Chunks of storage are actually distributed all over the 
disk

� Disk storage may fail!

 What new capabilities do files add?

� Growth and shrinking

� Organization into directories

 What information do files help organize?

� Ownership and permissions

� Access time, modification time, type, etc.

6



Abstractions

 Files abstract the disk

 Address spaces abstract what?

7



Abstractions

 Files abstract the disk

 Address spaces abstract memory

 Threads abstract what ?

8



Abstractions

 Files abstract the disk

 Address spaces abstract memory

 Threads abstract the CPU

 Sockets abstract what?

9



Abstractions

 Files abstract the disk

 Address spaces abstract memory

 Threads abstract the CPU

 Sockets abstract the network

 What about processes?

10



The Process

 Processes are the most fundamental operating 
system abstraction

� processes organize information about other 
abstractions and represent a single thing that the 
computer is “doing”

� You know processes as applications

11



Organizing information

 Unlike threads, address spaces, and files, processes 
are not tied to a hardware component. Instead, 
they contain other abstractions

 Processes contain 

� One or more threads

� An address space, and

� Zero or more open file handles representing files

12



Back to Birrell’s threads tutorial

 What is a multi-threaded program?

13



Back to Birrell’s threads tutorial

 A multi-threaded program has multiple points of 
execution, one in each of its threads

 Threads execute within a single address space

 How are the following shared between threads?

� Registers?

� Stack?

� Memory?

� File descriptor table?

14



Back to Birrell’s threads tutorial

 A multi-threaded program has multiple points of 
execution, one in each of its threads

 Threads execute within a single address space

 How are the following shared between threads?

� Register values not shared

� Stack not shared

� Memory – global variables, heap, code are shared

� File descriptor table shared

15



Why use threads?

 Take advantage of multiprocessors

 Do something useful while waiting for a slow device 
(disks, network, etc)

 To interact with humans in a non-sluggish manner

 Defer work to improve responsiveness of a program

� Push non-urgent work (e.g., rebalancing a red-black 
tree post update) to another thread

 Build a networked server that serves incoming 
clients in parallel

16



Threads share global memory

 Shared memory must be protected via mutual 
exclusion mechanism

� Mutex: a resource scheduling mechanism

 Resource being scheduled is shared memory

 Scheduling policy is: one thread at a time

� Difference between mutexes, locks, and semaphores?

17



Condition variables

� Mutex: a resource scheduling mechanism

 Resource being scheduled is shared memory

 Scheduling policy is: one thread at a time

 What happens if programmer needs a more complicated 
scheduling policy?

18



Condition variables

 Example: thread A reads data off network, places in shared 
buffer;  thread B reads data from buffer and processes it

 Does the example below work correctly?

19

Thread A loop
1) Read data
2) Lock mutex
3) Add new data to buffer
4) Unlock mutex
5) Return to step 1

Thread B loop
1) Lock mutex
2) If buffer not empty 

1) Read data from buffer
3) Unlock mutex
4) Return to step1



Condition variables

 Example: thread A reads data off network, places in shared 
buffer;  thread B reads data from buffer and processes it

 Does the example below work correctly?

 Works fine but depletes resources

 Potential for busy-waiting, why?

 Condition variables provide mechanisms for programmers to 
express that a thread must block until particular event occurs

20

Thread A loop
1) Read data
2) Lock mutex
3) Add new data to buffer
4) Unlock mutex
5) Return to step 1

Thread B loop
1) Lock mutex
2) If buffer not empty 

1) Read data from buffer
3) Unlock mutex
4) Return to step1



Condition variables

 Condition variables in combination with mutexes can 
implement any thread scheduling policy desired

 Condition variable always associated with a 
particular mutex and with the data protected by 
that mutex

 Monitor consists of

� Data

� A mutex

� 0 or more condition variables

� Will come back to monitors in the future…

21



Example: shared buffer

 Example: thread A reads data off network, places in shared 
buffer;  thread B reads data from buffer and processes it

 How to avoid busy-waiting?

 Introduce condition variables

 What are the semantics of wait() call?

 Why while instead of if in condition check?

22

Thread A loop
Lock M  {

while (buffer is full) wait(M, non-full);
read data
signal non-empty

Unlock M

Thread B loop
Lock M {

while (buffer is empty) 
wait(M, non-empty);

read data
signal non-full

Unlock M



Paper provides guidelines for multi-
threaded programming

 Think of mutex as protecting the invariant of the 
associated data

 Beware of unsynchronized access to shared data

� Can result in bizarre results depending on real-time 
scheduling of the threads

� What kinds of simple things could a compiler do to 
support multi-threaded programming?

23



Paper guidelines (cont’d)

 Fine-grained vs course-grained locking

� If you have one big lock for all global data,

 Simpler, but

 What problem does it cause?

� If you have lots of fine-grained locking

 More concurrency, but

 What problems does it cause?

 Avoid deadlocks

� How?

 What is priority inversion?

24



Paper guidelines (cont’d)

 Signal versus broadcast

� When to use each?

25



Paper guidelines (cont’d)

 Signal versus broadcast

� Signal useful if you know that at most one thread (and 
any of the threads) waiting on the condition variable 
can make progress

� Broadcast useful when you don’t know

 Can I use signal and broadcast interchangeably?

 Can I replace signal() with broadcast() call or vice versa?  
What is the effect?

 Spurious lock conflicts

� What is effect of moving signal or broadcast outside 
the lock clause?

26



Paper guidelines (cont’d)

 Separate blocked threads onto different condition 
variables if their functions are different (e.g., 
multiple readers waiting to read/single writer 
waiting to write)

 What is starvation?

27



Paper guidelines (cont’d)

 Separate blocked threads onto different condition 
variables if their functions are different (e.g., 
multiple readers waiting to read/single writer 
waiting to write)

 What is starvation?

� Some thread never makes progress

 Nested monitor problem

� What is this?

28



Paper guidelines (cont’d)

 Nested monitor problem

� “Risky to call into a lower level abstraction while 
holding a mutex without knowing exactly what the 
lower level abstraction does”

 Could lead to deadlock

 Modularity and APIs versus deadlock avoidance

 Add threads to defer work until later

� Adv: E.g., Procedure returns more quickly as soon as 
result is ready

� Disadv: creating a thread each time you defer work 
may be costly on uniprocessor, but encouraged on 
multiprocessor…. up to a point

29



Paper guidelines (cont’d)

 Consider pipelining to speed up your application

� Almost linear speed-up possible

� Is pipelining useful on a uniprocessor?

 Yes, if each thread will “encounter some real-time delays 
(such as page faults, device handling or network 
communication”

 Pipelining similar to SEDA concept

 Beware of creating too many threads!

 To really make your program efficient, need 
performance profiling

� Statistics on lock conflicts: how often threads block on a 
mutex, how long they wait, etc.

30



On the Duality of Operating System 
Structures (1979)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

31



On the Duality of Operating System 
Structures (1979)

 What kind of paper is this?

� A position paper

32



Controversy 

 Message-based versus monitor-based systems

 Paper’s claim:

� In power

� In performance

 Controversy still exists

33



34

Data 
Monitor

Data 
Monitor

Data 
Monitor

Call Return

Lightweight processes

• Process corresponds to task rather than resource
• Resource manager is a shared data structure along with synchronized

procedures to manage it
• Locks are associated with data structures, data is shared between 

processes
• Module structure is relatively static

Procedure-based system

Shared address space



35

• Resource manager is a process that receives requests over message
channels

• Inner loop = get message, parse, reply, get another message
• Synchronization handled with message channels
• Process structure is relatively static
• “Task” passes from process to process through message channels

Message-based system

Data 

Queue

Data 

Queue

Data 

Queue

Process 1 Process 2 Process 3

Message channel



Duality mapping: structures are 
semantically equivalent

 Process

 Message channel

 Send msg + wait 
reply

 Send msg…wait reply

 Send reply

 Selective message 
wait

36

 Monitor

 Entry procedure name

 Procedure call

 Async procedure call

 Return from procedure

 Condition variables



Claim: Neither is more powerful

 Most PLs accommodate procedures more easily than 
messages

� Type-checking

� Synchronization mechanism/support

37



Claim: Performance is also 
equivalent

 Debatable 

 Procedure call is faster than message exchange

� Call time << context switch time

� Factor 100-1000 times faster

 Asynchronous message is easier than async call

 What happens under contention?

� Monitors – Queue up on locks

� Messages – Queue up in message channels

38



SEDA: An Architecture for Well-
Conditioned Scalable Internet Services

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

39



Examples of event-driven-like 
programming

 Unix signal handler

 Select/poll/epoll call

 GUIs  -- Javascript, node.js, etc

 Asynchronous I/O?

40



Events versus Threads (over) 
simplified

 Threads can block, so we make use of the CPU by 
switching between threads

 Event handlers cannot block, so we can make use of 
the CPU by simply running events to completion

� We must write handlers so they are so small they don’t 
ever block, and if they need to block, they create an 
event that someone else will have to handle

41



Events versus Threads (over) 
simplified

 With threads, getting good concurrency relies on 
switching between them 

 With event-based programming, getting good 
concurrency relies on writing events in a way that I 
can process a lot of them in a row really quickly 
and keep the system busy

42


