
J. Parallel Distrib. Comput. 74 (2014) 1959–1970
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

EnhancedBit: Unleashing the potential of the unchoking policy in the
BitTorrent protocol
V. Atlidakis a,∗, M. Roussopoulos b, A. Delis b

a European Organization for Nuclear Research (CERN), IT Department, CH-1211, Genève 23, Switzerland
b University of Athens, Department of informatics and Telecommunications, GR-15784 Ilisia, Athens, Greece

h i g h l i g h t s

• A novel unchoking policy that improves quality of inter-connections among peers.
• Peers with few clients are favored with optimistic unchoke intervals.
• Analysis shows gains for our modified BitTorrent unchoking policy.
• A shorter bootstrapping period for fresh peers.
• Prototype experimentation points out performance benefits.

a r t i c l e i n f o

Article history:
Received 9 October 2012
Received in revised form
8 July 2013
Accepted 8 August 2013
Available online 16 August 2013

Keywords:
Peer-to-peer (P2P)
Content distribution
Incentive protocols
BitTorrent

a b s t r a c t

In this paper, we propose a modification to the BitTorrent protocol related to its peer unchoking
policy. In particular, we apply a novel optimistic unchoking approach that improves the quality of
inter-connections amongst peers, i.e., increases the number of directly-connected and interested-in-
cooperation peers without penalizing underutilized and/or idle peers. Our optimistic unchoking policy
takes into consideration the number of clients currently interested in downloading from a peer that is
to be unchoked. Our conjecture is that peers having few clients interested in downloading data from
them, should be favored with optimistic unchoke intervals. This enables the peers in question to receive
data since they become unchoked faster and in turn, they will trigger the interest of additional clients. In
contrast, peers with plenty of ‘‘interested’’ clients should enjoy a lower priority to be selected as planned
optimistic unchoked, since these peers likely have enough data to forward; nevertheless, they receive
enough data due to tit-for-tat peer reciprocation and are not in need of optimistic unchoking slots. Armed
with this realization, we establish an analytical model and prove a significant performance improvement
under ourmodified BitTorrent protocol. Experimental results, also, indicate that our approach significantly
outperforms the existing optimistic unchoking policy in three important aspects: first, there is a higher
number of interested-in-cooperation and directly-connected peers. Second, since leechers nowact as data
intermediaries, the load on seeders eases up considerably. Last, a shorter bootstrapping period for fresh
peers is achieved. Hence, we claim that our approach helps implement an enhanced BitTorrent protocol
and we name it ‘‘EnhancedBit ’’.

Published by Elsevier Inc.
1. Introduction

Peer-to-peer applications remain of crucial importance as there
is still a growing trend for exchange of large multimedia files,
voice over IP and broadcasting of TV-quality programs in theWorld
Wide Web. Content delivery networks based on the traditional
client–servermodelwere shownnot to scale for large content shar-
ing aggregations. Most of their limitations emanate from the lack
of bandwidth that causes bottlenecks in light of heavy requests.

∗ Corresponding author.
E-mail addresses: v.atlidakis@gmail.com (V. Atlidakis), mema@di.uoa.gr

(M. Roussopoulos), ad@di.uoa.gr (A. Delis).

0743-7315/$ – see front matter. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.jpdc.2013.08.008
In addition, quality of service at the client side inadvertently suf-
fers when servers experience substantial loads. In contrast, highly
decentralized peer-to-peer models do not distinguish between the
roles of providers and consumers as peers play a dual role by being
both a server and/or a client at times. The absence of a centralized
authority also constitutes the foundation for scalable and adaptive
applications.

BitTorrent protocol [27] is the most popular peer-to-peer proto-
col for bulk data transfer [7,20,19], accounting for approximately
27%–55% of all Internet traffic depending on geographical loca-
tion [9]. In the pre-BitTorrent era, Napster, Gnutella andKazaawere
widely-used protocols for transferring multimedia files, such as
mp3’s, movies, and software. However, their centralized indexing

http://dx.doi.org/10.1016/j.jpdc.2013.08.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.08.008&domain=pdf
mailto:v.atlidakis@gmail.com
mailto:mema@di.uoa.gr
mailto:ad@di.uoa.gr
http://dx.doi.org/10.1016/j.jpdc.2013.08.008

1960 V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970
Swarm Layer

Tracker

HTTP

Local Client

Data Layer

Rarest First
 Policy

Local File

Neighbohood Layer

Unhocking
 Policy

TCP/IP

TCP/IP

TCP/IP

TCP/IP

Peer 1

Peer 2

Peer 3

Peer k

Fig. 1. High level view of the BitTorrent protocol.

methods [18] and/or the lack of a tit-for-tat schema among peers
prevented them from being an effective competitor to BitTorrent ’s
dominance.

As shown in Fig. 1, the BitTorrent protocol operates in three
different layers: At the swarm layer [19], a peer contacts a tracker
to join a swarm and receive a list of other peers to connect
to. At the neighborhood layer, the core reciprocation mechanism
is implemented, which forces peers to share any received data
in order to receive downloading slots from counterparts. This is
done locally, without any help from a centralized mechanism
and constitutes the fundamental choice for the incentive policy
in use [7]. At the data layer, a file is viewed as a concatenation
of fixed-size pieces that are requested in a rarest-first policy to
ensure the highest degree of content replication. In this paper,
we focus on the neighborhood layer and modify the neighborhood
selectionmechanism of the protocol known as peer unchoking; this
includes regular unchoking [7,20] and optimistic unchoking [1,16].
Regular unchoking is the basic mechanism that implements a
tit-for-tat schema that allocates bandwidth preferably to peers
sending data and penalizes free-riders. Periodically, every peer
sorts its uploaders according to the rate they provide data and
sends data only to the top-three uploaders. Peers not uploading
data are excluded from this process, and therefore, they receive no
reciprocation. Optimistic unchoking ensures that new peers have
a chance of downloading one first piece without having sent any
themselves.

The questionwe seek to answer in this paper is howanuploader
should allocate its optimistic unchoke intervals to downloaders to
enhance the cooperation of peers. The existing optimistic unchoking
policy [7] uses a round-robin approach giving priority to more
recently connected peers. This approach guarantees at least one
bootstrapping interval for any new peer, regardless of the situation
(i.e., dynamics) it finds itself. In a set of newly connected peers,
some of them may already possess data blocks, while others do
not. Those who possess highly-demanded data are more likely to
receive data requests, thus immediately contributing to the swarm.
In contrast, peerswithout data on high-demand or no data at all are
more likely to be underutilized. Our proposal is that peers having
few clients interested in downloading data, should be favoredwith
optimistic unchoke intervals. In turn, this approach enables the
peers in discussion to receive data since they get unchoked and so,
theymay trigger the interest of additional clients. To this end, every
time an optimistic unchoking should be performed, the peer with
the least number of interested connections is selected as planned
optimistic unchoked. Uploading peers with few clients interested
in downloading from them, receive data in order to trigger global
interest and attract block requests. In the long run, the peers in
question will be rewarded with additional bandwidth from others
due to regular unchoking tit-for-tat schema andwill stop being idle.
As a matter of fact, more peers will participate in the distribution
of data, asserting a high quality of inter-connection of peers. We
examine a number of key factors that help our approach enhance
the performance of the native BitTorrent protocol. These include:
the number of interested connections maintained by peers during
data dissemination, the bootstrapping period of new peers and
downloading time, the correlation between unchoke, interested
messages and data uploaded by leechers, the altruism presented by
leechers and finally, the uploading contribution of leechers against
seeders. The contributions of our work are:

1. Enhancement of the BitTorrent protocol that improves the
quality of inter-connection of peers, i.e., increases the number
of directly connected and interested-in-cooperation peers.

2. Decongestion of seeders asmore leechers now act as data inter-
mediaries and so the load on seeders eases up considerably.

3. A shorter bootstrapping period for fresh peers compared with
the native BitTorrent protocol.

Prior related research has been carried out in a number of as-
pects including reciprocity mechanisms [17,8], tit-for-tat schemas
to discourage free riding [24,19], and incentives policies in [20,14].
These efforts have suggested solutions regarding the modification
of the regular unchoking policy, and have introduced techniques to
encourage peers to act as uploaders and to discard idle peers. Our
work, however, is a newmethod tomodify the optimistic unchoking
policy in order to encourage cooperation of peers. A notably sim-
ilar approach to ours is presented by the authors of [16], where a
modified optimistic unchoking policy to prevent free-riding is sug-
gested. Under this approach, uploaders entitle optimistic unchok-
ing slots to peers based on past behavior: a gain-value parameter
is calculated for each peer that has received optimistic unchoking
slots, and the peer with the highest gain-value will receive the up-
coming optimistic unchoking slot. As opposed to [16], in Enhanced-
Bit our objective is to treat underutilized peers as nodes that lack
data to upload, rather than consider them to be selfish free-riders.
It is the first time that uploaders are able to locate idle peers and
‘‘reward’’ them with optimistic unchoking slots. No central author-
ity point is used to locate idle peers. The suggested optimistic un-
choking policy increases the number of interested-in-cooperation
and directly-connected peers. In this manner, the quality of inter-
connection of peers is improved and a high number of peers now
act as data intermediaries, rather than remain idle.

The rest of the work is organized as follows. Section 2 briefly
presents prior work related to BitTorrent and Section 3 provides
necessary background on the BitTorrent protocol. Section 4,
outlines the key features of our proposed optimistic unchoking
scheme and Section 5 introduces an analytical model to capture
the performance improvement under our EnhancedBit protocol.
Section 6 presents our main experimental results and Section 7
offers our concluding remarks.

2. Related work

After the seminal publication of the BitTorrent protocol [7], a
plethora of analytical models have been built to study the per-
formance characteristics of BitTorrent-like networks. Downloading
completion time and effectiveness of file sharing, in steady state
BitTorrent swarms, have initially been examined by Qiu et al. [21].
Downloading time and downloading rate of peers are modeled in
environments with heterogeneous users (in terms of bandwidth)
in [15,6]. BitTorrent is analyzed under a game-theoretic perspec-
tive in [22], where downloading completion time of peers, pro-
tocol’s robustness and performance are evaluated. Furthermore,
in [29] the use of altruism in P2P networks is examined; altruism
is defined via a parameter that reflects the benefit obtained for a

V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970 1961
peer’s contribution. A peer selectively decides the level of its own
contribution and demands to download a specific amount of data.
Neighborship consistency is defined by Jiang et al. [11] as the ratio
between the number of known nodes and the number of actual
nodes within a node’s area of interest and can be used to mea-
sure the quality of connectivity in P2P systems. In our Enhanced-
Bit protocol we define the ratio of interest of peers (Section 4.2)
and the benefit obtained by peers (Section 5.3) during data dis-
semination. In [16], the authors propose an optimistic unchoking
method to prevent free-riding during optimistic unchoking slots.
To achieve this, peers maintain history information regarding up-
loading contribution of neighbors that have received optimistic
unchokes. Based on past behavior a gain-value parameter is cal-
culated per neighbor, and each peer entitles optimistic unchoking
slots to the neighbor yielding the highest gain-value. Under our
approach, a peer decides which counterpart to unchoke in order
to maximize the counterpart’s ratio of interest. Benefit obtained
from our unchoking policy is examined collectively. We increase
the number of directly-connected and interested-in-cooperation
peers in an attempt to build a robust swarm.

Regular unchoking policy tit-for-tat schema is thoroughly ex-
amined in a large body of work: [17,20,25,14,24,30,19,12]. The pri-
mary question is whether it preserves a rational uploading and
downloading reciprocation of peers, or not. In [26] an innovative
peer selection strategy is proposed. Peers are modeled depending
on download completedness. Also, file availability and the dying
process of the system is analyzed. The innovative peer selection
strategy suggested enables more peers to finish the download job
and prolongs the systems lifetime by alleviating its dying process.
In [17,8], indirect and direct reciprocity mechanisms are exam-
ined. Peersmay exploit their own data contributions to obtain data
from others (direct reciprocation), or may contribute resources to
one set of peers and use this contribution to obtain services from
a different set of peers (indirect reciprocation). Our approach dif-
fers from the above efforts as we suggest an unchoking policy in
which peers altruistically offer data to underutilized and/or idle
counterparts. In [20,25] the issue of incentive compatibility is re-
examined. The authors show that even though the tit-for-tat ap-
proach was intended to discourage free-riding, the performance of
BitTorrent has very little to do with this fact. Incentives in BitTor-
rent systems are also studied in [14], where the unchoking algo-
rithm of the native BitTorrent is evaluated. This work shows that
regular unchoking facilitates the formation of clusters of peerswith
similar bandwidth, which is also the case in our EnhancedBit pro-
tocol. A variety of mechanisms for preventing free-riding in P2P
file-sharing systems have been applied in [24,30,19,12]. Although
applying mechanisms to discourage free-riding is essential to
steering more peers to act as data intermediaries, it does not ad-
dress the problem of bootstrapping idle peers with no data to up-
load.With our improved unchoking policy, uploaders immediately
locate and furnish data to peers with no initial data blocks. More-
over, the piece selection strategy of the original BitTorrent protocol is
examined in recentwork [5], where an Interest-Intend Piece Pelec-
tion (IIPS) is suggested. Every IIPS peer selects to download pieces
that, if downloaded, would enhanced the cooperation of peers. In
our schema, every EnhancedBit peer allocates its optimistic unchoke
intervals to enhance the co-operation of peers.

There have been many proposals for new peer-to-peer content
distribution protocols, hybrid peer-to-peer data sharing systems,
or improved BitTorrent-like protocols: [23,31,19,13,24]. However,
our work suggests a modification to the optimistic unchoking policy
that collectively increases the number of peers acting as intermedi-
aries, decongests seeders, and decreases the bootstrapping period
of peers.
3. Background

This section provides the necessary background for an in-depth
understanding of the BitTorrent protocol.

3.1. Terminology

Files transferred using the protocol are split into identical-sized
pieces, typically between 32 KB and 4 MB with each such piece
further split into blocks. The protocol deals with the distribution
of pieces whose blocks are ultimately transported with TCP. A peer
is an instance of a BitTorrent client that runs locally on a machine.
A peer may be a downloader and/or an uploader. Usually, leecher
is the term given to a client not possessing a whole copy of the
file; seeders are peers that maintain an entire copy of the file
and provide content without doing any downloading. Leechers or
leeches are essentially downloaders while seeders are uploaders. A
swarm consists of seeders and leechers that are sharing a specific
file. Yet, in respect to a popular file there may be plenty of
independent and geographically distributed swarms.

The peer unchoking policy is a tit-for-tat schema adopted by
peers to ensure a proper downloading anduploading reciprocation.
The term interested describes a peer wishing to receive data from
another peer and choked describes a peer to whom an uploader re-
fuses to send data. The tracker is the only central point of author-
ity and its main role is to provide peers with contact information
of others to whom to connect. The initial seeder is the client that
creates a .torrent metadata file and publishes it on selected .torrent
websites acting as global directories of available files. Torrent sites
are either public (e.g., Isohunt [10]), or private, known as Dark-
nets [32] (e.g., TorrentLeech [28]).

3.2. Tracker

A tracker for a specific file keeps a global registry of all the
downloaders and seeders and enables peers to locate each other
and commence downloading. The tracker does not provide ac-
cess to any downloadable data itself. It simply maintains a who-is-
who currently involved in the distribution of each file and collects
statistics on the dynamics (i.e. activity) of the swarm. Periodically,
the tracker sends to every peer an updated list of swarm partic-
ipants. As soon as initial contact information is received, a peer
can continue downloading without the intervention of a tracker.
A tracker may also collect statistics on the distribution of different
files and coordinate multiple swarms at times. Peers communicate
with the tracker via plain text messages using HTTP and port 6969.
Contact addresses are registered in the .torrent metadata file. Al-
ternatively in systems without a tracker, every peer also acts as a
tracker; this is the case with Azureus [2] that uses DHTs.

3.3. Peer selection—the unchoking algorithm

The unchoking algorithm implements a tit-for-tat schema
where peers preferentially dispatch data to peers that send data
back. The algorithm is invoked every 10 s as well as every time
a peer disconnects from the local client and when an unchoked
peer becomes interested or uninterested. Every time the algorithm
is invoked the local host sorts peers having sent him data
according to their uploading rate and keeps unchoked the top-
three uploaders, called regular unchoked. Also at the beginning
of every three rounds, an additional peer is selected at random,
called planned optimistic unchoked, to be kept unchoked for 30 s,
regardless of its uploading contribution. Optimistic unchoking
guarantees that a new peer will be able to download at least one
piece, without having sent any. In the introducing paper of the
BitTorrent protocol [7] three regular unchoked and one optimistic

1962 V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970
Fig. 2. Peer A requests .torrent metadata file for ‘‘file1’’ to join the swarm.
unchoked peers were used. In later works different settings were
used: In [24,15,4,21] four regular unchoked and one optimistic
unchoked were used, while in [6] four regular unchoked and two
optimistic unchoked peers were used.

A time interval of 10 s is used to avoid oscillation, a situa-
tion where connections are choked and unchoked so quickly that
clients are unable to exchange data; 10 s is a long enough boot-
strapping period for a TCP connection. Note thatmore than 4 peers
may be unchoked at a time but only 4 of those are interested. It
is worth pointing out that the algorithm is called every time an
unchoked peer gets interested or uninterested, sorts uploaders ac-
cording to pieces received and keeps unchoked the three fastest
of them and the planned optimistic unchoked. If the planned op-
timistic unchoked is part of the above set of three peers (regular
unchoked), a new peer is chosen and unchoked repeatedly until an
interested peer is identified.

3.4. Peer states

Each peer must maintain two state flags for each end of the
connection, namely, choked and interested. Since connections are
bidirectional, four such flags are maintained by each peer:

• Choked: The local client as a downloader is choked by the
remote peer (uploader). A client is not expected to send any
data-oriented messages to a choked connection, but it sends
state-oriented messages.
• Having-an-interest: The local client as a downloader is inter-

ested in receiving pieces from the remote peer (uploader).
• Choking: The local client as an uploader chokes the remote

peer (downloader). The client must discard any unanswered
requests of the remote peer.
• Interested: The remote peer (downloader) is interested in

receiving pieces from the local client (uploader).

3.5. Piece selection

The piece selection strategy consists of three facets: Random-
First-Piece, Rarest-First and End-Game-Mode. At the beginning, a
peer has nothing to upload so the first four pieces are selected
at random to commence downloading and then the rarest-first-
policy is applied. Local peers maintain statistics about the number
of copies eachdata-piece has in the swarmso the rarest-first-policy
can be applied. A piece may be marked as rarest any time a copy of
another piece is added to or removed from the data set of the local
peer. The Rarest-First discipline effectively increases the degree of
content replication among peers. Finally, the End-Game Mode is
used at the very end of downloading when a peer has requested
all pieces. During this mode, a peer requests all blocks of partially
downloaded pieces from all members in its peer-set; the peer also
cancels its requests upon receiving the pieces in question. This is
done because, as shown in recent works (e.g., [5]), completion of
downloading may be delayed by a last missing piece.

3.6. Overview of BitTorrent operation

As shown in Fig. 2, at first, a peer downloads a .torrent metadata
file to contact a tracker and receive a set of 50 peers with whom
to establish TCP connections. After joining the swarm, Fig. 3, the
peer with no data to upload is interested in downloading data
from every participant in the swarm. The peer will receive its first
data piece during its first optimistic unchoke interval and then it
will have data to upload and cooperate with others. During the
execution of a client, depicted in Fig. 4, the set of peers that the
client receives data from, is not necessarily identical to the group of
peers1 that the client sends data to. Data requests are serviced in a
rarest-first policy and neighborhood adaption is carried out by the
unchoking policy deployed. Depending on the data uploaded, a peer
will receive data as a reciprocation fromothers or remain choked. A
peer maintains no more than 40 initiated connections, downloads
from all of them but uploads at most to 4 of them. If the number
of neighbors a peer has falls below 30, the peer requests a new
list of peers to whom to connect. Upon receiving a full copy of the
file, the peer may be selfish and depart the swarm or be an altruist
and become an additional seeder. Data integrity is preserved using
SHA-1 hashes, as the initial seeder creates a hash for every data
piece and registers it in its .torrent metadata file.

4. EnhancedBit

As discussed earlier, under the peer unchoking policy of the
original BitTorrent protocol a peer is selected at random to receive
optimistic unchoking slots. To modify the random selection of
the native BitTorrent protocol, we introduce an approach under
which peers allocate optimistic unchoking slots to underutilized
counterparts, selectively. In turn, initially underutilized peers

1 Three regular unchoked and one optimistic unchoked.

V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970 1963
Fig. 3. Peer A receives its first data chunks during the first optimistic unchoke
interval.

Fig. 4. Peer A uploads and/or downloads data chunks from multiple peers.

will receive data and will act as data intermediaries, rather
than remaining idle. In what follows, we outline our proposed
peer unchoking policy by first introducing the messages used by
our EnhancedBit protocol. We then discuss the metrics used for
maximizing the ratio of interest and the algorithms used for our
unchoking policy.

4.1. EnhancedBit messages

To implement our EnhancedBit protocol we use the messages
of the original BitTorrent protocol, but we augment the have
state-oriented message with an additional float value. The latter
corresponds to the ratio of interest (Section 4.2) of the sender of
the havemessage and helps us implement our enhanced unchoking
policy. The messages in use can be categorized into: swarm-
oriented, state-oriented and data-orientedmessages.

Table 1 summarizes the swarm-oriented messages that are ex-
changed between peers and the tracker. These messages are help-
ful to the tracker so that it can maintain an up-to-date mapping
Table 1
Swarm-oriented messages.

Join: A peer interested in joining a swarm sends this message to the tracker.
This message contains metadata of the respective file and contact information
of the sender.
Join_response: The tracker sends this message in response to join; no payload.
peerset: A peer sends this message to the tracker to request the contact
information of other peers participating in the swarm; no payload.
Peerset_response: The tracker sends this message in response to peerset. This
message contains a list of listening IP-addresses and ports of peers
participating in the swarm.
Leave: A peer sends this message to inform the tracker that it is leaving the
swarm.

Table 2
State-oriented messages.

Choke: Peer A sends this message to remote peer B to inform B that it is choked
by A. Consequently, B must not send any data-oriented messages to A; no
payload.
Unchoke: Peer A sends this message to remote peer B to inform B that it is no
longer choked by A. Consequently, B may send data-orientedmessages to A; no
payload.
Interested: Peer A sends this message to remote peer B when A is interested in
receiving data from B; no payload.
uninterested: Peer A sends this message to remote peer B when A is not
interested in receiving data from B, whatsoever; no payload.
Have: Peer A sends this message to every connected remote peer to inform it
that it has received a new piece or to acknowledge the sender of a piece. The
payload of this message is two integers indicating received piece and number
of interested connections in A.
Bitfield: Peer A sends this message after establishing a new connection to
inform remote peer B about pieces it possesses; variable length payload that is
a bitmap indicating valid blocks of A.
Handshake: Peer A sends this message to establish a connection with peer B.
Payload includes file identifier and peer identifier of peer A.

of the dynamics of the swarm. Swarm-oriented messages are also
helpful to peers to help them locate each other in a timely fashion.
The messages in this group contain no downloadable data.

The group of messages sent among cooperating peers is
depicted in Table 2. We refer to these as state-oriented messages
that help achieve cooperation among peers and implement
the peer unchoking policy. All messages of Table 2 contain no
downloadable data but designate when peers must exchange data
or not (Section 3.4). More specifically when peer A dispatches a
chokemessage to peer B, the lattermust not send any data-oriented
messages back to A. B must receive an unchoke message from A
to commence sending new data-oriented messages. Furthermore,
a peer will send an unchoke message only to remote peers that
have previously sent an interested message. Peer A is interested in
receiving data from peer B, if B possesses data pieces that A does
not possess. Have and bitfield messages indicate the arrival of a
new piece and the set of pieces possessed by a peer, respectively.
Finally, Table 3 summarizes the data-oriented messages that are
sent between unchoked peers (i.e., peers that are exchanging data).

4.2. Peer unchoking—ratio of interest

We define the ratio of interest RIp of a peer p to be RIp = intp/ν,
where intp is the number of interested connections pmaintains, and
ν is the number of clients remotely connected to peer p. Under
a specific BitTorrent swarm all peers maintain the same number
of remote connected clients, usually fixed to 40. In contrast, the
number of interested connections maintained by a peer varies
and may help project the amount of data requests the peer in
question will ultimately receive provided that data requests are
received only via connections marked as interested. It is evident
that peers with a low ratio of interest receive few data requests
and it is likely that they are underutilized and/or idle. We insert
the ratio of interest (RIp) as the measure that reflects a peer’s

1964 V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970
Table 3
Data-oriented messages.

Request: The sender of this message includes three integers denoting
requested piece, block within piece, and block length.
Piece: The sender of this message includes an integer that is the position of
requested piece, the block’s offset within piece and the requested data block.
Cancel: The sender of this message informs the recipient that it is no longer
interested in a previously requested block of a piece. Payload consisting of
three integers indicating piece index, block offset, and block length.

uploading utilization. The key objective of the unchoking policy
of our EnhancedBit protocol is to maximize the ratio of interest
of peers. We anticipate that our unchoking policy will be most
effective when we rotate the planned optimistic unchoked peer in a
prioritized way, yielding the right-of-way to fresh peers and peers
with minimum interest ratios. Every time an optimistic unchoke is
to be performed, we select the peer p with the minimum RIp to
be the planned optimistic unchoked peer. Idle peers initially unable
to act as intermediaries and content replicators will be unchoked
earlier than in the native BitTorrent protocol where the unchoking
policy is based on random choice.

Our suggested approach does not bypass the tit-for-tat schema,
since it does not modify regular unchoking. It rather offers
an alternative to improve the quality of inter-connection of
peers, i.e., an increase in the number of directly-connected and
interested-in-cooperation peers. An improvement in the quality
of inter-connections is attained as soon as underutilized peers
are effectively located and provided with data to disseminate in
swarm. In turn, underutilized peers will act as data intermediaries,
instead of remaining idle. The peers that have saturated their
uplinks will be decongested as more clients will act as content
intermediaries. In Section 5, we present an analytical model to
compare the unchoking policies of our EnhancedBit and the native
BitTorrent protocol. Also, in Section 6, we experiment with clients
implementing EnhancedBit and the original unchoking schema.

4.3. Algorithms

Our EnhancedBit protocol invokes Algorithms 1 and 2 when lo-
cal client is in leech and seed state respectively. These two algo-
rithms are invoked every 10 s, every time a peer disconnects from
the local client, and when an unchoked peer becomes interested or
uninterested. The above timing and event-driven settings are inline
with the directives of the BitTorrent protocol [27]. As soon as these
two algorithms are invoked, a ‘‘new round’’ starts; the number that
designates a round ranges from 1 to 3.

Algorithm 1, invoked when a peer is in leech state, takes as
input the set of remote Downloaders of the local client, the set of
remote Uploaders to the local client and the vector RIp denoting
the ratio of interest of each remote peer p. No explicit output is
produced. The effect however of the algorithm is the realization
of our suggested peer unchoking policy. RIp vector is updated every
time a havemessage is sent from a remote peer p to the local client.
Peers having sent data to the local client are sorted according to
their uploading rate and the top three are kept unchoked, called
regular unchoked peers (RU). Every third round, the remote peer
with minimum RI is selected as planned optimistic unchoked (OU)
and kept unchoked from the local client (for 30 s). If planned
optimistic unchoked is a member of the regular unchoked peers, a
new interested peer must be added to the regular unchoked set.
Although uninterested peers may be selected unchoked until an
interested peer is added to the RU set, only four interested peers
remain unchoked in the same round.

Algorithm 2, invokedwhen a peer is in seed state, takes as input
the set of remote Downloaders of the local client as well as the
vector RIp. Again, no explicit output is returned. In this algorithm,
Algorithm 1 peer unchoking algorithm for client in leech state
Input: Uploaders, Downloaders, RIp∈Downloaders
1: Interested← {p : ∀p ∈ Downloaders AND p interested in local

client}
2: if round = 1 then
3: OU←{p : Min{RIp}∀p ∈ Interested}
4: unchoke OU
5: end if
6: RU←{p : ∀p ∈ Top3 Uploaders}
7: for p ∈ Interested do
8: if p ∈ RU then
9: unchoke p

10: else
11: choke p
12: end if
13: end for
14: if OU ⊆ RU then
15: repeat
16: choose p ∈ Downloaders
17: unchoke p
18: until p ∈ Interested
19: end if

U is an empty set since the local client is in seed state and no peer
is uploading to it. Peers with pending block requests are sorted
according to the time they were last unchoked (most-recently-
first). Remaining peers are sorted according to their downloading
rates (those displaying highest rates are given priority), and are
appended to the above set of sorted peers. During the first two
rounds (out of three), the algorithm keeps unchoked the three
first peers (RU). Moreover, it keeps unchoked the peer p with
the minimum RIp (OU). In the third round, the algorithm keeps
unchoked the first four peers (RU).

Algorithm 2 peer unchoking algorithm for client in seed state
Input: Downloaders, RIp∈Downloaders
1: temp1 ← {p : ∀p ∈ Downloaders AND has pending requests

OR recently unchoked }
2: sort temp1 according to last unchoke time
3: temp2← {p : ∀p ∈ Downloaders AND p /∈ temp1}
4: sort temp2 according to downloading rate
5: if round = 1, 2 then
6: RU←{pi=1,2,3 ∈ temp1+ temp2}
7: OU←{p : Min{RIp}∀p ∈ temp1+ temp2}
8: unchoke OU
9: else

10: RU←{pi=1,2,3,4 ∈ temp1+ temp2}
11: end if
12: for p ∈ D do
13: if p ∈ RU then
14: unchoke p
15: else
16: choke p
17: end if
18: end for

5. Analytical model

In what follows we present a probabilistic mathematical model
that incorporates basic system parameters of BitTorrent-like con-
tent sharing protocols. We form expressions that encapsulate del-
icate performance characteristics of BitTorrent-like protocols and
compare the ratio of interest of peers under our EnhancedBit and the

V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970 1965
native BitTorrent protocol. In addition, we compare the bootstrap-
ping period of peers in the systems under discussion. Our purpose
is to help the reader obtain an analytical perspective on how our
EnhancedBit protocol differs from the native BitTorrent protocol.
We analyze a swarm S composed of N cooperating peers, in steady
state.We assume thatNl peers are leechers and s peers are seeders.
At any time a peer p possesses np ≤ n pieces of F, while a seeder
maintains a complete file copy of ndata pieces. Every peer as an up-
loader may receive data requests from ν remote connected down-
loaders. Under these assumptions, we present our mathematical
model as follows.

5.1. Analyzing data replication

Bernoulli trial
We pick one downloader j from a random peer i with ν remote

connected downloaders. We consider ‘‘success’’ the event that j
needs a piece from i and ‘‘failure’’ the event that j does not need
any piece from i. Let p be the probability of ‘‘success’’ in the above
Bernoulli trial [3] and q the probability of ‘‘failure’’.
Binomial experiment

We repeat the above trial for each of the ν downloaders of peer
j. These trials are ν independent Bernoulli trials, and consequently
follow the binomial distribution [3].We insert the randomvariable
X that expresses the number of interested downloaders of peer j.
The variable X follows the binomial distribution with probability
mass function f : {0, 1, . . . , ν} → [0, 1] that is:

f (x) = P(x = X) =
ν

x


px(1− p)ν−x. (1)

The cumulative distribution function is:

F(x) = P(X ≤ x) =
x

k=1

f (k) (2)

mean value µ is:

µX = ν · p (3)

and variance σ 2 is:

σ 2
X = ν · p · q. (4)

If we divide the above equations with the fixed number of remote
connected downloaders (ν), we get the mean value and the
variance for the ratio of interest; these are:µRI = p and σ 2

RI = p · q.
In the upcoming evaluation section, with Eqs. (3) and (4) we will
calculate p and q in real swarms.

5.2. Analyzing data flow

We select a peer pwith intp interested connections and examine
the flow of a random piece xi to p. Before receiving piece xi, peer p
maintains intp interested connections. After receiving piece xi, peer p
maintains int ′p interested connections. We insert the sampling space
Ω = {(intp, int ′p) : intp, int

′
p = 0, 1, 2, . . . , ν} with sample space

size N(Ω) = (ν + 1)2.

Definition. We define the event INCp that peer p obtains a higher
number of interested connections upon receiving piece xi, and
symbolize: INCp = {(intp, int ′p) ∈ Ω : int ′p > intp}.

It is N(INCp) = ν− intp and N(Ω) = (ν+ 1)2; the probability that
the event INCp occurs, is:

P(INCp) =
ν − intp
(ν + 1)2

. (5)
Assume two random peers p1, p2 with P(INCp1) > P(INCp2), from
Eq. (5) we get:

ν − intp1
(ν + 1)2

>
ν − intp2
(ν + 1)2

⇔

intp1 < intp2 .

We can express the following Lemma:

Lemma 1. For any two peers p1, p2 it is P(INCp1) > P(INCp2) if and
only if intp1 < intp2 .

Lemma 1 expresses what is intuitively clear: A data piece xi
should be uploaded to the peer with the least number of interested
connections (or equivalent the lowest ratio of interest) to achieve
the highest increase in the number of interested connections. As
presented in Sections 4.2 and 4.3, under our EnhancedBit upload-
ers select as planned optimistic unchoked the peer with the lowest
RIp. This is done in an attempt to improve the quality of inter-
connection of peers, i.e., increase the number of interested connec-
tionsmaintained amongst cooperating peers.

5.3. Benefit obtained

We define the instant benefit obtained (bp,xi) in peer p, as the
number of the additional interested connections that triggered the
flow of piece xi to p. It is

bp,xi = int ′p,xi − intp (6)

where intp is the number of interested connections in p before
receiving piece xi, and int ′p,xi the number of interested connections
after receiving piece xi. If bp,xi < 0, instead of instant benefit, there
is an instant loss in the number of interested connections.

The local benefit obtained in peer p after downloading n pieces
is:

Bp =

n
i=0

(int ′p,xi − intp). (7)

Local benefit Bp =
n

i=0 bp,xi measures the number of additional
downloaders that became interested in downloading data from p,
when p receives pieces {x0, x1, . . . , xn}.

The aggregate benefit obtained in swarm is: B =


p∈S Bp. If
there are Nl leechers in swarm that downloaded {n1, n2, . . . , nNl}

data pieces respectively, the aggregate benefit in swarm is:

B =

p∈S

Bp =

Nl
i=1

ni
j=0

(int ′p,xj − intp). (8)

At this point we make a conservative assumption, i.e., every peer p
obtains only one more interested connection after receiving piece
xi. This means that the flow of every piece xi to a peer p only
triggers the interest of one additional downloader. After the flow
of ni random pieces to p, the local benefit will be:

Bp = ni · P(INCp).

From (8) we get:

B =
Nl
i=1

ni · P(INCpi). (9)

With the above, we are at a position to compare aggregate benefit
obtained under the EnhancedBit and the native BitTorrent protocol.

Proposition 1. For the aggregate benefit attained under the En-
hancedBit and the native BitTorrent protocol it stands: BEN_BT > BBT .

1966 V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970
Proof. Recall that under the unchoking policy of the Enhanced-
Bit with Algorithms 1 and 2, we select as planned optimistic un-
choked the peer p with the minimum ratio of interest. Under the
unbiased selection of the native BitTorrent a random peer p′ is se-
lected as planned optimistic unchoked. Obviously, intp ≤ intp′ and
from Lemma 1 it comes out that P(INCp,xi) > P(INCp′,xi) or equiv-
alent: PEN_BT (INCp,xi) > PBT (INCp,xi). We can extend our observa-
tion for {n1, n2, . . . , nNl} random pieces that flow to a cluster of
leechers {1, 2, . . . ,Nl}. We can write:

Nl
i=1 ni · PEN_BT (INCpi) >Nl

i=1 ni · PBT (INCpi)⇔ BEN_BT > BBT. �

Proposition 1 reflects the fact that the flow of pieces under the
EnhancedBit will provoke an increased ratio of interest compared
to native BitTorrent. This means that during data dissemination
peers of the EnhancedBit protocol will maintain a higher number
of interested connections and will ultimately receive more data
requests. Due to the increased quality of inter-connection peers are
probe to act as data intermediaries, instead of remaining idle.

5.4. Bootstrapping period

As explained in Section 3, every 30 s the local peer selects as
planned optimistic unchoked one client of its ν remote connected
downloaders. The downloader selected as planned optimistic
unchoked will be kept unchoked for one optimistic unchoke
interval (30 s), regardless of its contribution to local peer.Optimistic
unchoking schema guarantees that a new client will be able to
download at least one piece without having sent any. This is done
in an attempt to locate and bootstrap ‘‘fresh’’ clients with no data,
whatsoever. In a period of time asmuch as 30 s, the probability that
a downloader will be selected as planned optimistic unchoked is:

P = 1−


ν − 1
ν

ν

. (10)

The above formula stands under the assumption that the client
under examination is connected to ν uploaders for at least 30 s.
These ν uploaders will unchoke ν random downloaders, after a
maximum time of 30 s. The probability that the downloader in
discussion will receive none of these ν optimistic unchoking slots is
P ′ = (ν−1

ν
)ν . As opposed to P ′, the probability that the downloader

in discussion will receive at least one optimistic unchoking slot is:
P = 1 − (ν−1

ν
)ν . Eq. (10) gives us P = 0.637 for ν = 40. This

means that an underutilized or a ‘‘fresh’’ peer will be located from
the unchoking policy of the original BitTorrent with a probability
0.637 (or 63.7%) after 30 s.

Under the unchoking policy of the EnhancedBit (Algorithms 1,
2) optimistic unchoking slots are distributed to the cluster of peers
with low ratio of interest, i.e. new or underutilized peers. If there
are Nu peers with low ratio of interest, each uploader is connected
with a fraction of Nu

N of underutilized peers.2 In the same spirit,
the probability that an underutilized peer will receive at least one
optimistic unchoking slot is:

P = 1−


ν − 1
ν
·
Nu

N

ν

= 1−


ν − 1
ν

ν

·


Nu

N

ν

which gives us P = 1, since (Nu
N)ν → 0. This means that an under-

utilized or a ‘‘fresh’’ peer will be located from the unchoking policy
of the EnhancedBit with a probability 1 (or 100%) after 30 s.

From the above analysiswe conclude that the unchoking schema
of the EnhancedBit is 57%more effective than the unchoking schema
of the native BitTorrent in locating and bootstrapping an underuti-
lized peer. As a result, peers experience a shorter bootstrapping
period under our EnhancedBit system. The experiments presented
in Section 6 confirm that an improvement in the bootstrapping pe-
riod of peers is indeed attained under our EnhancedBit system.

2 Underutilized peers are uniformly distributed amongst N peers.
Table 4
Experimental parameters.

Optimistic unchoke interval 30 s
Regular unchoke interval 10 s
Regular unchoked peers 3
Optimistic unchoked peers 1
Peer-set size 40
Swarm 120 leechers, 15 seeders
Data pieces in file 1267
Piece size 512 KB
File size ≈ 630 MB

6. Evaluation

To evaluate our EnhancedBit protocol, we have implemented in
Python a respective client as well as a tracker. Our implementation
of both the client and the tracker run in Windows7, Linux, and
MacOS. For our experiments, we used 40 workstations, each
featuring a 1 GHz clock and 1 GB memory running GNU/Linux. The
workstations are attached to a local Ethernet network running at
100 Mps. Our key experimental objectives were to:

1. Measure the number of directly-connected and interested-
in-cooperation peers to compare the quality of peer inter-
connections for both our EnhancedBit and the native BitTorrent.

2. Compare the bootstrapping period and the downloading com-
pletion time achieved by leechers under the EnhancedBit and
the native BitTorrent protocols.

3. Examine the relation between unchoke and interestedmessages
received by leechers, as well as, data uploaded by leechers un-
der the EnhancedBit and the native BitTorrent protocols.

4. Analyze the pieces uploaded from leechers and seeders to as-
certain the degree of altruism presented by EnhancedBit leech-
ers, and to evaluate the decongestion of seeders achieved by our
EnhancedBit approach.

We experimented with numerous settings regarding the distribu-
tion of seeders and leechers among our clients. We used a number
of key parameters thatwe outline in Table 4. In all our experiments,
seeders joined swarms before leechers; the former had a full copy
of the file to be distributed, while the latter had no data at all. We
emphasize that the swarms under examination were not in steady
state: Leechers departed swarms as soon as they downloaded a
complete file copy.

Experiment 1: Ratio of interest
First, we examine the ratio of interest of peers, as defined in

Section 4. From a peer’s local perspective, the ratio of interest
indicates the amount of data requests a peer will receive from
others. From a global perspective, the ratio of interest reflects the
uploading utilization of peers. We examine ratio of interest as a
function of downloaded pieces (Figs. 5, 6), and as a function of
downloading completion time (Fig. 7). In both settings used –
native and EnhancedBit– swarms are formed from120 leechers and
15 seeders; leechers join swarm at random times within 100 s.

(1) Fig. 5(a) and (b) illustrate the ratios of interest and the
number of interested connectionsmaintained by peers, as a function
of downloaded pieces. Fig. 6(a) and (b) illustrate the average
ratio of interest of peers and interested connections, as a function
of downloaded pieces. From input files of Fig. 6(a) and (b), we
calculate that during the experiments the average ratio of interest
was 0.45 and 0.30 per peer, under the EnhancedBit and the native
BitTorrent protocol. We use Eqs. (3) and (4) from Section 5 to
calculate p, q, and variance (σ 2

RI) of ratio of interest. We have:

• EnhancedBit: (p, q, µ, σ 2) = (0.45, 0.55, 0.45, 0.24)
• Native BitTorrent: (p, q, µ, σ 2) = (0.30, 0.70, 0.30, 0.21).

V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970 1967
(a) EnhancedBit. (b) Native BitTorrent.

Fig. 5. Ratios of interest of peers and interested connections under (a) our EnhancedBit and (b) the native BitTorrent protocol, as a function of downloaded pieces.
(a) EnhancedBit. (b) Native BitTorrent.

Fig. 6. Average ratio of interest of peers and interested connections under (a) our EnhancedBit and (b) the native BitTorrent protocol, as a function of downloaded pieces.
(a) EnhancedBit. (b) Native BitTorrent.

Fig. 7. Ratios of interest of peers and interested connections under (a) our EnhancedBit and (b) the native BitTorrent protocol, as a function of time.
As defined in the Bernoulli trial of Section 5, p is the proba-
bility of the event that a peer i needs a piece from a neighboring
peer j. We observe that p is higher under the EnhancedBit pro-
tocol, which means that there is a more effective utilization of
the rarest first algorithm (Section 3). Moreover, under Enhanced-
Bit peers maintain a higher average ratio of interest and the values
are spread with a higher variance near the respective mean value.
To extend our view, in Table 5 we calculate the probability that
a peer maintains more than, or equal to, x interested connections.
The random variable X which expresses the number of interested
connections maintained per peer follows the binomial distribution
with v = 40. From Eqs. (1), (2) we get P(X ≥ x) = 1 − F(x) =
1−

x
k=1


40
k


pk(1−p)40−k, where p = 0.45 or 0.30. Table 5 indi-

cates that under the EnhancedBit protocol, peers maintain a higher
number of interested connections, than under the native counter-
part. Furthermore, from the integral of the function that describes
average ratio of interest wemeasure the aggregate benefit obtained
under (a) our EnhancedBit and (b) the native BitTorrent protocol. It
is trivial to say that in Fig. 6(a) the area below the red line is larger,
than that in Fig. 6(b). The above is consistent with Proposition 1
where we analyze that BEN_BT > BBT .

(2) Fig. 7(a) and (b) illustrate the ratios of interest and number
of interested connections maintained by peers over the duration of
Table 5
Cumulative distribution functions.

Interested connections EnhancedBit Native BitTorrent
x P(X ≥ x) P(X ≥ x)

5 1 or 100% 1 or 100%
10 0.99 or 99% 0.94 or 94%
15 0.96 or 96% 0.44 or 44%
20 0.56 or 56% 0.04 or 4%
25 0.07 or 7% 0.01 or 1%

the experiment. In Fig. 7(a) (EnhancedBit) the samples of interested
connections are spread until the 500th second of the experiment
when all peers finish downloading. On the other hand, in Fig. 7(a)
(native BitTorrent), interested connections are spread well past this
point in time and approximate the 2000th second of the experi-
ment as soon as all peers finish downloading. In the first case, all
peers act as intermediaries (downloading and uploading data) and
the ratio of interest is high until the completion of downloading.
After completion of downloading, the ratio of interest is uniformly
decreased. In the second case, there are underutilized peers with
a low ratio of interest. This ratio of interest of idle peers becomes
even lower and asymptotically reaches zero as soon as themajority
of peers completes downloading. As a matter of fact, EnhancedBit

1968 V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970
Fig. 8. Bootstrapping periods and downloading completion times of peers under
(a) our EnhancedBit and (b) the native BitTorrent protocol.

displays a higher number of directly-connected and interested-
in-cooperation peers than its original counterpart. An improved
inter-connection of peers is achieved as the new unchoking pol-
icy, implemented by Algorithms 1 and 2, maximizes the ratio of
interest and provides idle peers with data. In turn, idle peers act as
additional data intermediaries and ‘‘trigger’’ the interest of addi-
tional clients. In contrast, the unchoking policy of the native BitTor-
rent protocol has nomechanism to locate idle peers and essentially
does not ‘‘prod’’ them to cooperate with others.
Experiment 2: Bootstrapping period—downloading time

Second, we examine the bootstrapping period and download-
ing completion time achieved by leechers, under the Enhanced-
Bit and the native BitTorrent protocol. To this end, we set two
swarms formed under flash-crowd conditions: 120 leechers join
each swarm during the time period between 0 and 10 s of our ex-
periment. In both configurations used –native and EnhancedBit–
leechers remain idle before receiving their first optimistic unchoke
interval. We refer to this initial time as the bootstrapping period.

In Section 5, we show that 100% of the EnhancedBit leechers and
63.7% of the native BitTorrent leechers should be unchoked within
30 s. Fig. 8 shows that under EnhancedBit approximately 90% of
leechers receive their first optimistic unchoke interval within 30 s,
whereas under the native BitTorrent approximately 55% of leech-
ers receive an optimistic unchoke interval within 30 s. The devia-
tion presented between theory and practice is reasonable due to
the fact that theoretical analysis accounts for steady state swarms.
However, during experimentation both swarmswere not in steady
state. In the native BitTorrent we discern a non-negligible num-
ber of leechers experiencing a lengthy bootstrapping period, while
in the EnhancedBit this metric eases considerably. A short boot-
strapping period is achieved because our unchoking policy (Algo-
rithms 1 and 2) takes into consideration the dynamic situation in
which peers find themselves. In addition, Fig. 8 shows that leechers
that experience a lengthy bootstrapping period, also experience a
dramatically increased downloading completion time. Under En-
hancedBit, all leechers have completed downloading by the 350-th
second of the experiment, while under the native protocol, leech-
ers with lengthy bootstrapping periods may complete their down-
loading well past this point in time. Fresh and/or underutilized
leechers remaining idle for a long time receive no reciprocation
and complete their data downloading much later than those who
receive reciprocation. Overall, our approach decreases both boot-
strapping period and downloading completion time achieved by
leechers.
Experiment 3: Unchokes – interested messages – uploaded data

In Fig. 9, we examine the correlation between unchokes re-
ceived by leechers (top subplots), interested messages received by
leechers (middle subplots), and the volume of data uploaded by
leechers (bottom subplots). We compare against leechers of the
EnhancedBit and the native BitTorrent protocol. Both swarms are
formed from 120 leechers and 15 seeders. The former join the
swarm at random times within 100 s. We order leechers accord-
ing to their peer ID and the same order is kept for all subplots.

From Fig. 9 – top subplots – we discern that in both settings
used, leechers receive almost the same portion of unchokes
(optimistic and regular). This is to be expected, since the timing
settings used in the EnhancedBit client (Table 4) are inline with
the directives of the native BitTorrent protocol [27]. Under the
unbiased selection of the native BitTorrent protocol, optimistic
unchoking slots are randomly distributed to peers. In contrast,
under our EnhancedBit protocol, optimistic unchoking slots are
Fig. 9. Correlation of unchokes, interested messages and uploaded data of leechers under (a) our EnhancedBit and (b) the native BitTorrent protocol.

V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970 1969
(a) EnhancedBit. (b) Native BitTorrent.

Fig. 10. Altruism presented by leechers under (a) the EnhancedBit and (b) the native BitTorrent protocol.
(a) Leechers. (b) Seeders.

Fig. 11. Aggregate uploading contribution of (a) leechers and (b) seeders; under our EnhancedBit (purple line) and the native BitTorrent protocol (green line). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
allocated selectively to underutilized peers. The latter obtain data
to disseminate and ultimately trigger the interest of additional
peers. Fig. 9 –middle subplots – confirms that EnhancedBit leechers
exchange a drastically increased number of interested messages,
compared to native BitTorrent leechers. Peer that are receiving
many interested messages will ultimately contribute uploading
capacity to the swarm. In contrast, peers that are receiving few
interested messages will in all likelihood not act as uploaders
and shall remain idle. As shown in Fig. 9 – bottom subplots –
EnhancedBit leechers disseminate a notably greater volumeof data,
than native BitTorrent counterparts. It is worth pointing out that in
both settings used – native and EnhancedBit– the portion of data
each leecher uploads is proportional to the amount of interested
messages the leecher under examination receives.
Experiment 4: Altruism of leechers—aggregate uploading contribution

In this experiment,we examine the altruismpresentedby leech-
ers, and compare the aggregate uploading contribution of leechers
against seeders. Altruism is defined as the ratio: pieces uploaded/
pieces downloaded. Again, we compare leechers of Enhanced-
Bit with leechers of the native BitTorrent protocol. The swarms are
formed from 120 leechers and 15 seeders.

Fig. 10(a) and (b) illustrate the number of pieces uploaded as a
function of pieces downloaded, and the line ϵ : y = x which dis-
tinguishes between leechers with (i) altruism≥ 1 and (ii) altruism
≤ 1. Although, in EnhancedBit (Fig. 10(a)) there is a non-negligible
number of peers clustered in area (i), there are only a handful of
peers in the same area in the native BitTorrent (Fig. 10(b)). In the
first case, ‘‘altruistic’’ leechers upload more than 2500 pieces, but
in the second case, leechers can upload at most 1300 pieces. The
leechers found in the area (i) actmore as uploaders thandownload-
ers and provide the swarm with additional uploading capacity. To
gain a global perspective, in Fig. 11 we compare the aggregate up-
loading contribution of leechers and seeders under the Enhanced-
Bit and the native BitTorrent protocol. Under the native protocol,
seeders upload 20 GB of data and leechers upload 55 GB of data.
Under the EnhancedBit protocol, seeders upload 10 GB and leech-
ers upload 65 GB. These leechers decongest seeders and provide
the swarm with additional uploading capacity of up to 10 GB. Our
approach thus achieves an increase in the contribution of leechers,
without involving any complex incentive policy. This is inline with
our key objective to encourage underutilized peers to act as data
intermediaries, rather than penalize them.
Discussion: Free riders

Finally, we consider the case in which one or more free riders
are trying to download data without uploading any. Under our
EnhancedBit protocol, it is trivial to implement a ‘‘hacked’’ free
rider, i.e., a strategicallymodified EnhancedBit client with an intent
to trick a swarm of rational peers. This ‘‘hacked’’ free rider may
send have messages indicating low ratio of interest to monopolize
optimistic unchokes and complete downloading earlier than well-
behaved peers, without uploading any data. To penalize ‘‘hacked’’
free riders under our EnhancedBit protocol, we can customize a
simple token-based policy introduced in [19]. The authors of [19]
suggested AntFarm: an efficient Content Delivery Network under
which peers exchange data pieces in return for tokens. A token
consists of a peer ID, an expiration time after which the token is
invalid, a reference to the intended spender of the token, and a
file ID referring to the file in distribution. A coordinator (e.g., the
tracker) records these four fields when it mints a new token for
a particular peer. A token can only be spent by the peer to which
it was issued in exchange for blocks of the designated file. Each
peer maintains a fixed-size purse of unused tokens issued by the
coordinator for use by that peer. Moreover, each peer maintains a
ledger of tokens received from other peers in exchange for data
blocks. Tokens thus flow from the purse of the receiver to the
ledger of the sender. Peers communicate periodically with the
coordinator to refresh their purses and ledgers. A peer receives a
fresh token for its purse in return for each valid token in its ledger.
AntFarm’s technique is applicable to our EnhancedBit protocol.
‘‘Hacked’’ free riders that do not upload any data will be unable
to refresh their purses with fresh tokens, and consequently will
remain idle until they upload obtained data blocks.

Another scheme to prevent free riding in our EnhancedBit pro-
tocol is the one proposed in [24]. File pieces are encrypted and

1970 V. Atlidakis et al. / J. Parallel Distrib. Comput. 74 (2014) 1959–1970
leechers could barter with each other by exchanging decryption
subkeys for file pieces. A peer must upload an intact encrypted
data piece before receiving a decryption subkey. This is referred to
as the ‘‘data first, key later’’ (DFKL) rule. No centralized authority
is required. This scheme is called ‘‘treat-before-trick’’ (TBeT) and
penalizes free riders with increased file completion times (time to
download file and necessary subkeys to decrypt file pieces). ‘‘Treat-
before-trick’’ (TBeT) is applicable to our EnhancedBit as well.

7. Conclusion

In this paper, we present the EnhancedBit protocol whose
unchoking policy better harnesses underutilized peers that have
few clients interested in downloading data from them. Our En-
hancedBit protocol involves uploaders allocating optimistic un-
choking slots to underutilized clients. This policy enables clients
to obtain data and essentially act as content intermediaries,
rather than remain idle. To measure performance gain under
our approach, we have introduced an analytical model and com-
pared our EnhancedBit with the native BitTorrent protocol. Ex-
perimentation with leecher and tracker prototypes shows that
our approach achieves improved quality of inter-connections
amongst peers compared with the native BitTorrent protocol. Un-
der our EnhancedBit protocol, the number of directly-connected
and interested-in-cooperation peers increases significantly. More-
over, our EnhancedBit protocol has the effect of creating altruistic
leechers who act more as uploaders than downloaders. Therefore,
a substantial portion of the leechers act as data intermediaries and
furnish uploading capacity that helps relieve the burden of seeders.
Finally, unlike prior works aiming to improve the performance of
the native BitTorrent protocol, our EnhancedBit achieves a shorter
bootstrapping period and a shorter downloading time,without the
use of complex incentive policies.

Acknowledgments

We would like to thank the anonymous reviewers for their
fruitful feedback. This work was partially funded by the iMarine
EU-FP7 project and ERC Starting Grant #279237. Part of this
work appeared in the 18th International European Conference on
Parallel and Distributed Computing [1].

References

[1] V. Atlidakis, M. Roussopoulos, A. Delis, Changing the unchoking policy for an
enhanced BitTorrent, in: Euro-Par, Rhodes, Greece, August 2012, pp. 377–388.

[2] Azureus(Vuze). http://azureus.sourceforge.net/, January 2011.
[3] Bernoulli Trials and Binomial Distribution.

http://www.encyclopediaofmath.org/index.php/Bernoulli_trials.
[4] A.R. Bharambe, C. Herley, V.N. Padmanabhan, Analyzing and improving a

BitTorrent network’s performancemechanisms, in: IEEE INFOCOM, Barcelona,
Catalunya, Spain, April 2006, pp. 1–12.

[5] J.L. Chiang, Y. Tseng, W.T. Chen, Interest-intended piece selection in
BitTorrent-like peer-to-peer file sharing systems, J. Parallel Distrib. Comput.
71 (6) (2011) 879–888.

[6] Alix L.H. Chow, L. Golubchik, V.Misra, BitTorrent: an extensible heterogeneous
model, in: IEEE INFOCOM, Rio De Janeiro, Brazil, April 2009, pp. 585–593.

[7] B. Cohen, Incentives build robustness in BitTorrent, in: USENIX IPTPS, Berkeley,
CA, USA, February 2003.

[8] Y. Hu, L.N. Bhuyan, M. Feng, Peer-to-peer indirect reciprocity via personal
currency, J. Parallel Distrib. Comput. 72 (8) (2012) 1045–1054.

[9] Internet study. http://www.ipoque.com/en/resources/internet-studies/.
[10] IsoHunt. http://isohunt.com/.
[11] J.R. Jiang, J.S. Chiou, S.Y. Hu, Enhancing neighborship consistency for peer-to-

peer distributed virtual environments, in: IEEE ICDCS-Workshops, Toronto,
ON, Canada, June 2007, pp. 71–76.

[12] S. Jun, M. Ahamad, Incentives in BitTorrent induce free riding, in: ACM
SIGCOMM-Workshops, Philadelphia, PA, USA, August 2005, pp. 116–121.

[13] R. Landa, D. Griffin, R.G. Clegg, E. Mykoniati, M. Rio, A sybilproof indirect
reciprocity mechanism for peer-to-peer networks, in: IEEE INFOCOM, Rio De
Janeiro, Brazil, April 2009, pp. 343–351.
[14] A. Legout, N. Liogkas, E. Kohler, L. Zhang, Clustering and sharing incentives
in BitTorrent systems, in: ACM SIGMETRICS, San Diego, CA, USA, June 2007,
pp. 301–312.

[15] W.C. Liao, F. Papadopoulos, K. Psounis, Performance analysis of BitTorrent-like
systems with heterogeneous users, Perform. Eval. 64 (9–12) (2007) 876–891.

[16] Z. Ma, D. Qiu, A novel optimistic unchoking algorithm for BitTorrent, in: IEEE
CCNC, Las Vegas, NV, USA, January 2009, pp. 1–4.

[17] D.S. Menasché, L. Massoulié, D.F. Towsley, Reciprocity and barter in peer-
to-peer systems, in: IEEE INFOCOM, San Diego, CA, USA, March 2010,
pp. 1505–1513.

[18] Napster. http://music.napster.com/.
[19] R. Peterson, E.G. Sirer, AntFarm: efficient content distribution with managed

swarms, in: USENIX NSDI, Boston, MA, USA, April 2009, pp. 107–122.
[20] M. Piatek, T. Isdal, T.E. Anderson, A. Krishnamurthy, A. Venkataramani, Do

incentives build robustness in BitTorrent? in: USENIX NSDI, Cambridge, MA,
USA, April 2007.

[21] D. Qiu, R. Srikant, Modeling and performance analysis of BitTorrent-like
peer-to-peer networks, in: ACM SIGCOMM, Portland, OR, USA, August 2004,
pp. 367–378.

[22] R. Rahman, T. Vink, D. Hales, J.A. Pouwelse, H.J. Sips, Design space analysis for
modeling incentives in distributed systems, in: ACM SIGCOMM, Toronto, ON,
Canada, August 2011, pp. 182–193.

[23] S. Ren, E. Tan, T. Luo, S. Chen, L. Guo, X. Zhang, TopBT: a topology-aware and
infrastructure-independent BitTorrent client, in: IEEE INFOCOM, San Diego,
CA, USA, March 2010, pp. 1523–1531.

[24] K. Shin, D.S. Reeves, I. Rhee, Treat-before-trick: free-riding prevention for
BitTorrent-like peer-to-peer networks, in: IEEE IPDPS, Rome, Italy, May 2009,
pp. 1–12.

[25] M. Sirivianos, J.H. Park, R. Chen, X. Yang, Free-riding in BitTorrent networks
with the large view exploit, in: USENIX IPTPS, Bellevue, WA, USA, February
2007.

[26] Y. Tian, D. Wu, K.W. Ng, Modeling, analysis and improvement for BitTorrent-
like file sharing networks, in: IEEE INFOCOM, Barcelona, Catalunya, Spain,
April 2006, pp. 1–11.

[27] The BitTorrent Protocol. http://www.bittorrent.org/.
[28] TorrentLeech. http://torrentleech.org/.
[29] D.K. Vassilakis, V. Vassalos, An analysis of peer-to-peer networks with

altruistic peers, Peer-to-Peer Netw. Appl. 2 (2) (2009) 109–127.
[30] M. Yang, Q. Feng, Y. Dai, Z. Zhang, A multi-dimensional reputation system

combined with trust and incentive mechanisms in P2P file sharing systems,
in: IEEE ICDCS-Workshops, Toronto, ON, Canada, June 2007, pp. 29–35.

[31] M. Yang, Y. Yang, An efficient hybrid peer-to-peer system for distributed data
sharing, IEEE Trans. Comput. 59 (9) (2010) 1158–1171.

[32] C. Zhang, P. Dhungel, D. Wu, Z. Liu, K.W. Ross, BitTorrent darknets, in: IEEE
INFOCOM, San Diego, CA, USA, March 2010, pp. 1460–1468.

V. Atlidakis is currently a software engineer working for
the Information Technology department of the European
Organization for Nuclear Research (CERN) in Geneva,
Switzerland. He received his B.S. degree with high honors
in Computer Science from the University of Athens in
Athens, Greece in July 2011. His research interests are
in peer-based delivery systems, virtualized computing
systems and distributed computing. Also, he is currently
pursuing graduate studies in Computer Science.

M. Roussopoulos is an Assistant Professor of Computer
Science at the University of Athens. She received her Ph.D.
in Computer Science from Stanford University in 2003.
Her interests are in the areas of distributed systems and
networking. She is a recipient of the NSF CAREER Award
(while on the faculty at Harvard), the ERC Starting Grant
Award, and the Best Paper Award at ACM SOSP 2003.

A. Delis is currently a Professor of Computer Science at
the University of Athens. His research interests are in
distributed computing and datamanagement. He received
a Ph.D. in Computer Science from the University of
Maryland at College Park in 1993 and he is recipient
of the NSF CAREER Award, a best paper in IEEE-ICDCS,
the Wilkes Award for outstanding contribution in The
Computer Journal and an outstanding technical citation
from MITRE Corp.

http://azureus.sourceforge.net/
http://www.encyclopediaofmath.org/index.php/Bernoulli_trials
http://refhub.elsevier.com/S0743-7315(13)00163-9/sbref5
http://refhub.elsevier.com/S0743-7315(13)00163-9/sbref8
http://www.ipoque.com/en/resources/internet-studies/
http://isohunt.com/
http://refhub.elsevier.com/S0743-7315(13)00163-9/sbref15
http://music.napster.com/
http://www.bittorrent.org/
http://torrentleech.org/
http://refhub.elsevier.com/S0743-7315(13)00163-9/sbref29
http://refhub.elsevier.com/S0743-7315(13)00163-9/sbref31

	EnhancedBit: Unleashing the potential of the unchoking policy in the BitTorrent protocol
	Introduction
	Related work
	Background
	Terminology
	Tracker
	Peer selection---the unchoking algorithm
	Peer states
	Piece selection
	Overview of BitTorrent operation

	EnhancedBit
	EnhancedBit messages
	Peer unchoking---ratio of interest
	Algorithms

	Analytical model
	Analyzing data replication
	Analyzing data flow
	Benefit obtained
	Bootstrapping period

	Evaluation
	Conclusion
	Acknowledgments
	References

