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Abstract

Next generation computer systems will have gigabytes
of physical memory and processors in the ��� MIPS range
or higher� While this trend suggests that memory man�
agement for most programs will be less of a concern�
memory�bound applications such as scienti�c simulations
and database management systems will require more so�
phisticated memory management support� especially in a
multiprogramming environment� Furthermore� new archi�
tectures are introducing new complexities between the pro�
cessor and memory� requiring techniques such as page col�
oring� variable page sizes and physical placement control�

We describe the design� implementation and evaluation
of a virtual memory system that provides application con�
trol of physical memory using external page�cache manage�
ment� In this approach� a sophisticated application is able
to monitor and control the amount of physical memory it
has available for execution� the exact contents of this mem�
ory� and the scheduling and nature of page�in and page�out
using the abstraction of a page frame cache provided by
the kernel� It is also able to handle multiple page sizes
and control the speci�c physical pages it uses� We claim
that this approach can signi�cantly improve performance
for many memory�bound applications while reducing ker�
nel complexity� yet does not complicate other applications
or reduce their performance�

� Introduction

Next generation computer systems will measure their
physical memory in gigabytes� just as current systems are
rated in megabytes and previous generation systems were
rated in kilobytes� This trend has prompted some to fore�
tell the demise of operating system virtual memory sys�
tems and even secondary storage� Yet� secondary storage
and networking growth places the e�ective external data
capacities in the terabyte range� maintaining the rough ra�
tio of main to secondary storage that has held for decades�
Thus� the real e�ect of the arrival of gigabyte memories is
to clearly delineate applications with modest memory re�
quirements from those whose requirements are almost un�
bounded� such as large�scale simulation� or whose require�
ments grow proportional to external data capacities� such as
data base systems� The increasing speed of processors and
the lack of comparable improvement in I	O performance
makes the memory system performance a key limiting fac�
tor for these demanding applications� With a page fault
to secondary storage now costing close to a million instruc�
tion times� the 
instruction budget� exists to take a more
intelligent approach to page management in virtual mem�
ory systems�

There are three major problems with current virtual
memory systems� Firstly� an application cannot know the
amount of physical memory it has available� it is not in�
formed when signi�cant changes are made in the amount
of available memory� and it cannot control the speci�c phys�
ical pages it is allocated� Secondly� a program cannot ef�
�ciently control the contents of the physical memory allo�
cated to it� Finally� a program cannot easily control the
read�ahead� writeback and discarding of pages within its
physical memory� Addressing these problems has signi��
cant performance bene�ts for applications� as argued be�
low�

With knowledge of the amount of available physical
memory� an application may be able to make an intelligent
space�time tradeo� between di�erent algorithms or modes
of execution that achieve its desired computation� For ex�
ample� MP�D 
��� a large scale parallel particle simulation
based on the Monte�Carlo method� generates a �nal result
based on the averaging of a number of simulation runs� The
simulation can be run for a shorter amount of time if it uses
many runs with a large number of particles� This applica�
tion could automatically adjust the number of particles it



uses for a run� and thus the amount of memory it requires�
based on availability of physical memory� Similarly� a par�
allel database query processing program 
��� can adapt the
degree of parallelism it uses� and thus its memory usage�
based on memory availability� Finally� a run�time memory
management library using garbage collection can adapt the
frequency of collections to available physical memory� if this
information is available to it�

With control of which speci�c physical page frames it
uses and their virtual memory mapping� an application
can optimize for e�cient access based on the system mem�
ory organization and the application access patterns� For
example� in the DASH machine 
���� physical memory is
distributed� even though the machine provides a consis�
tent shared memory abstraction using a cache consistency
protocol� In this type of machine� a large�scale applica�
tion can allocate page frames to speci�c portions of the
program based on a page frame�s physical location in the
machine and the expected access to this portion of mem�
ory� Similarly� an application can allocate physical pages
to virtual pages to minimize mapping collisions in physi�
cally addressed caches and TLBs� implementing page color�
ing 
��� on an application�speci�c basis� taking into account
expected data access patterns at run�time�

With control of the portion of its virtual address space
mapped to physical memory� an application can operate far
more e�ciently if it is using a virtual address space that ex�
ceeds the size of physical memory� For example� a database
management system can ensure that critical pages� such
as those containing central indices and directories� are in
physical memory� The query optimizer and transaction
scheduler can also bene�t from knowing which pages are in
memory� because the cost of a page fault can signi�cantly
increase the overall cost of a query� The latency of a page
fault also dramatically extends lock hold time times if locks
are held across a fault� With multiprocessor machines� an
unfortunate page fault can cost not just the elapsed time
of the fault� but that cost multiplied by the number of pro�
cesses blocked if they also hit the same page� or a lock held
the blocked process�

With control of read�ahead� writeback and page dis�
carding� an application can its minimize I	O bandwidth
requirements and the e�ect of I	O latencies on its exe�
cution� Scienti�c computations using large data sets can
often predict their data access patterns well in advance�
which allows the disk access latency to be overlapped with
current computation� if e�cient application�directed read�
ahead and writeback are supported by the operating system
�and the requisite I	O bandwidth is available�� For exam�
ple� the large�scale particle simulation cited above takes ap�
proximately �� seconds to scan its in�memory data of ���
megabytes for each simulated time interval �on a machine
with eight ���MIPS processors ��� Thus there is ample time
to overlap prefetching and writeback if the data does not
�t entirely in memory�

Extensions to virtual memory systems� such as page
pinning� external pagers 
��� �� and application�program
advisory system calls like the Unix � madvise attempt to
address some of these issues� but incompletely and with
signi�cant increase in kernel complexity� We are interested
in exploring a signi�cantly di�erent modularization of the
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memory system implementation that both provides appli�
cation control and reduces kernel complexity�

In this paper� we describe the design� implementa�
tion and evaluation of a virtual memory system that pro�
vides application control of physical memory using what
we call external page�cache management� With external
page�cache management� the virtual memory system e�ec�
tively provides the application with one or more physical
page caches that the application can manage external to
the kernel� In particular� it can know the exact size of the
cache in page frames� It can control exactly which page is
selected for replacement on a page fault and it can control
completely how data is transferred into and out of the page�
including selecting read�ahead and writeback� It can also
has information about physical addresses� so that it can im�
plement schemes like page coloring and physical placement
control�

In essence� the kernel virtual memory system provides
a page frame cache for the application to manage� rather
than a conventional transparent virtual address space that
makes the main memory versus secondary storage division
transparent except for performance� A default process�level
manager provides page�cache management for such appli�
cations that do not want to manage their virtual memory�

The next section describes our design as implemented in
the V�� kernel� The following section evaluates external
page�cache management� drawing on measurements both
from the V�� implementation and a simulated database
transaction processing system� Section � describes related
work� We close with a discussion of conclusions and some
future directions�

� External Page�Cache Management in V��

External page�cache management requires new kernel
operations and process�level modules to allow process�level
management of page frames� We �rst describe the ker�
nel support� followed by a discussion of application�speci�c
managers� We then discuss the the default manager� Fi�
nally we describe the module responsible for global mem�
ory allocation� Although this section focuses on the design
and implementation of external page�cache management in
V��� a new generation of the V distributed system� the ba�
sic approach is applicable to other systems� such as Unix�

��� Kernel Page Cache Management Support

Kernel page cache management support is provided in
V�� as operations on segments� A segment is a variable�
size address range of zero or more pages� similar to the con�
ventional virtual memory notion of segment 
��� Pages can
be added� removed� mapped� unmapped� read and writ�
ten using segment operations� A parameter to the seg�
ment creation call optionally speci�es the page size to sup�
port machines such as those using the Alpha microproces�
sor 
��� that support multiple page sizes� Segments are
used for cached and mapped �les� portions of program ad�
dress spaces �such as the code segment� data segment� etc��
as well as for program address spaces themselves� as illus�
trated in Figure �� Referring to Figure �� a program vir�
tual address space in V�� is a segment that is composed
by binding one or more regions of other segments� The �g�
ure illustrates a virtual address segment with a code� data
and stack segments bound into the code� data and stack
regions of the address space� respectively� A bound region
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Figure �� Kernel Implementation of a Virtual Address
Space

associates a range of addresses �page�aligned and a multi�
ple of pages� in one segment with an equal�sized range of
blocks in another segment so that a memory reference to
an address covered by a bound region in �rst segment is
e�ectively a reference to the corresponding address in the
associated bound segment� The binding facilities also sup�
port a copy�on�write binding in which pages are e�ectively
bound to a source segment until modi�ed� While this seg�
ment structure is similar to other virtual memory designs�
the novelty lies in the associated page cache management
support�

External page cache management is supported with
three signi�cant additions over conventional virtual mem�
ory management operations� if one regards the V�� seg�
ment as roughly analogous to Unix open �les and Mach
memory objects� Firstly� an explicit manager module is
associated with each segment� using the kernel operation�

SetSegmentManager� seg� manager �

Secondly� the kernel operation

MigratePages�srcSeg� dstSeg� srcPage� dstPage�
pages� sFlgs� cFlgs�

moves pages page frames from the source segment� starting
at srcPage to the destination segment� starting at dstPage�
setting the page �ags speci�ed by sFlgs and clearing the
page �ags speci�ed by cFlgs for each migrated page frame�
A similar kernel operation�

ModifyPageFlags�seg� page� pages� sFlgs� cFlgs�

modi�es the page �ags without migrating the page frames�
The MigratePages and ModifyPageFlags operations allow
the manager to modify page state �ags such as the dirty

�ag in addition to the protection �ags accessible with the
conventional Unix mprotect� Finally� the kernel operation

GetPageAttributes� seg� page� pages�
returns �pageAttributeArray�

returns the page �ags� and the physical pageframe address�
of the speci�ed set of page frames� These operations are
used in conjunction with modest extensions of conventional
virtual memory facilities� such as the ability to catch page
faults at user level� to implement external page cache man�
agement�

The segment manager is a module responsible for man�
aging the pages associated with the segment� In particular�
when a reference is made to a missing or protected page
frame in a segment� the event is communicated to the man�
ager� The manager handles the fault following the sequence
illustrated in Figure �� Referring to this �gure� when the
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Figure �� Page Fault Handling with External Page�Cache
Management

application references a page frame not present in its ad�
dress space� it traps to the kernel� which forwards the page
fault indication to the manager �step ��� The manager allo�
cates a page frame from another segment �often a free�page
segment�� requests the data for the page frame from the �le
server holding the data �step ��� and waits for the reply�
When the server replies with the data �step ��� the data
is copied into the previously allocated page frame� and the
kernel is invoked �step �� to move or migrate the page frame
to the faulting page address in the application�s segment�
The manager responds to the application� allowing it to
resume �step ��� The �gure assumes that the page data
must be retrieved from the �le server� If the manager has
the page data available locally� steps � and � are replaced
by an internal procedure in the manager which makes the
data available in the page frame allocated to the applica�
tion� With a copy�on�write fault the kernel performs the
copy after the manager has allocated a page�

Filling the page frame tends to dominate the other costs
of page fault handling because it usually requires either ac�
cessing backing store or copying from another page� Note
that the kernel manages hardware�supported VM transla�
tion tables such as page tables and TLBs to map pages
with the protections speci�ed in the segment and bound
region data structures� A page fault trap only occurs when
a memory reference cannot be satis�ed given the informa�
tion in these kernel data structures� In particular� simple
TLB misses are handled by the kernel�

The MigratePages operation operates on the page
frames in bound regions by operating on the associated
segments� For example� migrating a page frame to the ad�
dress range corresponding to the data region in the virtual
address segment in Figure � e�ectively migrates the page
frame to the segment labeled Data Segment� Migrating a
page frame to a segment is treated as a write operation for
the purposes of segment protection and copy�on�write be�
havior� The MigratePages operation is also used to reclaim
pages frames from segments as part of a page reclamation
strategy�

Cached �les� implemented as segments� can be accessed
using a kernel�provided �le�like block read	write interface�
speci�cally the Uniform Input	Output Object �UIO� proto�
col 
��� A �le read to a segment page that does not have an



associated page frame causes a page fault event to be com�
municated to the manager of the segment� as for a regular
page fault� File write operations requiring page allocation
are handled similarly� File access performance is compa�
rable to that of a system with a kernel�resident �le system
because� when the �le is cached� the access is a single kernel
operation � and when the �le is not cached� the access time
is dominated by secondary storage access costs�

The manager module can be executed by a process sep�
arate from the application or by the faulting process itself�
In the �rst case� the kernel suspends the faulting process
and communicates with the manager process using the in�
terprocess communication facility� In the second case� the
kernel transfers control to a procedure that is executed by
the page faulting process� similar to a conventional signal
or interrupt� This method is generally more e�cient than
the �rst method because no context switch is required� On
some hardware� such as the MIPS R�����based machines�
resumption of the application after page faulting handling
can be performed directly from the manager without go�
ing through the kernel� further improving the e�ciency�
Other systems� such as those using the MC ���X� pro�
cessors� require a return through the kernel to restore priv�
ileged pipeline state� With the potential of a variety of
high�performance uses for application page cache manage�
ment� we hope that future architectures will allow direct
application resumption after fault� as in the R�����

When the faulting process executes its own segment
manager� some care is required in handling page faults on
that process�s stack to avoid in�nitely recursive page fault�
ing� Our approach is to use a separate fault�handling or
signal stack that is always in memory� so a page fault in the
page fault handling does not occur� There can be a separate
signal stack per segment� so with a multi�threaded program�
each thread can have a separate signal stack� namely one
for its stack segment�

On initialization� the kernel creates a segment identi�
�ed by a well�known segment identi�er that includes all
the page frames in the memory system� in order of physical
address� with access limited to system processes� speci��
cally the system page cache manager �see section ����� The
system page cache manager uses the MigratePages opera�
tion to allocate these page frames to the various segment
managers on demand� In a minimal con�guration of the
system� such as in an embedded real�time application with
no demand paging� application processes can allocate pages
directly from this initial segment� obviating the need for any
process�level server mechanism� This scenario illustrates
how the kernel virtual memory support contains very little
extra mechanism beyond that required to support embed�
ded applications� yet can be con�gured with process�level
servers to implement a full demand�paging system with so�
phisticated application paging control�

In summary� the primary kernel extensions are� ��
the ability to designate an explicit manager for a seg�
ment� �� kernel operations such as MigratePages and
ModifyPageFlags to modify segments and page frame �ags�
and �� the kernel operation GetPageAttributes to deter�
mine the page attributes for a range of pages frames� With
the information and control exported by the kernel and the
e�cient communication to segment managers on page fault

�Using the block interface the �le is not mapped into the
address space of the reading process

and page protection fault events� a process�level module
can readily implement a variety of sophisticated schemes�
including replicated writeback� page compression and log�
ging� and it can coordinate writeback with the application�
as is required for clean database transaction commit� In
comparison to the external pager approach supported by
the Mach kernel� the V�� kernel does no page reclamation
and no page writeback�

��� Application�Speci�c Segment Managers

In each sophisticated large�scale application� an
application�speci�c segment manager manages one or more
of the application�s memory segments� The management
actions include� �� handling page faults� �� reclaiming pages
from segments and �� interacting with the system segment
manager to allocate additional pages and return pages� as
appropriate�

To handle page faults quickly� a segment manager typi�
cally maintains a free�page segment� just as is normally done
by the kernel virtual memory system in a conventional de�
sign� The free�page segment is mapped into the manager�s
address space so the manager can directly copy data to and
from the page frames as part of allocation and reclamation�
For example� as part of a conventional page fault� it may
read the page data from backing storage into a page in its
address space that corresponds to the page in the free�page
segment that has been allocated for this page fault� It then
migrates the page frame to the faulting segment and allows
the faulting process to continue�

More complex schemes are appropriate for some appli�
cations� For example� the segment manager for a database
management system �DBMS� may use temporary index
segments as free�page segments� and simply steal from these
scratch areas rather than maintain explicit free areas� A
DBMS segment manager may have a di�erent free page
segment for each of indices� views and relations� making it
easier to track memory allocation to these di�erent types of
data� A single application may also use di�erent segment
manager modules for di�erent segments or types of seg�
ments it uses� For example� it may maintain di�erent free
page segments to handle distributed physical memory on
machines such as DASH 
��� or for page coloring schemes�
These techniques rely on being able to request page frames
from the system page cache manager with speci�c physical
addresses� or in particular physical address ranges�

The manager can implement standard page frame
reclamation strategies� such as the various 
clock� algo�
rithms 
���� In particular� it can periodically migrate page
frames from the segments it manages back to a free�page
segment using MigratePages� keeping track of the segment
and page number for each page frame it migrates� and writ�
ing back the dirty page data� If a given page frame is refer�
enced through the original segment before the page frame is
reused� the manager simply migrates it back to the original
segment� The manager is also informed when a segment
it manages is closed or deleted� so that it can reclaim the
segment page frames at that time�

The manager can use application�speci�c strategies�
such as deleting whole segments of temporary data that
it knows are no longer needed or that are better to discard
and regenerate in their entirety �rather than be paged out
and back in� or regenerated a page at a time�� Similarly�
in a large�scale matrix computation� the manager may be



able to prefetch pages of matrices to minimize the e�ect
of disk latency on the computation while recognizing that
it can simply discard dirty pages of some intermediate ma�
trix rather than writing them back� thereby conserving I	O
bandwidth�

On initialization� a segment manager requests the cre�
ation of its free�page segments with initial page frame al�
locations from the system page cache manager� It then
creates further segments� possibly on demand from the ap�
plication� to handle application data� specifying itself as the
manager for these segments�

The issue of the page faults on segment manager code
and data can be handled in two ways� First� the code and
data can reside in segments that are managed by another
manager� such as the default segment manager� described
in the next section� Then� in the case of the �rst manager
incurring a page fault on its code or data segment� this sec�
ond fault is handled by the other segment manager before
the �rst manager continues with the page fault handling�
This approach is simple to implement� but does not pro�
vide predictable performance for the application segment
manager� The alternative approach is for the application
manager to manage the segments containing its code and
data� and to ensure that these segments are not paged out
while the program is active� e�ectively locking this portion
in memory� In this approach� when an application starts ex�
ecution� these segments are under the control of the default
segment manager� The application manager accesses these
pages at this point to force them into memory� then as�
sumes management of these segments� and then reaccesses
these segments� ensuring they are still in memory� A page
fault after assuming ownership causes this initialization se�
quence to be retried until it succeeds� Once the manager
has completed this initialization� it excludes its own page
frames from being candidates for replacement� In this ap�
proach� to avoid all page faults in the page fault handling
code itself� all segments must use a signal stack that is part
of this e�ectively pinned data� not just the stack segments�
as described earlier�

The same approach can be used when an application is
swapped out to secondary storage� In particular� the ap�
plication segment manager swaps the application segments
except for its code and data segments� It then returns own�
ership of these latter segments to the default segment man�
ager� and indicates it is ready to be swapped� The applica�
tion manager is then suspended� and its segment pages are
then swapped out as well� On resumption of the applica�
tion� the manager gains control and repeats the initializa�
tion sequence described above�

An application segment manager can be 
specialized�
from a generic or standard segment manager using inher�
itance in an object�oriented implementation� The generic
implementation provides data structures for managing the
free page segment and basic page faulting handling� The
page replacement selection routines and page �ll routines
can be easily specialized to particular application require�
ments� Thus� the application programmer�s e�ort to pro�
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vide page cache management is minimized� and focused on
the application�speci�c policies and techniques� rather than
the task of developing a segment manager from scratch�

��� Default Segment Manager

A default segment manager implements cache manage�
ment for conventional programs� making them oblivious to
external�page management� This manager executes as a
server outside the kernel� In V��� the default segment
manager is currently created as part of the 
�rst team�� a
memory�resident set of systems servers started immediately
after kernel initialization� Thus� the default manager does
not itself page�fault�

In the V�� implementation� the UIO Cache Directory
Server �UCDS� 
�� has been extended to act as default
segment manager� This server manages the V�� virtual
memory system e�ectively as a �le page cache� All ad�
dress spaces are realized as bindings to open �les� as in
SunOS �� The original role of the UCDS was to handle
�le opens and closes so it could add �les to the cache on
demand and remove them as appropriate� In this origi�
nal form� page faults were handled by the kernel once the
mappings were established� The modi�cations for external
page�cache management required extensions to this server
to manage a free�page segment and to handle page fault re�
quests� page reclamation and writeback� However� because
it was already maintaining information about cached �les
on a per��le basis� the extensions to its data structures and
overall functionality were relatively modest�

To determine the memory requirements of applica�
tions using the default segment manager� the default man�
ager implements a clock algorithm 
��� that allocates page
frames to each requester based on the number of page
frames it has referenced in some interval� The implementa�
tion of this algorithm requires passing a fault to the man�
ager when a process �rst references a page after the page
protection bits are set to disallow all references� The han�
dling of the fault requires changing the protection of the
referenced page� To reduce the overhead of handling these
faults� the default manager changes the protection on a
number of contiguous pages� rather than a single page�
when a fault occurs� In general� the default manager can
implement whatever algorithms that the corresponding ker�
nel module would in a conventionally structured system�
including page coloring and the like� if appropriate� Thus�
the performance with the default segment manager should
be competitive with conventional systems� as indicated by
our measurements in Section ����

��	 System Page Cache Manager

The System Page Cache Manager �SPCM� is a process�
level module that manages the allocation of the global
memory pool among the segment managers� A manager
requests some number of page frames from the SPCM in
order to satisfy its memory requirements� The SPCM can
grant� defer or refuse the request� based on the compet�
ing demands on the memory and memory allocation pol�
icy� The SPCM returns page frames to its local free page
segment when returned by a segment manager� or when a
segment manager terminates�

The SPCM can support segment manager requests for
particular page frames by physical address or by physical
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address range� as required for physical placement control
and page coloring� If the SPCM cannot satisfy an alloca�
tion request because of physical address constraints� it is
handled the same as a conventional �unconstrained� page
frame request for which the size of memory requested is
larger than that available� That is� it allocates and provides
as many page frames as it can or is willing to� Further ex�
tensions can easily be provided for future architectures by
modifying the SPCM� rather than complicating and desta�
bilizing the kernel�

A 
memory market� model of system memory alloca�
tion has been developed for the SPCM� and is explored in
depth in a separate report 
��� In brief� the SPCM imposes a
charge on a process for the memory that it uses over a given
period of time in an arti�cial monetary unit we call a dram�
That is� a process holding M megabytes of memory over T
seconds is chargedM �D�T drams� if the charging rate is D
drams per megabyte�second� A process is provided with an
income of I drams per second of its existence� the value of
I depending on the number of competing processes and the
administration policy of allocating for the system� A seg�
ment manager as part of an application process thus must
manage its dram supply to balance the cost of the memory
used by the application versus its income� In particular� it
must return memory to the SPCM when it can no longer
a�ord to 
pay� for the memory� The SPCM has the ability
to force the return of memory from processes that have ex�
hausted their dram supply� treating such process behavior
as faulty�

For batch programs the application segment manager
suspends and swaps the program until it has saved enough
drams to a�ord enough memory for a reasonable time slice
of execution� By queries to the SPCM� it can determine
the demand on memory and possibly identify trade�o�s be�
tween running in a small amount of memory soon versus
waiting longer to get a larger amount of memory� When
the process has enough drams to a�ord the memory� it re�
quests the memory from the SPCM and runs as soon as
the memory request is granted� At the end of its time
slice� when its dram savings are running low� it pages out
the data and returns to a quiescent state in which it has a
very low memory requirement� As a further re�nement� the
SPCM can allow a process to continue to use memory at
no charge when there are no outstanding memory requests�
Also� there is a savings tax imposed to avoid demand dra�
matically exceeding supply� given this is basically a �xed
price� �xed supply market� Finally� there is a charge for
I	O that is based on the trade�o� between memory and
I	O in� for example� scan�structured programs� which pre�
vents such programs from avoiding the memory charge with
excessive I	O�

This monetary model allows the SPCM to allocate
memory resources to programs according to the income sup�
plied to each program� re�ecting administrational policy� In
particular� we claim that if each user account receives equal
income� its programs also receive an equal share of the ma�
chine over time among the active users� This claim assumes
a multiprocessor machine in which the primary limiting re�
sources are memory and I	O� The monetary model also
allows applications to decide how best to structure their
computation relative to system resources� choosing for in�
stance between computing with a large amount of memory
for short timeslices versus computing for longer time slices
with less memory� Finally� it provides a model that allows

the segment managers to predict how long they can exe�
cute and the amount of memory available for that time�
In the conventional approaches used for global page man�
agement developed during the �����s and ���s� the applica�
tion does not have any idea of when it might lose pages or
be swapped� Moreover� implementing conventional work�
ing set algorithms would appear to either require trusting
the application segment managers for information or largely
duplicating their monitoring of the page access behavior�

Our results to date suggest that this approach results
in a stable� e�cient global memory allocation mechanism
for large�scale computations that provides applications to
considerable �exibility in making application�speci�c trade�
o�s in the use of memory� thus matching well with the
application control provided by the mechanisms described
in this paper�

The V�� system page cache manager together with the
default segment manager and the basic kernel virtual mem�
ory management provide the equivalent functionality of a
conventional virtual memory system but in a more modular
form� In particular� all the page I	O� replacement policies
and allocation strategies have been moved outside the ker�
nel� This is in line with our V�� objective of providing
a minimal�sized kernel that is suitable for embedded real�
time applications as well as conventional timesharing and
interactive workstation use�

The small number of kernel extensions required for ex�
ternal page cache management could be added to a con�
ventional Unix system� for example� to provide the bene�ts
of application�controlled paging without the major surgery
that would be required to revise the system design to match
the modularity of V��� In particular� kernel extensions
would be required to designate a mapped �le as a page�
cache �le� meaning that page frames for the �le would not
be reclaimed �without su�cient notice�� just as with the
segments in V��� Also� a kernel operation� such as an ex�
tension to the ioctl system call� would be required to set
the managing process associated with a given �le and to al�
locate pages� �The kernel would be the default manager� as
it e�ectively is now�� Finally� the ptrace and signal	wait
mechanism can be used to communicate page faults to the
process�level segment manager� The simplest solution to
protecting the manager against page faults on its code and
private data is simply to lock its pages in memory� a facil�
ity already available in Unix �although this may require the
manager to run as a privileged process��

� Evaluation

We have taken a two�pronged approach to evaluating
external page�cache management� Firstly� we implemented
external page�cache management in the V�� kernel and
systems servers to work through the details of the design
and evaluate its complexity and performance� Secondly� we
evaluated the bene�ts of using external page cache man�
agement in a simulation of a database management system
that uses a large amount of memory�

��� Measurements of System Primitives

External page�cache management was implemented in
the V�� system by modi�cation to the kernel virtual mem�
ory manager and extensions to the UCDS� In the kernel
that uses external page�cache management� the machine
independent virtual memory module is approximately ����



lines of C code� as compared to approximately ���� lines for
the previous version� Most of the excised code is migrated
to the page�cache managers so there is no real saving in the
total amount of the code required for the same function�
ality� However it is signi�cant in reducing the size of the
kernel� �as well as providing greater external functionality��

The performance of the implementation was evaluated
on a DECstation ����	���� �R���� processor with �� MHz
clock� which has a � kilobyte page size�

Table � summarizes the performance of V�� relative
to ULTRIX ����

Measurement V�� Ultrix
Equivalent

Faulting Process ��� ���
Minimal Fault
Default Segment Manager ��� ���
Minimal Fault
Read �KB ��� ���
Write �KB ��� ���

Table �� System Primitive Times� times in microseconds

The minimal cost page fault �as measured in Table ��
occurs when the manager just has to migrate the page frame
from its free page segment to the faulting process�s segment�
This case occurs frequently� such as on the �rst access to
a heap page� on copy�on�write faults� and when write ap�
pending a new page to a segment�

The table measurements suggest that handling the min�
imal page fault is faster using the faulting process in V��
than through the Ultrix kernel� Most of the di�erence in
cost ��� microseconds� is the cost of page zeroing that the
Ultrix kernel performs on each page allocation� In Ultrix�
zeroing is required for security because the page may be re�
allocated between applications� whereas this is not the case
in V�� unless the page is being given to another user�
Referring to the second row of the table� the cost of fault
handling by the default manager is higher than in ULTRIX
but this does not signi�cantly a�ect the performance of
applications as our measurements in the next subsection
show�

Low overhead page fault handling allows e�cient imple�
mentation of user level algorithms that use page protection
hardware� like those described in 
��� Examples of these
algorithms include mechanisms for concurrent garbage col�
lection and concurrent checkpointing� In ULTRIX ��� on
a DECstation ����	���� the cost of a user level fault han�
dler � for a protected page that simply changes the pro�
tection of the page is ��� microseconds� This is over ���
higher than the cost of handling a full fault using exter�
nal page�cache management� ULTRIX is competitive at
user level fault handling with other systems like Mach or
SunOS� For example� in Appel and Li�s measurements for
the DECstation ���� 
�� the overhead of Mach fault han�
dling operations was over twice the overhead of ULTRIX
for similar operations�

The �nal measurements in the table are the costs of
reading and writing a �KB block in a cached �le� In the
case of V�� the accesses use the block read�write interface

�In ULTRIX a user
level fault handler can be implementedus

ing a signal handler and the mprotect system call� which changes
the protections of an application program�s memory	

�discussed in Section ����� For ULTRIX we measured the
cost of the read and write system calls� The V�� write
cost is ��� less than ULTRIX� The V�� read cost is ����
higher than ULTRIX for reads� These numbers show that
providing external page�cache management does not have
a large negative e�ect on the performance of common op�
erations like accesses to cached �les�

��� Default Segment Manager

We ran a number of standard UNIX applications on
V�� using the default segment manager with instrumenta�
tion to measure the overhead of executing real application
programs using the default segment manager� For com�
parison we compiled the same source code �with di�erent
operating system dependent libraries� for ULTRIX ����

The applications were�

�� di�� compare two ���KB �les generating a di�erences
�le of ���KB�

�� uncompress� uncompress an ���KB �le generating a �le
of �MB�

�� latex� format a ���K input document generating a ��
page document�

In both cases the hardware was a DECstation ����	���
with ��� megabytes of memory� The page size on this ma�
chine is �KB� There are some di�erences between the two
hardware con�gurations� The ULTRIX machine had a lo�
cal disk� The V�� machine was diskless with �le storage
provided by a server running on a DECstation ���� running
ULTRIX ����

These applications were run with the �les they read
cached in memory to eliminate di�erences in I	O perfor�
mance that is irrelevant to the virtual memory system de�
sign factors we are measuring� These scenarios are also the
worst�case for our approach because there is no network or
�le access latency to hide the cost of going to the V��
process�level manager�

There are some notable di�erences between V�� and
ULTRIX� The unit of I	O transfer in ULTRIX is �KB� The
unit of I	O transfer in V�� is �KB� This means that V��
makes twice as many read and write operations to the ker�
nel as ULTRIX� Ultrix allocates pages in �K units� The
V�� default manager allocates pages in �K units� except
for appends to a �le in which case it allocates pages in ��K
units� The unit of page allocation is signi�cant because al�
location in V�� requires going to the segment manager�
At the low levels of the virtual memory system� Ultrix uses
page tables to describe address spaces� V�� augments the
segment and bound region data structures with a global
��K entry direct mapped hash table with a �� entry over�
�ow area�

Table � shows the mean elapsed time for executing the
programs under V�� and ULTRIX�

The measurements here show that the performance of
applications in V�� is comparable to the performance of
the same applications under ULTRIX�

To attempt to account speci�cally for the di�erences in
performance� we also measured the virtual memory system
activity of each progam� as shown in Table ��



Program V�� Ultrix
di� ���� ����
uncompress ���� ����
latex ����� �����

Table �� Application Elapsed Time in Seconds

Program Manager Migrate Manager
Calls Pages Overhead

di� ��� ��� �� mS
uncompress ��� ��� �� mS
latex ��� ��� �� mS

Table �� VM System Activity and Costs

Column � shows the number of times during the exe�
cution of the program that the manager was invoked� in�
cluding requests forwarded by the kernel for operations like
closing a �le as well as requests for a page frame� Col�
umn � shows the number of times the manager invoked
MigratePages� This column basically shows that almost
all manager calls were to handle page faults rather segment
releases or other management operations� Column � shows
the cost in milliseconds of using the V�� manager� cal�
culated as the di�erence in cost between a minimal page
fault to the default segment manager in V�� and the cor�
responding cost in Ultrix �from Table �� multiplied by the
number of manager calls�

The cost of the V�� process�level handling of page
faults is a small percentage of program execution time even
for the measured case where there is no disk or network
access ����� for di�� ����� for uncompress and ����� for
latex��

The di�erences in application performance between
V�� and Ultrix in Table � not accounted for by Table � we
attribute to di�erences in the run�time library implemen�
tations in V�� and Ultrix� Of the applications measured�
only latex under V�� is signi�cantly slower� and we are
continuing to investigate the reason� However� our mea�
surements in Table � indicate that the external page cache
management is not responsible for more than �� millisec�
onds or about ���� of the di�erence in execution times�

Overall� assuming that the applications we have mea�
sured are representative of those to be run under the default
segment manager in V��� we conclude that minimizing the
kernel using external page cache management does not in�
troduce a signi�cant overhead on normal programs� In fact�
we expect that the V�� overhead suggested by the mea�
surements has been somewhat overstated because a system
under normal conditions would have a signi�cant number
of page faults that include disk or network I	O� whereas
we have eliminated these costs in the measurements to pro�
vide a worst�case for V�� and to avoid spurious di�erences
arising from device behavior�

��� Application�Speci�c Page�Cache

Management

To explore the performance bene�ts of application�
speci�c page�cache management we developed a program
that simulates a database transaction processing system
that exploits a space�time tradeo� in its use of indices for
e�cient join processing� If memory is plentiful� it is more
e�cient to perform large joins by generating indices for the

relations in advance� If however� the creation and references
to the indices would result in additional paging� it is better
to discard indices for which there is not enough space� and
regenerate them in memory when they are needed�

The program was run using � processors of a Silicon
Graphics �	��� on a ��� megabyte database� The transac�
tion arrival rate was �� transactions per second� The trans�
action mix was ��� small DebitCredit type transactions
with the remaining �� being joins of two relations to up�
date a third� A hierarchical locking scheme is used for con�
currency control�

The program is a mixture of implementation and simu�
lation� The locks were implemented and the parallelism is
real� However� the execution of a transaction is simulated
by looping for some number of instructions and a page fault
is simulated by a delay that is equivalent to the time re�
quired to handle a page fault on the SGI �	����

The measurements in Table � show the performance
di�erences between four con�gurations of the database pro�
gram�

Con�guration Average Worst�case
Response Response

No index ��� ����
Index in memory �� ���
Index with paging ��� ����
Index regeneration �� ���

Table �� E�ect of Memory Usage on Transaction Response
�ms�

The �rst con�guration shows the response time when
no index is used for joins� The second con�guration shows
the reduction in response time achieved by using an index
for accessing relations for performing a join� in the case
where the indices are always in memory� In the case of the
con�guration labeled 
index with paging�� a one megabyte
index is paged in every ��� transactions �on average ev�
ery ���� seconds� because the size of the virtual memory
used by the program exceeds the memory allocated to the
program by � megabyte�

These measurements show that indices are of signif�
icant bene�t to response time if the �physical� memory
is available� but are of limited bene�t if the size of the
database system�s virtual memory exceeds the available
physical memory by less than �� and there is a modest
amount of paging�

If the database system is informed that its virtual mem�
ory size exceeds the physical memory allocated to it� it can
discard some indices and regenerate them when necessary�
The 
index regeneration� entry shows the performance ben�
e�ts of this approach after the physical memory allocated
to the database system is reduced by � megabyte� In this
case� the average response time is an order of magnitude
less than the paging case and is only ��� worse than the

index in memory� case�

This example demonstrates a case of application�
controlled page cache management having signi�cant ben�
e�ts even though the application�s virtual memory only
slightly exceeded available physical memory� We expect
similar bene�ts with other memory�intensive applications�



	 Related Work

The inadequacy of the conventional 
transparent� vir�
tual memory model is apparent in recent developments and
papers in several areas� For example� Hagmann 
��� pro�
posed that the operating system has become the wrong
place for making decisions about memory management� He
discussed the problems with current VM systems� but did
not present a design that addresses these problems�

The conventional approach of pinning pages in memory
does not provide the application with complete informa�
tion on the pages it has in memory because the application
typically does not� and cannot� pin all the pages it has
in memory� The operating system cannot allow a signi��
cant percentage of its page frame pool to be pinned with�
out compromising its ability to share this resource among
applications� The amount of pinning that is feasible is
dependent on the availability of physical memory� These
complications have led many systems� particularly di�er�
ent versions of Unix� to restrict memory pinning to privi�
leged systems processes or to impose severe limits on the
number of pages that can be pinned by a process� The
extension of pinning to 
noti�cation� locks� so a process
is noti�able when a pinned page is to be reclaimed� would
allow more pinning but would still not give the application
control over which page frames can be reclaimed� With ex�
ternal page cache management in V��� the system page
cache manager can reclaim page frames from applications�
but the application�s segment manager�s� have complete
control over which page frames to surrender� We expect
that� with the appropriate generic segment manager soft�
ware� developing an application�speci�c segment manager
should be no harder than developing a 
pin� manager mod�
ule� However� further experience is required in this area
before �rmer conclusions can be drawn�

The external pagers in Mach 
��� and V 
�� provide the
ability to implement application�speci�c read�ahead and
writeback using backing servers or external pages� How�
ever� these extensions do not address application control
of the page cache and are primarily focused on the han�
dling of backing storage� The PREMO extensions to Mach

��� address some of the shortcomings of Mach noted in
Young�s thesis 
���� PREMO supports user�level page re�
placement policies� The PREMO implementation involves
adding more mechanism to the Mach kernel� to deal with
one aspect of the page�cache management problem � page
replacement� thus complicating rather than simplifying the
kernel� as we have done� PREMO also does not export in�
formation to the application level about how much memory
is allocated to a particular program�

In 
��� Subramanian describes a Mach external pager
that takes account of dirty pages that do not need to be
written back� She shows signi�cant performance improve�
ments for a number of ML programs by exploiting the fact
that garbage pages can be discarded without writeback�
She proposes adding support to the kernel for discardable
pages to remedy two problems associated with supporting
discardable pages outside the Mach kernel� First� an ex�
ternal pager does not have knowledge of physical memory
availability� Second� there are unnecessary zero��lls �for se�
curity� when a page is reallocated to the same application�
Both of these problems are addressed by external page�
cache management without adding special mechanism to
the kernel�

Database management systems have demanded� and

operating systems have provided� facilities for pinning pages
�such as the Unix mpin and mlock calls� and limited advi�
sory capability� such as the Berkeley Unix madvise call�
However� these approaches provide simple ways to prevent
page out or to in�uence paging behavior� not a real mea�
sure of control of the page cache by a program� as we have
proposed� Support for application�designated page replace�
ment on a per�page basis and noti�cation of changes in
available physical memory are well beyond the scope of the
design� as well as the implementation� of these current fa�
cilities�

Discontent with current virtual memory system func�
tionality is evident in the database literature� both in com�
plaints about the virtual memory system compromising
database performance� and in the calls for extended virtual
memory facilities 
��� ��� or the elimination of the virtual
memory system altogether� We see our approach as provid�
ing the database management systems with the information
and control of page management demanded in this litera�
ture� We achieve this without compromising the integrity
of the operating system or its general purpose functionality�

This work has some analogy to proposed operating sys�
tem support for parallel application management of proces�
sors� For example� Tucker and Gupta 
��� show signi�cant
improvements in simultaneous parallel application execu�
tion if the applications are informed of changes in the num�
bers of available processors and thereby allowed to adapt�
as compared to the conventional transparent� oblivious ap�
proach� Anderson et al� 
�� and Black 
�� have proposed
kernel mechanisms for exporting more control of proces�
sor management to applications� Just as in our work� this
processor�focused work is targeted to the demanding ap�
plications whose requirements exceed what are� by normal
standards� plentiful hardware resources� Both our work and
the processor�focused work are not targeted towards im�
proving the performance of conventional applications such
as software development tools and utilities� Our work com�
plements this other work by focusing on application control
of physical memory� rather than control of processor allo�
cation�


 Concluding Remarks

External page�cache management is a promising ap�
proach to address the demands of memory�bound appli�
cations� providing them with control over their portion of
the system memory resources without signi�cantly compli�
cating system facilities� particularly the kernel�

We have argued that the cost of a page fault is too high
to be hidden from the application� except for its e�ect on
performance� Our measurements of a simple simulated par�
allel database transaction processing application support
this view� showing that a small amount of paging can elim�
inate any performance bene�t of algorithms that use vir�
tual address space just slightly in excessive of the amount
of physical memory available� compared to those more eco�
nomical in space� This behavior is consistent with memory
thrashing behavior we have observed with memory�bound
applications in general� It is strange that� while the space�
time tradeo� is well�recognized by the algorithms commu�
nity and a choice of algorithms exists for many problems
that o�er precisely this tradeo�� virtual memory systems
have not previously exported the information and control
to the applications to allow them to make the choice of al�
gorithm intelligently� With the cost of a page fault to disk



in the hundreds of thousands of instructions for the foresee�
able future� an application can only expect to trade space
for time if the space is real� not virtual�

External page�cache management� as implemented in
the V�� system� requires relatively simple extensions to
the kernel� and provides performance for user page fault
handling times that are less than ��� microseconds on cur�
rent conventional hardware� Our approach also subsumes
the external pager mechanism of Mach and V� External
page�cache management obviates the need to provide ker�
nel support for the various application�speci�c advisory and
monitoring modules that would otherwise be required in
the future� causing a signi�cant increase in kernel code and
complexity� That is� we argue that the complexity and
code size bene�ts are best appreciated by considering the
size and complexity of a Unix madvise module that could
deal with the memory management problems raised in this
paper� In that vein� we expect that other considerations�
such as page coloring� physical placement control and and
cache line software control� as in ParaDiGM 
��� to place
further demands on memory management software in the
future�

Finally� we have exploited the new external page cache
management kernel operations to further reduce the size of
the V�� kernel by implementing system page cache man�
agement and a default segment manager outside the kernel�
These changes have lead to a signi�cantly simpli�ed ker�
nel� because page reclamation� most copy�on�write support
and distributed consistency are all removed to process�level
managers�

A primary focus of our on�going work is on the devel�
opment of application�speci�c segment managers� based on
a generic manager� using object�oriented techniques to spe�
cialize this infrastructure to particular application require�
ments� The goal is to minimize the burden on application
programs while providing the bene�ts of application con�
trol� We are also investigating the market model of system�
wide memory management and its performance in sharing
system memory resources between competing applications�
With our primary focus on batch processing� results to date
have been promising�

The external page cache management approach devel�
ops further a principle of operating system design we call
e�cient completeness� described previously in the context
of supporting emulation 
��� The operating system kernel�
in providing an abstraction of hardware resources� should
provide e�cient and complete access to the functionality
and performance of the hardware� In the context of mem�
ory management� the complete and e�cient abstraction of
this hardware resource is that of a page�cache� Fair mul�
tiplexing of memory among the multiple competing appli�
cations is achieved by managing the page frame allocation
among these page caches� It also generally leads to a rel�
atively low�level service interface� thereby being in concert
with the goals of minimalist kernel design� as we have shown
with external page cache management�

In summary� we believe that external page�cache man�
agement is a good technique for structuring the next gen�
eration of kernel virtual memory systems� addressing the
growing complexity of memory system organizations and
the growing demands of applications while reducing the size
of kernel virtual memory support over conventionally struc�
tured systems� Once this facility is commonly available in
commercial systems� we expect the most exciting memory

management improvements may well come from the devel�
opers of database management systems� large�scale com�
putations and other demanding applications whose perfor�
mance is currently badly hindered by the haphazard behav�
ior of conventional virtual memory management�
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