
Application�Controlled Physical Memory using

External Page�Cache Management

Kieran Harty and David R� Cheriton
Computer Science Department
Stanford University� CA �����

Abstract

Next generation computer systems will have gigabytes
of physical memory and processors in the ��� MIPS range
or higher� While this trend suggests that memory man�
agement for most programs will be less of a concern�
memory�bound applications such as scienti�c simulations
and database management systems will require more so�
phisticated memory management support� especially in a
multiprogramming environment� Furthermore� new archi�
tectures are introducing new complexities between the pro�
cessor and memory� requiring techniques such as page col�
oring� variable page sizes and physical placement control�

We describe the design� implementation and evaluation
of a virtual memory system that provides application con�
trol of physical memory using external page�cache manage�
ment� In this approach� a sophisticated application is able
to monitor and control the amount of physical memory it
has available for execution� the exact contents of this mem�
ory� and the scheduling and nature of page�in and page�out
using the abstraction of a page frame cache provided by
the kernel� It is also able to handle multiple page sizes
and control the speci�c physical pages it uses� We claim
that this approach can signi�cantly improve performance
for many memory�bound applications while reducing ker�
nel complexity� yet does not complicate other applications
or reduce their performance�

� Introduction

Next generation computer systems will measure their
physical memory in gigabytes� just as current systems are
rated in megabytes and previous generation systems were
rated in kilobytes� This trend has prompted some to fore�
tell the demise of operating system virtual memory sys�
tems and even secondary storage� Yet� secondary storage
and networking growth places the e�ective external data
capacities in the terabyte range� maintaining the rough ra�
tio of main to secondary storage that has held for decades�
Thus� the real e�ect of the arrival of gigabyte memories is
to clearly delineate applications with modest memory re�
quirements from those whose requirements are almost un�
bounded� such as large�scale simulation� or whose require�
ments grow proportional to external data capacities� such as
data base systems� The increasing speed of processors and
the lack of comparable improvement in I	O performance
makes the memory system performance a key limiting fac�
tor for these demanding applications� With a page fault
to secondary storage now costing close to a million instruc�
tion times� the 
instruction budget� exists to take a more
intelligent approach to page management in virtual mem�
ory systems�

There are three major problems with current virtual
memory systems� Firstly� an application cannot know the
amount of physical memory it has available� it is not in�
formed when signi�cant changes are made in the amount
of available memory� and it cannot control the speci�c phys�
ical pages it is allocated� Secondly� a program cannot ef�
�ciently control the contents of the physical memory allo�
cated to it� Finally� a program cannot easily control the
read�ahead� writeback and discarding of pages within its
physical memory� Addressing these problems has signi��
cant performance bene�ts for applications� as argued be�
low�

With knowledge of the amount of available physical
memory� an application may be able to make an intelligent
space�time tradeo� between di�erent algorithms or modes
of execution that achieve its desired computation� For ex�
ample� MP�D 
��� a large scale parallel particle simulation
based on the Monte�Carlo method� generates a �nal result
based on the averaging of a number of simulation runs� The
simulation can be run for a shorter amount of time if it uses
many runs with a large number of particles� This applica�
tion could automatically adjust the number of particles it



uses for a run� and thus the amount of memory it requires�
based on availability of physical memory� Similarly� a par�
allel database query processing program 
��� can adapt the
degree of parallelism it uses� and thus its memory usage�
based on memory availability� Finally� a run�time memory
management library using garbage collection can adapt the
frequency of collections to available physical memory� if this
information is available to it�

With control of which speci�c physical page frames it
uses and their virtual memory mapping� an application
can optimize for e�cient access based on the system mem�
ory organization and the application access patterns� For
example� in the DASH machine 
���� physical memory is
distributed� even though the machine provides a consis�
tent shared memory abstraction using a cache consistency
protocol� In this type of machine� a large�scale applica�
tion can allocate page frames to speci�c portions of the
program based on a page frame�s physical location in the
machine and the expected access to this portion of mem�
ory� Similarly� an application can allocate physical pages
to virtual pages to minimize mapping collisions in physi�
cally addressed caches and TLBs� implementing page color�
ing 
��� on an application�speci�c basis� taking into account
expected data access patterns at run�time�

With control of the portion of its virtual address space
mapped to physical memory� an application can operate far
more e�ciently if it is using a virtual address space that ex�
ceeds the size of physical memory� For example� a database
management system can ensure that critical pages� such
as those containing central indices and directories� are in
physical memory� The query optimizer and transaction
scheduler can also bene�t from knowing which pages are in
memory� because the cost of a page fault can signi�cantly
increase the overall cost of a query� The latency of a page
fault also dramatically extends lock hold time times if locks
are held across a fault� With multiprocessor machines� an
unfortunate page fault can cost not just the elapsed time
of the fault� but that cost multiplied by the number of pro�
cesses blocked if they also hit the same page� or a lock held
the blocked process�

With control of read�ahead� writeback and page dis�
carding� an application can its minimize I	O bandwidth
requirements and the e�ect of I	O latencies on its exe�
cution� Scienti�c computations using large data sets can
often predict their data access patterns well in advance�
which allows the disk access latency to be overlapped with
current computation� if e�cient application�directed read�
ahead and writeback are supported by the operating system
�and the requisite I	O bandwidth is available�� For exam�
ple� the large�scale particle simulation cited above takes ap�
proximately �� seconds to scan its in�memory data of ���
megabytes for each simulated time interval �on a machine
with eight ���MIPS processors ��� Thus there is ample time
to overlap prefetching and writeback if the data does not
�t entirely in memory�

Extensions to virtual memory systems� such as page
pinning� external pagers 
��� �� and application�program
advisory system calls like the Unix � madvise attempt to
address some of these issues� but incompletely and with
signi�cant increase in kernel complexity� We are interested
in exploring a signi�cantly di�erent modularization of the

�Silicon Graphics �D����
�UNIX is a trademark of AT�T

memory system implementation that both provides appli�
cation control and reduces kernel complexity�

In this paper� we describe the design� implementa�
tion and evaluation of a virtual memory system that pro�
vides application control of physical memory using what
we call external page�cache management� With external
page�cache management� the virtual memory system e�ec�
tively provides the application with one or more physical
page caches that the application can manage external to
the kernel� In particular� it can know the exact size of the
cache in page frames� It can control exactly which page is
selected for replacement on a page fault and it can control
completely how data is transferred into and out of the page�
including selecting read�ahead and writeback� It can also
has information about physical addresses� so that it can im�
plement schemes like page coloring and physical placement
control�

In essence� the kernel virtual memory system provides
a page frame cache for the application to manage� rather
than a conventional transparent virtual address space that
makes the main memory versus secondary storage division
transparent except for performance� A default process�level
manager provides page�cache management for such appli�
cations that do not want to manage their virtual memory�

The next section describes our design as implemented in
the V�� kernel� The following section evaluates external
page�cache management� drawing on measurements both
from the V�� implementation and a simulated database
transaction processing system� Section � describes related
work� We close with a discussion of conclusions and some
future directions�

� External Page�Cache Management in V��

External page�cache management requires new kernel
operations and process�level modules to allow process�level
management of page frames� We �rst describe the ker�
nel support� followed by a discussion of application�speci�c
managers� We then discuss the the default manager� Fi�
nally we describe the module responsible for global mem�
ory allocation� Although this section focuses on the design
and implementation of external page�cache management in
V��� a new generation of the V distributed system� the ba�
sic approach is applicable to other systems� such as Unix�

��� Kernel Page Cache Management Support

Kernel page cache management support is provided in
V�� as operations on segments� A segment is a variable�
size address range of zero or more pages� similar to the con�
ventional virtual memory notion of segment 
��� Pages can
be added� removed� mapped� unmapped� read and writ�
ten using segment operations� A parameter to the seg�
ment creation call optionally speci�es the page size to sup�
port machines such as those using the Alpha microproces�
sor 
��� that support multiple page sizes� Segments are
used for cached and mapped �les� portions of program ad�
dress spaces �such as the code segment� data segment� etc��
as well as for program address spaces themselves� as illus�
trated in Figure �� Referring to Figure �� a program vir�
tual address space in V�� is a segment that is composed
by binding one or more regions of other segments� The �g�
ure illustrates a virtual address segment with a code� data
and stack segments bound into the code� data and stack
regions of the address space� respectively� A bound region



Bound region

Virtual Address Space Segment

page
frames

 UIO

Bound region

 UIOCode
Segment

Stack
Segment

Bound region

 UIOData
Segment

VA Segment

Code Region Data Region Stack Region

Figure �� Kernel Implementation of a Virtual Address
Space

associates a range of addresses �page�aligned and a multi�
ple of pages� in one segment with an equal�sized range of
blocks in another segment so that a memory reference to
an address covered by a bound region in �rst segment is
e�ectively a reference to the corresponding address in the
associated bound segment� The binding facilities also sup�
port a copy�on�write binding in which pages are e�ectively
bound to a source segment until modi�ed� While this seg�
ment structure is similar to other virtual memory designs�
the novelty lies in the associated page cache management
support�

External page cache management is supported with
three signi�cant additions over conventional virtual mem�
ory management operations� if one regards the V�� seg�
ment as roughly analogous to Unix open �les and Mach
memory objects� Firstly� an explicit manager module is
associated with each segment� using the kernel operation�

SetSegmentManager� seg� manager �

Secondly� the kernel operation

MigratePages�srcSeg� dstSeg� srcPage� dstPage�
pages� sFlgs� cFlgs�

moves pages page frames from the source segment� starting
at srcPage to the destination segment� starting at dstPage�
setting the page �ags speci�ed by sFlgs and clearing the
page �ags speci�ed by cFlgs for each migrated page frame�
A similar kernel operation�

ModifyPageFlags�seg� page� pages� sFlgs� cFlgs�

modi�es the page �ags without migrating the page frames�
The MigratePages and ModifyPageFlags operations allow
the manager to modify page state �ags such as the dirty

�ag in addition to the protection �ags accessible with the
conventional Unix mprotect� Finally� the kernel operation

GetPageAttributes� seg� page� pages�
returns �pageAttributeArray�

returns the page �ags� and the physical pageframe address�
of the speci�ed set of page frames� These operations are
used in conjunction with modest extensions of conventional
virtual memory facilities� such as the ability to catch page
faults at user level� to implement external page cache man�
agement�

The segment manager is a module responsible for man�
aging the pages associated with the segment� In particular�
when a reference is made to a missing or protected page
frame in a segment� the event is communicated to the man�
ager� The manager handles the fault following the sequence
illustrated in Figure �� Referring to this �gure� when the

ApplicationSegment 
Manager

Kernel Interface

File Server

KERNEL

123

4
5

1. Page fault
2. Request to server
3. Reply from server
4. Migrate page
5. Resume 

Figure �� Page Fault Handling with External Page�Cache
Management

application references a page frame not present in its ad�
dress space� it traps to the kernel� which forwards the page
fault indication to the manager �step ��� The manager allo�
cates a page frame from another segment �often a free�page
segment�� requests the data for the page frame from the �le
server holding the data �step ��� and waits for the reply�
When the server replies with the data �step ��� the data
is copied into the previously allocated page frame� and the
kernel is invoked �step �� to move or migrate the page frame
to the faulting page address in the application�s segment�
The manager responds to the application� allowing it to
resume �step ��� The �gure assumes that the page data
must be retrieved from the �le server� If the manager has
the page data available locally� steps � and � are replaced
by an internal procedure in the manager which makes the
data available in the page frame allocated to the applica�
tion� With a copy�on�write fault the kernel performs the
copy after the manager has allocated a page�

Filling the page frame tends to dominate the other costs
of page fault handling because it usually requires either ac�
cessing backing store or copying from another page� Note
that the kernel manages hardware�supported VM transla�
tion tables such as page tables and TLBs to map pages
with the protections speci�ed in the segment and bound
region data structures� A page fault trap only occurs when
a memory reference cannot be satis�ed given the informa�
tion in these kernel data structures� In particular� simple
TLB misses are handled by the kernel�

The MigratePages operation operates on the page
frames in bound regions by operating on the associated
segments� For example� migrating a page frame to the ad�
dress range corresponding to the data region in the virtual
address segment in Figure � e�ectively migrates the page
frame to the segment labeled Data Segment� Migrating a
page frame to a segment is treated as a write operation for
the purposes of segment protection and copy�on�write be�
havior� The MigratePages operation is also used to reclaim
pages frames from segments as part of a page reclamation
strategy�

Cached �les� implemented as segments� can be accessed
using a kernel�provided �le�like block read	write interface�
speci�cally the Uniform Input	Output Object �UIO� proto�
col 
��� A �le read to a segment page that does not have an



associated page frame causes a page fault event to be com�
municated to the manager of the segment� as for a regular
page fault� File write operations requiring page allocation
are handled similarly� File access performance is compa�
rable to that of a system with a kernel�resident �le system
because� when the �le is cached� the access is a single kernel
operation � and when the �le is not cached� the access time
is dominated by secondary storage access costs�

The manager module can be executed by a process sep�
arate from the application or by the faulting process itself�
In the �rst case� the kernel suspends the faulting process
and communicates with the manager process using the in�
terprocess communication facility� In the second case� the
kernel transfers control to a procedure that is executed by
the page faulting process� similar to a conventional signal
or interrupt� This method is generally more e�cient than
the �rst method because no context switch is required� On
some hardware� such as the MIPS R�����based machines�
resumption of the application after page faulting handling
can be performed directly from the manager without go�
ing through the kernel� further improving the e�ciency�
Other systems� such as those using the MC ���X� pro�
cessors� require a return through the kernel to restore priv�
ileged pipeline state� With the potential of a variety of
high�performance uses for application page cache manage�
ment� we hope that future architectures will allow direct
application resumption after fault� as in the R�����

When the faulting process executes its own segment
manager� some care is required in handling page faults on
that process�s stack to avoid in�nitely recursive page fault�
ing� Our approach is to use a separate fault�handling or
signal stack that is always in memory� so a page fault in the
page fault handling does not occur� There can be a separate
signal stack per segment� so with a multi�threaded program�
each thread can have a separate signal stack� namely one
for its stack segment�

On initialization� the kernel creates a segment identi�
�ed by a well�known segment identi�er that includes all
the page frames in the memory system� in order of physical
address� with access limited to system processes� speci��
cally the system page cache manager �see section ����� The
system page cache manager uses the MigratePages opera�
tion to allocate these page frames to the various segment
managers on demand� In a minimal con�guration of the
system� such as in an embedded real�time application with
no demand paging� application processes can allocate pages
directly from this initial segment� obviating the need for any
process�level server mechanism� This scenario illustrates
how the kernel virtual memory support contains very little
extra mechanism beyond that required to support embed�
ded applications� yet can be con�gured with process�level
servers to implement a full demand�paging system with so�
phisticated application paging control�

In summary� the primary kernel extensions are� ��
the ability to designate an explicit manager for a seg�
ment� �� kernel operations such as MigratePages and
ModifyPageFlags to modify segments and page frame �ags�
and �� the kernel operation GetPageAttributes to deter�
mine the page attributes for a range of pages frames� With
the information and control exported by the kernel and the
e�cient communication to segment managers on page fault

�Using the block interface the �le is not mapped into the
address space of the reading process

and page protection fault events� a process�level module
can readily implement a variety of sophisticated schemes�
including replicated writeback� page compression and log�
ging� and it can coordinate writeback with the application�
as is required for clean database transaction commit� In
comparison to the external pager approach supported by
the Mach kernel� the V�� kernel does no page reclamation
and no page writeback�

��� Application�Speci�c Segment Managers

In each sophisticated large�scale application� an
application�speci�c segment manager manages one or more
of the application�s memory segments� The management
actions include� �� handling page faults� �� reclaiming pages
from segments and �� interacting with the system segment
manager to allocate additional pages and return pages� as
appropriate�

To handle page faults quickly� a segment manager typi�
cally maintains a free�page segment� just as is normally done
by the kernel virtual memory system in a conventional de�
sign� The free�page segment is mapped into the manager�s
address space so the manager can directly copy data to and
from the page frames as part of allocation and reclamation�
For example� as part of a conventional page fault� it may
read the page data from backing storage into a page in its
address space that corresponds to the page in the free�page
segment that has been allocated for this page fault� It then
migrates the page frame to the faulting segment and allows
the faulting process to continue�

More complex schemes are appropriate for some appli�
cations� For example� the segment manager for a database
management system �DBMS� may use temporary index
segments as free�page segments� and simply steal from these
scratch areas rather than maintain explicit free areas� A
DBMS segment manager may have a di�erent free page
segment for each of indices� views and relations� making it
easier to track memory allocation to these di�erent types of
data� A single application may also use di�erent segment
manager modules for di�erent segments or types of seg�
ments it uses� For example� it may maintain di�erent free
page segments to handle distributed physical memory on
machines such as DASH 
��� or for page coloring schemes�
These techniques rely on being able to request page frames
from the system page cache manager with speci�c physical
addresses� or in particular physical address ranges�

The manager can implement standard page frame
reclamation strategies� such as the various 
clock� algo�
rithms 
���� In particular� it can periodically migrate page
frames from the segments it manages back to a free�page
segment using MigratePages� keeping track of the segment
and page number for each page frame it migrates� and writ�
ing back the dirty page data� If a given page frame is refer�
enced through the original segment before the page frame is
reused� the manager simply migrates it back to the original
segment� The manager is also informed when a segment
it manages is closed or deleted� so that it can reclaim the
segment page frames at that time�

The manager can use application�speci�c strategies�
such as deleting whole segments of temporary data that
it knows are no longer needed or that are better to discard
and regenerate in their entirety �rather than be paged out
and back in� or regenerated a page at a time�� Similarly�
in a large�scale matrix computation� the manager may be



able to prefetch pages of matrices to minimize the e�ect
of disk latency on the computation while recognizing that
it can simply discard dirty pages of some intermediate ma�
trix rather than writing them back� thereby conserving I	O
bandwidth�

On initialization� a segment manager requests the cre�
ation of its free�page segments with initial page frame al�
locations from the system page cache manager� It then
creates further segments� possibly on demand from the ap�
plication� to handle application data� specifying itself as the
manager for these segments�

The issue of the page faults on segment manager code
and data can be handled in two ways� First� the code and
data can reside in segments that are managed by another
manager� such as the default segment manager� described
in the next section� Then� in the case of the �rst manager
incurring a page fault on its code or data segment� this sec�
ond fault is handled by the other segment manager before
the �rst manager continues with the page fault handling�
This approach is simple to implement� but does not pro�
vide predictable performance for the application segment
manager� The alternative approach is for the application
manager to manage the segments containing its code and
data� and to ensure that these segments are not paged out
while the program is active� e�ectively locking this portion
in memory� In this approach� when an application starts ex�
ecution� these segments are under the control of the default
segment manager� The application manager accesses these
pages at this point to force them into memory� then as�
sumes management of these segments� and then reaccesses
these segments� ensuring they are still in memory� A page
fault after assuming ownership causes this initialization se�
quence to be retried until it succeeds� Once the manager
has completed this initialization� it excludes its own page
frames from being candidates for replacement� In this ap�
proach� to avoid all page faults in the page fault handling
code itself� all segments must use a signal stack that is part
of this e�ectively pinned data� not just the stack segments�
as described earlier�

The same approach can be used when an application is
swapped out to secondary storage� In particular� the ap�
plication segment manager swaps the application segments
except for its code and data segments� It then returns own�
ership of these latter segments to the default segment man�
ager� and indicates it is ready to be swapped� The applica�
tion manager is then suspended� and its segment pages are
then swapped out as well� On resumption of the applica�
tion� the manager gains control and repeats the initializa�
tion sequence described above�

An application segment manager can be 
specialized�
from a generic or standard segment manager using inher�
itance in an object�oriented implementation� The generic
implementation provides data structures for managing the
free page segment and basic page faulting handling� The
page replacement selection routines and page �ll routines
can be easily specialized to particular application require�
ments� Thus� the application programmer�s e�ort to pro�

�This scheme assumes that the amount of memory required
for the manager is small compared to the amount of physical
memory	 We do assume a large system memory con�guration
suitable for running the class of memory
bound applications mo

tivating these techniques� where this assumption is invariably
true	 It is not clear that our approach is workable in general if
the system memory resources are meager relative to the working
set size of servers and other real
time or interactive modules	

vide page cache management is minimized� and focused on
the application�speci�c policies and techniques� rather than
the task of developing a segment manager from scratch�

��� Default Segment Manager

A default segment manager implements cache manage�
ment for conventional programs� making them oblivious to
external�page management� This manager executes as a
server outside the kernel� In V��� the default segment
manager is currently created as part of the 
�rst team�� a
memory�resident set of systems servers started immediately
after kernel initialization� Thus� the default manager does
not itself page�fault�

In the V�� implementation� the UIO Cache Directory
Server �UCDS� 
�� has been extended to act as default
segment manager� This server manages the V�� virtual
memory system e�ectively as a �le page cache� All ad�
dress spaces are realized as bindings to open �les� as in
SunOS �� The original role of the UCDS was to handle
�le opens and closes so it could add �les to the cache on
demand and remove them as appropriate� In this origi�
nal form� page faults were handled by the kernel once the
mappings were established� The modi�cations for external
page�cache management required extensions to this server
to manage a free�page segment and to handle page fault re�
quests� page reclamation and writeback� However� because
it was already maintaining information about cached �les
on a per��le basis� the extensions to its data structures and
overall functionality were relatively modest�

To determine the memory requirements of applica�
tions using the default segment manager� the default man�
ager implements a clock algorithm 
��� that allocates page
frames to each requester based on the number of page
frames it has referenced in some interval� The implementa�
tion of this algorithm requires passing a fault to the man�
ager when a process �rst references a page after the page
protection bits are set to disallow all references� The han�
dling of the fault requires changing the protection of the
referenced page� To reduce the overhead of handling these
faults� the default manager changes the protection on a
number of contiguous pages� rather than a single page�
when a fault occurs� In general� the default manager can
implement whatever algorithms that the corresponding ker�
nel module would in a conventionally structured system�
including page coloring and the like� if appropriate� Thus�
the performance with the default segment manager should
be competitive with conventional systems� as indicated by
our measurements in Section ����

��	 System Page Cache Manager

The System Page Cache Manager �SPCM� is a process�
level module that manages the allocation of the global
memory pool among the segment managers� A manager
requests some number of page frames from the SPCM in
order to satisfy its memory requirements� The SPCM can
grant� defer or refuse the request� based on the compet�
ing demands on the memory and memory allocation pol�
icy� The SPCM returns page frames to its local free page
segment when returned by a segment manager� or when a
segment manager terminates�

The SPCM can support segment manager requests for
particular page frames by physical address or by physical

�SunOS is a trademark of Sun MicroSystems Inc	



address range� as required for physical placement control
and page coloring� If the SPCM cannot satisfy an alloca�
tion request because of physical address constraints� it is
handled the same as a conventional �unconstrained� page
frame request for which the size of memory requested is
larger than that available� That is� it allocates and provides
as many page frames as it can or is willing to� Further ex�
tensions can easily be provided for future architectures by
modifying the SPCM� rather than complicating and desta�
bilizing the kernel�

A 
memory market� model of system memory alloca�
tion has been developed for the SPCM� and is explored in
depth in a separate report 
��� In brief� the SPCM imposes a
charge on a process for the memory that it uses over a given
period of time in an arti�cial monetary unit we call a dram�
That is� a process holding M megabytes of memory over T
seconds is chargedM �D�T drams� if the charging rate is D
drams per megabyte�second� A process is provided with an
income of I drams per second of its existence� the value of
I depending on the number of competing processes and the
administration policy of allocating for the system� A seg�
ment manager as part of an application process thus must
manage its dram supply to balance the cost of the memory
used by the application versus its income� In particular� it
must return memory to the SPCM when it can no longer
a�ord to 
pay� for the memory� The SPCM has the ability
to force the return of memory from processes that have ex�
hausted their dram supply� treating such process behavior
as faulty�

For batch programs the application segment manager
suspends and swaps the program until it has saved enough
drams to a�ord enough memory for a reasonable time slice
of execution� By queries to the SPCM� it can determine
the demand on memory and possibly identify trade�o�s be�
tween running in a small amount of memory soon versus
waiting longer to get a larger amount of memory� When
the process has enough drams to a�ord the memory� it re�
quests the memory from the SPCM and runs as soon as
the memory request is granted� At the end of its time
slice� when its dram savings are running low� it pages out
the data and returns to a quiescent state in which it has a
very low memory requirement� As a further re�nement� the
SPCM can allow a process to continue to use memory at
no charge when there are no outstanding memory requests�
Also� there is a savings tax imposed to avoid demand dra�
matically exceeding supply� given this is basically a �xed
price� �xed supply market� Finally� there is a charge for
I	O that is based on the trade�o� between memory and
I	O in� for example� scan�structured programs� which pre�
vents such programs from avoiding the memory charge with
excessive I	O�

This monetary model allows the SPCM to allocate
memory resources to programs according to the income sup�
plied to each program� re�ecting administrational policy� In
particular� we claim that if each user account receives equal
income� its programs also receive an equal share of the ma�
chine over time among the active users� This claim assumes
a multiprocessor machine in which the primary limiting re�
sources are memory and I	O� The monetary model also
allows applications to decide how best to structure their
computation relative to system resources� choosing for in�
stance between computing with a large amount of memory
for short timeslices versus computing for longer time slices
with less memory� Finally� it provides a model that allows

the segment managers to predict how long they can exe�
cute and the amount of memory available for that time�
In the conventional approaches used for global page man�
agement developed during the �����s and ���s� the applica�
tion does not have any idea of when it might lose pages or
be swapped� Moreover� implementing conventional work�
ing set algorithms would appear to either require trusting
the application segment managers for information or largely
duplicating their monitoring of the page access behavior�

Our results to date suggest that this approach results
in a stable� e�cient global memory allocation mechanism
for large�scale computations that provides applications to
considerable �exibility in making application�speci�c trade�
o�s in the use of memory� thus matching well with the
application control provided by the mechanisms described
in this paper�

The V�� system page cache manager together with the
default segment manager and the basic kernel virtual mem�
ory management provide the equivalent functionality of a
conventional virtual memory system but in a more modular
form� In particular� all the page I	O� replacement policies
and allocation strategies have been moved outside the ker�
nel� This is in line with our V�� objective of providing
a minimal�sized kernel that is suitable for embedded real�
time applications as well as conventional timesharing and
interactive workstation use�

The small number of kernel extensions required for ex�
ternal page cache management could be added to a con�
ventional Unix system� for example� to provide the bene�ts
of application�controlled paging without the major surgery
that would be required to revise the system design to match
the modularity of V��� In particular� kernel extensions
would be required to designate a mapped �le as a page�
cache �le� meaning that page frames for the �le would not
be reclaimed �without su�cient notice�� just as with the
segments in V��� Also� a kernel operation� such as an ex�
tension to the ioctl system call� would be required to set
the managing process associated with a given �le and to al�
locate pages� �The kernel would be the default manager� as
it e�ectively is now�� Finally� the ptrace and signal	wait
mechanism can be used to communicate page faults to the
process�level segment manager� The simplest solution to
protecting the manager against page faults on its code and
private data is simply to lock its pages in memory� a facil�
ity already available in Unix �although this may require the
manager to run as a privileged process��

� Evaluation

We have taken a two�pronged approach to evaluating
external page�cache management� Firstly� we implemented
external page�cache management in the V�� kernel and
systems servers to work through the details of the design
and evaluate its complexity and performance� Secondly� we
evaluated the bene�ts of using external page cache man�
agement in a simulation of a database management system
that uses a large amount of memory�

��� Measurements of System Primitives

External page�cache management was implemented in
the V�� system by modi�cation to the kernel virtual mem�
ory manager and extensions to the UCDS� In the kernel
that uses external page�cache management� the machine
independent virtual memory module is approximately ����



lines of C code� as compared to approximately ���� lines for
the previous version� Most of the excised code is migrated
to the page�cache managers so there is no real saving in the
total amount of the code required for the same function�
ality� However it is signi�cant in reducing the size of the
kernel� �as well as providing greater external functionality��

The performance of the implementation was evaluated
on a DECstation ����	���� �R���� processor with �� MHz
clock� which has a � kilobyte page size�

Table � summarizes the performance of V�� relative
to ULTRIX ����

Measurement V�� Ultrix
Equivalent

Faulting Process ��� ���
Minimal Fault
Default Segment Manager ��� ���
Minimal Fault
Read �KB ��� ���
Write �KB ��� ���

Table �� System Primitive Times� times in microseconds

The minimal cost page fault �as measured in Table ��
occurs when the manager just has to migrate the page frame
from its free page segment to the faulting process�s segment�
This case occurs frequently� such as on the �rst access to
a heap page� on copy�on�write faults� and when write ap�
pending a new page to a segment�

The table measurements suggest that handling the min�
imal page fault is faster using the faulting process in V��
than through the Ultrix kernel� Most of the di�erence in
cost ��� microseconds� is the cost of page zeroing that the
Ultrix kernel performs on each page allocation� In Ultrix�
zeroing is required for security because the page may be re�
allocated between applications� whereas this is not the case
in V�� unless the page is being given to another user�
Referring to the second row of the table� the cost of fault
handling by the default manager is higher than in ULTRIX
but this does not signi�cantly a�ect the performance of
applications as our measurements in the next subsection
show�

Low overhead page fault handling allows e�cient imple�
mentation of user level algorithms that use page protection
hardware� like those described in 
��� Examples of these
algorithms include mechanisms for concurrent garbage col�
lection and concurrent checkpointing� In ULTRIX ��� on
a DECstation ����	���� the cost of a user level fault han�
dler � for a protected page that simply changes the pro�
tection of the page is ��� microseconds� This is over ���
higher than the cost of handling a full fault using exter�
nal page�cache management� ULTRIX is competitive at
user level fault handling with other systems like Mach or
SunOS� For example� in Appel and Li�s measurements for
the DECstation ���� 
�� the overhead of Mach fault han�
dling operations was over twice the overhead of ULTRIX
for similar operations�

The �nal measurements in the table are the costs of
reading and writing a �KB block in a cached �le� In the
case of V�� the accesses use the block read�write interface

�In ULTRIX a user
level fault handler can be implementedus

ing a signal handler and the mprotect system call� which changes
the protections of an application program�s memory	

�discussed in Section ����� For ULTRIX we measured the
cost of the read and write system calls� The V�� write
cost is ��� less than ULTRIX� The V�� read cost is ����
higher than ULTRIX for reads� These numbers show that
providing external page�cache management does not have
a large negative e�ect on the performance of common op�
erations like accesses to cached �les�

��� Default Segment Manager

We ran a number of standard UNIX applications on
V�� using the default segment manager with instrumenta�
tion to measure the overhead of executing real application
programs using the default segment manager� For com�
parison we compiled the same source code �with di�erent
operating system dependent libraries� for ULTRIX ����

The applications were�

�� di�� compare two ���KB �les generating a di�erences
�le of ���KB�

�� uncompress� uncompress an ���KB �le generating a �le
of �MB�

�� latex� format a ���K input document generating a ��
page document�

In both cases the hardware was a DECstation ����	���
with ��� megabytes of memory� The page size on this ma�
chine is �KB� There are some di�erences between the two
hardware con�gurations� The ULTRIX machine had a lo�
cal disk� The V�� machine was diskless with �le storage
provided by a server running on a DECstation ���� running
ULTRIX ����

These applications were run with the �les they read
cached in memory to eliminate di�erences in I	O perfor�
mance that is irrelevant to the virtual memory system de�
sign factors we are measuring� These scenarios are also the
worst�case for our approach because there is no network or
�le access latency to hide the cost of going to the V��
process�level manager�

There are some notable di�erences between V�� and
ULTRIX� The unit of I	O transfer in ULTRIX is �KB� The
unit of I	O transfer in V�� is �KB� This means that V��
makes twice as many read and write operations to the ker�
nel as ULTRIX� Ultrix allocates pages in �K units� The
V�� default manager allocates pages in �K units� except
for appends to a �le in which case it allocates pages in ��K
units� The unit of page allocation is signi�cant because al�
location in V�� requires going to the segment manager�
At the low levels of the virtual memory system� Ultrix uses
page tables to describe address spaces� V�� augments the
segment and bound region data structures with a global
��K entry direct mapped hash table with a �� entry over�
�ow area�

Table � shows the mean elapsed time for executing the
programs under V�� and ULTRIX�

The measurements here show that the performance of
applications in V�� is comparable to the performance of
the same applications under ULTRIX�

To attempt to account speci�cally for the di�erences in
performance� we also measured the virtual memory system
activity of each progam� as shown in Table ��



Program V�� Ultrix
di� ���� ����
uncompress ���� ����
latex ����� �����

Table �� Application Elapsed Time in Seconds

Program Manager Migrate Manager
Calls Pages Overhead

di� ��� ��� �� mS
uncompress ��� ��� �� mS
latex ��� ��� �� mS

Table �� VM System Activity and Costs

Column � shows the number of times during the exe�
cution of the program that the manager was invoked� in�
cluding requests forwarded by the kernel for operations like
closing a �le as well as requests for a page frame� Col�
umn � shows the number of times the manager invoked
MigratePages� This column basically shows that almost
all manager calls were to handle page faults rather segment
releases or other management operations� Column � shows
the cost in milliseconds of using the V�� manager� cal�
culated as the di�erence in cost between a minimal page
fault to the default segment manager in V�� and the cor�
responding cost in Ultrix �from Table �� multiplied by the
number of manager calls�

The cost of the V�� process�level handling of page
faults is a small percentage of program execution time even
for the measured case where there is no disk or network
access ����� for di�� ����� for uncompress and ����� for
latex��

The di�erences in application performance between
V�� and Ultrix in Table � not accounted for by Table � we
attribute to di�erences in the run�time library implemen�
tations in V�� and Ultrix� Of the applications measured�
only latex under V�� is signi�cantly slower� and we are
continuing to investigate the reason� However� our mea�
surements in Table � indicate that the external page cache
management is not responsible for more than �� millisec�
onds or about ���� of the di�erence in execution times�

Overall� assuming that the applications we have mea�
sured are representative of those to be run under the default
segment manager in V��� we conclude that minimizing the
kernel using external page cache management does not in�
troduce a signi�cant overhead on normal programs� In fact�
we expect that the V�� overhead suggested by the mea�
surements has been somewhat overstated because a system
under normal conditions would have a signi�cant number
of page faults that include disk or network I	O� whereas
we have eliminated these costs in the measurements to pro�
vide a worst�case for V�� and to avoid spurious di�erences
arising from device behavior�

��� Application�Speci�c Page�Cache

Management

To explore the performance bene�ts of application�
speci�c page�cache management we developed a program
that simulates a database transaction processing system
that exploits a space�time tradeo� in its use of indices for
e�cient join processing� If memory is plentiful� it is more
e�cient to perform large joins by generating indices for the

relations in advance� If however� the creation and references
to the indices would result in additional paging� it is better
to discard indices for which there is not enough space� and
regenerate them in memory when they are needed�

The program was run using � processors of a Silicon
Graphics �	��� on a ��� megabyte database� The transac�
tion arrival rate was �� transactions per second� The trans�
action mix was ��� small DebitCredit type transactions
with the remaining �� being joins of two relations to up�
date a third� A hierarchical locking scheme is used for con�
currency control�

The program is a mixture of implementation and simu�
lation� The locks were implemented and the parallelism is
real� However� the execution of a transaction is simulated
by looping for some number of instructions and a page fault
is simulated by a delay that is equivalent to the time re�
quired to handle a page fault on the SGI �	����

The measurements in Table � show the performance
di�erences between four con�gurations of the database pro�
gram�

Con�guration Average Worst�case
Response Response

No index ��� ����
Index in memory �� ���
Index with paging ��� ����
Index regeneration �� ���

Table �� E�ect of Memory Usage on Transaction Response
�ms�

The �rst con�guration shows the response time when
no index is used for joins� The second con�guration shows
the reduction in response time achieved by using an index
for accessing relations for performing a join� in the case
where the indices are always in memory� In the case of the
con�guration labeled 
index with paging�� a one megabyte
index is paged in every ��� transactions �on average ev�
ery ���� seconds� because the size of the virtual memory
used by the program exceeds the memory allocated to the
program by � megabyte�

These measurements show that indices are of signif�
icant bene�t to response time if the �physical� memory
is available� but are of limited bene�t if the size of the
database system�s virtual memory exceeds the available
physical memory by less than �� and there is a modest
amount of paging�

If the database system is informed that its virtual mem�
ory size exceeds the physical memory allocated to it� it can
discard some indices and regenerate them when necessary�
The 
index regeneration� entry shows the performance ben�
e�ts of this approach after the physical memory allocated
to the database system is reduced by � megabyte� In this
case� the average response time is an order of magnitude
less than the paging case and is only ��� worse than the

index in memory� case�

This example demonstrates a case of application�
controlled page cache management having signi�cant ben�
e�ts even though the application�s virtual memory only
slightly exceeded available physical memory� We expect
similar bene�ts with other memory�intensive applications�



	 Related Work

The inadequacy of the conventional 
transparent� vir�
tual memory model is apparent in recent developments and
papers in several areas� For example� Hagmann 
��� pro�
posed that the operating system has become the wrong
place for making decisions about memory management� He
discussed the problems with current VM systems� but did
not present a design that addresses these problems�

The conventional approach of pinning pages in memory
does not provide the application with complete informa�
tion on the pages it has in memory because the application
typically does not� and cannot� pin all the pages it has
in memory� The operating system cannot allow a signi��
cant percentage of its page frame pool to be pinned with�
out compromising its ability to share this resource among
applications� The amount of pinning that is feasible is
dependent on the availability of physical memory� These
complications have led many systems� particularly di�er�
ent versions of Unix� to restrict memory pinning to privi�
leged systems processes or to impose severe limits on the
number of pages that can be pinned by a process� The
extension of pinning to 
noti�cation� locks� so a process
is noti�able when a pinned page is to be reclaimed� would
allow more pinning but would still not give the application
control over which page frames can be reclaimed� With ex�
ternal page cache management in V��� the system page
cache manager can reclaim page frames from applications�
but the application�s segment manager�s� have complete
control over which page frames to surrender� We expect
that� with the appropriate generic segment manager soft�
ware� developing an application�speci�c segment manager
should be no harder than developing a 
pin� manager mod�
ule� However� further experience is required in this area
before �rmer conclusions can be drawn�

The external pagers in Mach 
��� and V 
�� provide the
ability to implement application�speci�c read�ahead and
writeback using backing servers or external pages� How�
ever� these extensions do not address application control
of the page cache and are primarily focused on the han�
dling of backing storage� The PREMO extensions to Mach

��� address some of the shortcomings of Mach noted in
Young�s thesis 
���� PREMO supports user�level page re�
placement policies� The PREMO implementation involves
adding more mechanism to the Mach kernel� to deal with
one aspect of the page�cache management problem � page
replacement� thus complicating rather than simplifying the
kernel� as we have done� PREMO also does not export in�
formation to the application level about how much memory
is allocated to a particular program�

In 
��� Subramanian describes a Mach external pager
that takes account of dirty pages that do not need to be
written back� She shows signi�cant performance improve�
ments for a number of ML programs by exploiting the fact
that garbage pages can be discarded without writeback�
She proposes adding support to the kernel for discardable
pages to remedy two problems associated with supporting
discardable pages outside the Mach kernel� First� an ex�
ternal pager does not have knowledge of physical memory
availability� Second� there are unnecessary zero��lls �for se�
curity� when a page is reallocated to the same application�
Both of these problems are addressed by external page�
cache management without adding special mechanism to
the kernel�

Database management systems have demanded� and

operating systems have provided� facilities for pinning pages
�such as the Unix mpin and mlock calls� and limited advi�
sory capability� such as the Berkeley Unix madvise call�
However� these approaches provide simple ways to prevent
page out or to in�uence paging behavior� not a real mea�
sure of control of the page cache by a program� as we have
proposed� Support for application�designated page replace�
ment on a per�page basis and noti�cation of changes in
available physical memory are well beyond the scope of the
design� as well as the implementation� of these current fa�
cilities�

Discontent with current virtual memory system func�
tionality is evident in the database literature� both in com�
plaints about the virtual memory system compromising
database performance� and in the calls for extended virtual
memory facilities 
��� ��� or the elimination of the virtual
memory system altogether� We see our approach as provid�
ing the database management systems with the information
and control of page management demanded in this litera�
ture� We achieve this without compromising the integrity
of the operating system or its general purpose functionality�

This work has some analogy to proposed operating sys�
tem support for parallel application management of proces�
sors� For example� Tucker and Gupta 
��� show signi�cant
improvements in simultaneous parallel application execu�
tion if the applications are informed of changes in the num�
bers of available processors and thereby allowed to adapt�
as compared to the conventional transparent� oblivious ap�
proach� Anderson et al� 
�� and Black 
�� have proposed
kernel mechanisms for exporting more control of proces�
sor management to applications� Just as in our work� this
processor�focused work is targeted to the demanding ap�
plications whose requirements exceed what are� by normal
standards� plentiful hardware resources� Both our work and
the processor�focused work are not targeted towards im�
proving the performance of conventional applications such
as software development tools and utilities� Our work com�
plements this other work by focusing on application control
of physical memory� rather than control of processor allo�
cation�


 Concluding Remarks

External page�cache management is a promising ap�
proach to address the demands of memory�bound appli�
cations� providing them with control over their portion of
the system memory resources without signi�cantly compli�
cating system facilities� particularly the kernel�

We have argued that the cost of a page fault is too high
to be hidden from the application� except for its e�ect on
performance� Our measurements of a simple simulated par�
allel database transaction processing application support
this view� showing that a small amount of paging can elim�
inate any performance bene�t of algorithms that use vir�
tual address space just slightly in excessive of the amount
of physical memory available� compared to those more eco�
nomical in space� This behavior is consistent with memory
thrashing behavior we have observed with memory�bound
applications in general� It is strange that� while the space�
time tradeo� is well�recognized by the algorithms commu�
nity and a choice of algorithms exists for many problems
that o�er precisely this tradeo�� virtual memory systems
have not previously exported the information and control
to the applications to allow them to make the choice of al�
gorithm intelligently� With the cost of a page fault to disk



in the hundreds of thousands of instructions for the foresee�
able future� an application can only expect to trade space
for time if the space is real� not virtual�

External page�cache management� as implemented in
the V�� system� requires relatively simple extensions to
the kernel� and provides performance for user page fault
handling times that are less than ��� microseconds on cur�
rent conventional hardware� Our approach also subsumes
the external pager mechanism of Mach and V� External
page�cache management obviates the need to provide ker�
nel support for the various application�speci�c advisory and
monitoring modules that would otherwise be required in
the future� causing a signi�cant increase in kernel code and
complexity� That is� we argue that the complexity and
code size bene�ts are best appreciated by considering the
size and complexity of a Unix madvise module that could
deal with the memory management problems raised in this
paper� In that vein� we expect that other considerations�
such as page coloring� physical placement control and and
cache line software control� as in ParaDiGM 
��� to place
further demands on memory management software in the
future�

Finally� we have exploited the new external page cache
management kernel operations to further reduce the size of
the V�� kernel by implementing system page cache man�
agement and a default segment manager outside the kernel�
These changes have lead to a signi�cantly simpli�ed ker�
nel� because page reclamation� most copy�on�write support
and distributed consistency are all removed to process�level
managers�

A primary focus of our on�going work is on the devel�
opment of application�speci�c segment managers� based on
a generic manager� using object�oriented techniques to spe�
cialize this infrastructure to particular application require�
ments� The goal is to minimize the burden on application
programs while providing the bene�ts of application con�
trol� We are also investigating the market model of system�
wide memory management and its performance in sharing
system memory resources between competing applications�
With our primary focus on batch processing� results to date
have been promising�

The external page cache management approach devel�
ops further a principle of operating system design we call
e�cient completeness� described previously in the context
of supporting emulation 
��� The operating system kernel�
in providing an abstraction of hardware resources� should
provide e�cient and complete access to the functionality
and performance of the hardware� In the context of mem�
ory management� the complete and e�cient abstraction of
this hardware resource is that of a page�cache� Fair mul�
tiplexing of memory among the multiple competing appli�
cations is achieved by managing the page frame allocation
among these page caches� It also generally leads to a rel�
atively low�level service interface� thereby being in concert
with the goals of minimalist kernel design� as we have shown
with external page cache management�

In summary� we believe that external page�cache man�
agement is a good technique for structuring the next gen�
eration of kernel virtual memory systems� addressing the
growing complexity of memory system organizations and
the growing demands of applications while reducing the size
of kernel virtual memory support over conventionally struc�
tured systems� Once this facility is commonly available in
commercial systems� we expect the most exciting memory

management improvements may well come from the devel�
opers of database management systems� large�scale com�
putations and other demanding applications whose perfor�
mance is currently badly hindered by the haphazard behav�
ior of conventional virtual memory management�

� Acknowledgements

This work was supported by the Defense Advanced Re�
search Projects Agency under contract N���������C������
The comments of the ASPLOS referees have helped to im�
prove the quality of the paper� We thank Anita Borg�
Mendel Rosenblum� John Chapin and Hendrik Goosen for
their comments and criticisms� We are extremely grate�
ful to Jonathan Stone for the many hours he spent helping
perform the measurements for this paper�

References


�� Thomas E� Anderson� Brian N� Bershad� Edward D�
Lazowska and Henry M� Levy
Scheduler Activations� E�ective Kernel Support for the

User�Level Management of Parallelism

ACM Transactions on Computer Systems� ������
February �����


�� Andrew Appel and Kai Li
Virtual Memory Primitives for User Programs

In Proceedings of the �th Symposium on Architectural
Support for Programming Languages and Operating
Systems� Santa Clara� California� April �����


�� A� Bensoussan� C� T� Clingen and R� C� Daley
The Multics Virtual Memory

In Proceedings of the �nd ACM Symposium on Oper�
ating Systems Principles� Princeton� New Jersey� Oc�
tober �����


�� David Black
Scheduler Support for Concurrency and Parallelism in

the Mach Operating System

IEEE Computer Magazine� ������������ May �����


�� David R� Cheriton
The V Distributed System

Communications of the ACM� �������������� March
�����


�� David R� Cheriton� Gregory R� Whitehead and Ed�
ward W� Sznyter
Binary Emulation of Unix using the V Kernel

Usenix Summer Conference� June� �����


�� David R� Cheriton� Hendrik A� Goosen and Philip Ma�
chanick
Restructuring a Parallel Simulation to Improve Shared

Memory Multiprocessor Cache Behavior� A First Ex�

perience

Shared Memory Multiprocessor Symposium� Tokyo�
Japan� April �����


�� David R� Cheriton� Hendrik A� Goosen and Patrick D�
Boyle
ParaDiGM� A Highly Scalable Shared�Memory Multi�
Computer Architecture
IEEE Computer
�� ���� February� �����




�� David R� Cheriton
A Market Approach to Operating System Memory Al�

location

Working Paper� March �����


��� Daniel Dobberpuhl et al�
A ���MHz ��b Dual�Issue CMOS Microprocessor
In the ��th International Solid�State Circuits Confer�
ence� pages �������� February �����


��� Robert Hagmann
Comments on Workstation Operating Systems and

Virtual Memory

In Proceedings of �nd IEEE Workshop on Workstation
Operating Systems� Paci�c Grove� California� Septem�
ber �����


��� Samuel Le�er et al�
The Design and Implementation of the ��	 BSD UNIX

Operating System

Addison�Wesley� November �����


��� Dan Lenoski et al�
The DASH prototype� Implementation and Perfor�

mance

In Proceedings of ��th Symposium on Computer Ar�
chitecture� pages ������� May ����


��� Dylan McNamee and Katherine Armstrong
Extending the Mach External Pager Interface to Allow

User�Level Page Replacement Policies

Technical Report ��������� University of Washington�
September �����


��� Brian K� Bray� William L� Lynch and M� J� Flynn
Page Allocation to Reduce Access Time of Physical
Caches
Technical Report CSL�TR�������� Computer Systems
Laboratory� Stanford University� Novemeber �����


��� Michael Stonebraker
Operating System Support for Database Management

Communications of the ACM� �������������� July
�����


��� Michael Stonebraker et al�
The Design of XPRS

Memorandum No� UCB	ERL M��	��� University of
California Berkeley� March �����


��� Indira Subramanian
Managing Discardable Pages with an External Pager

In Proceedings of the Second Usenix Mach Sympo�
sium� Monterey� California� November �����


��� Irving Traiger
Virtual Memory Management for Database Systems

Operating Systems Review� ������������ April �����


��� Andrew Tucker and Anoop Gupta
Process Control and Scheduling Issues for Multipro�

grammed Shared�Memory Multiprocessors

In Proceedings of ��th ACM Symposium on Operating
Systems Principles� Litch�eld Park� Arizona� Decem�
ber �����


��� Michael Young et al�
The Duality of Memory and Communication in the

Implementation of a Multiprocessor Operating System

In Proceedings of ��th ACM Symposium on Operating
Systems Principles� Austin� Texas� November �����


��� Michael W� Young
Exporting a User Interface to Memory Management

from a Communication�Oriented Operating System

PhD thesis� Department of Computer Science�
Carnegie Mellon University� November ����� Also
available as Technical Report CMU�CS��������


