TreeSLS: A Whole-system Persistent Microkernel with

Tree-structured State Checkpoint on NVM

Maria Trakosa
M131 Advanced Operating Systems

Overview

* TreeSLS Proposal: TreeSLS is a whole-system persistent microkernel. It simplifies the entire
system's state maintenance through a capability tree and a robust checkpoint manager.

* Exploiting NVM: TreeSLS takes advantage of the emerging non-volatile memory (NVM)
technology, eliminating the need to distinguish between ephemeral and persistent devices.

* Delayed External Visibility: ensures transparent external synchrony with minimal overhead.

* Performance Evaluation: Microbenchmarks and real-world applications demonstrate that
TreeSLS achieves whole-system persistence in approximately 100 pys and can take a checkpoir
every 1 ms with reasonable overhead to applications.

—

Limitations of Existing SLSs

Single-Level Store (SLS)

Uses checkpointing to extend the memory layer down to include disks. This approach manages
data, both permanent and ephemeral, and system state together with transparent persistence.

Issues with Existing SLSs

* Two-Tiered Memory-Storage Hierarchy

- Additional Cache Layers
- Write-Amplification and Checkpoint Frequency

* External Synchrony Issue

—

Addressing Challenges with TreeSLS

NVM as a Single-Level Device

Careful Relation Maintenance

Checkpointing Optimized for NVM

* Transparent External Synchrony

—

Overview of TreeSLS Architecture

* Microkernel Architecture
* NVM Integration

* Addressing Two Key Challenges

- Efficient Whole-System State Capture
- Efficient Whole-System Checkpointing

—

Overview of TreeSLS Architecture

* Checkpoint/Restore Procedure
1.IPI requests

Back Runti
2 _C h ec kpo | Nt Of ru nt| me ca pa b | I Ity Checkpoint Metadata Capa?)(izlit;?rree Capa%?liltr;'e}ree Corelr .
ckpt root p
tree version=6 c ': “‘. \
. success — ,Core] .‘
3.Speculative copy of pages N x
. P}
4.Increment global version alloctor 206
number /Ao’ |
. @ Runtime object (NVM)
5 : Res ume exeCUtI on @ Checkpointed object (NVM) [sub list] [sub Ilst] m list]7 Core =
. @ Runtime cached object (DRAM)
6 .CO py on -erte Dual-function Active Page List
7. Restore: rolls back Figure 5. The checkpoint/restore procedure.

* Ensuring Correctness

—

Checkpointing the Capability Tree

* Capability: A reference to an object and its access rights
* Ensuring Efficiency

* Checkpoint Strategies for Various Objects
— Cap Group
- Thread
- IPC Connection, Notification, and IRQ Notification
- VM Space and Page Tables
- PMO and Memory Pages

—

Copy Methods

* Stop-and-copy
* Speculative stop-and-copy
* Copy-on-write
* Speculative copy-on-write
* Hybrid Copy
- Speculative Copy of Hot Pages

- Parallel Stop-and-Copy Operations

Methods chplp. 4 ckply Page 'Fé_i”"'! CKPln 4 1
or wimle
stop-and-copy
spec. stop-and-copy & ©
Copy-on-wrile page
SPEC. COpy-0n-write modiffed [5C]
hybrid copy ©
Timeline

Figure 7. Existing methods on checkpointing memor
pages. C stands for memory page copy and "5C" represen
speculative page copy. The hybrid copy in TreeSLS leverage
the idea of speculative copy-on-write and additionally use
stop-and-copy for hot pages that are migrated to DEAM.

—

Extended Versioning for Hybrid Copy

Migration Processes
* NVM-to-DRAM Migration

- DRAM page allocation, and runtime page's data is copied to it
- Runtime page table is updated to make the DRAM page the new runtime
page
- Version of the runtime page in NVM is set to the global version
* DRAM-to-NVM Migration

- Second backup's version is set to zero, and the runtime page table is

updated to make the second backup the new runtime page. a

Transparent External Synchrony

* TreeSLS employs high-frequency checkpointing, delaying
external visible operations until a checkpoint is taken.

* User-space network drivers, for instance, register a
checkpoint callback at the end of each checkpointing.

—

Evaluation: Stop-the-world Checkpointing

imﬂ' 1P [Cap Tree] i B Cap Group [Motification . .

a [Others I Hybrid any w 757 1 Thread —1 PMO

E 75 E 1 IPC I VMSpace

[= |

e = 50

£ 50 c

8 8

T 25 ¥ 25- -

2 c

Ll Dddd] VleSEE M

n we unt oS) e we = \! S S et

0 SO v {00 e ™ R el 00 SO oo ™ e qoa
(a) Time Breakdown of the STW Checkpointing (b) Breakdown of Checkpointing Capability Tree

—

Evaluation: Runtime Overhead

E 51 B base (no checkpoint)

4] [+ checkpoint . X 10017 S PeoTreesLs

c w1507 | m

E 1 + page fault 3 \ 3 e P50-baseline

. 31 [+ page memcpy >1001 :'x > |~ P95-TreeSLS

9o B -+ hybrid copy = < 90 P95-baseline

T 2 so0f \ = — %

£1] S B o O — 3 P 3

S oL—— : 0L— :
0 . . 1510 50 1510 50

Memcached Redis KMeans PCA Checkpoint Interval (ms) Checkpoint Interval (ms)
Figure 10. Breakdown of runtime overhead and effect (a) SET (b) GET

of hybrid memory checkpoint.

—

Evaluation: Real World Applications

° I TreeSLS-base [Linux-base
In-memory Key-Value Stores = 0 TreoSLS-ims EEE LinuxWAL
o
C 40
—~ 30
2
£ 20
5 10
o
Eo'n'e'do e et
: = 20 a0 2 32 s€
* Persistent Key-Value Stores WOt otk (ot ol O el

—_ — 120 300

2 Bl TreeSLS-base

8100 —~110 i ~050) I TreeSLS-5ms

§, :":} :’:1: | [TreeSLS-1ms

a > > [Aurora-base

10 501

§’ 50 :%J E [Aurora-5ms

o E 5 E 25 [Aurora-API

= 0 0 0 Bl Aurora-base-WAL

TreeSLS Aurora TreeSLS Aurora TreeSLS Aurora

(a) Throughput (b) P50 Write Latency (c) P99 Write Latency (d) Legend

Advantages of TreeSLS

* Reduced Recovery Time

* Real-World Applicability

* Reduced Overheads

* External Synchrony Support

* Minimized Disruption to Workflow

* Reduced Development and Maintenance Efforts

—

Disadvantages of TreeSLS

* Performance Trade-offs

* Dependencies on NVM

* Uniformed Persistence

* Data Reliability

* Memory Over-commitment

* Extension to Eidetic System

—

Thank you!

c

