
CUP: Controlled UpdatePropagationin Peer-to-PeerNetworks

MemaRoussopoulos Mary Baker
Departmentof ComputerScience

Stanford University�
mema,mgbaker� @cs.stanford.edu

Abstract

This paperproposesCUP, a protocol for performing
Controlled UpdatePropagationto maintain cachesof
metadatain peer-to-peernetworks. To moderateprop-
agationwithout imposinga global policy, CUP intro-
ducesthe notion of individual node investmentreturn.
CUP allows eachnodeto determinewhen it haseco-
nomic incentive to receive andto propagateupdates.A
nodeparticipatesin propagationonly whenthe benefit
(investmentreturn) it securesfrom receiving andpropa-
gatingupdatesoutweighsits costof propagation.

We extensively evaluatethe CUP protocol in main-
tainingcachesof metadatafor locatingcontentin peer-
to-peernetworks. We demonstratethat propagationof
updatesreducesthe averagelatency of contentsearch
queriesby asmuchasan orderof magnitudeacrossa
varietyof workloads.We proposeandevaluatethe use
of popularity-basedincentivesto drive a node’s propa-
gationpolicy. Theseincludeincentivesbasedon prob-
abilistic aswell ashistory-basedmodelsof investment
return. Using thesepolicies,we show that CUP nodes
recover their propagationoverheadby a factor of 2 to
300,thusofferinga leanbut powerful protocol.

1 Intr oduction
Peer-to-peer networks are self-organizing distributed
systemswhere participating nodesboth provide and
receive servicesfrom eachother in a cooperative ef-
fort without distinguishedrolesaspureclientsor pure
servers. Peer-to-peer networks have recently gained
much attention, primarily becauseof the great num-
ber of featuresthey offer applicationsthat arebuilt on
top of them. Thesefeaturesinclude scalability, avail-
ability, fault tolerance,decentralizedadministration,and
anonymity.

Along with thesedesirablefeatureshascomean ar-
ray of technicalchallenges.For example,a fundamen-
tal problemin peer-to-peersystemsis that of locating
content. Given the nameor a setof keyword attributes
(metadata)of an objectof interest,how do you locate
the objectwithin the peer-to-peernetwork? Most peer-
to-peernetworks return a set of metadatain response
to a searchquery. This metadatatypically consistsof

index entriesthat point to the locationsof nodesthat
serve replicasof the contentof interest,but could also
include other information such as pricing, trust, con-
nectionspeed,or load informationabouttheseserving
nodes.

Recent work suggeststhat metadata-basedsearch
queriesfor locatingcontentcanbe a performancebot-
tleneckin peer-to-peersystems[CRSB02]. As a result,
designersof peer-to-peersystemssuggestcachingmeta-
dataat intermediatenodesthat lie on the pathtaken by
a searchquery[gnu, SBK02, RFH� 01, SMK � 01]. We
referto this asPath Caching with Expiration (PCX) be-
causecachedmetadataentriestypically have expiration
timesafterwhich they areconsideredstaleandrequirea
new search.

PCX is desirablebecauseit distributesqueryloadfor
popularmetadataitemsacrossmultiplenodes,it reduces
latency, andit alleviateshot spots.However, little atten-
tion hasbeengiven to how to maintain theseinterme-
diatecaches.The cachemaintenanceproblemis chal-
lengingbecausethepeer-to-peermodelassumesthatthe
global set of valid metadatawill changeconstantlyas
peernodesjoin andleave thenetwork, contentis added
to anddeletedfrom the network, andreplicasof exist-
ing contentareaddedto alleviatebandwidthcongestion
at nodesholding the content. Nodesthat cachemeta-
datato serve queriesin a more timely fashionneedto
know aboutchangesto the metadatato serve queries
better. Keepingcachedmetadataup-to-datetherefore
requirestrackingwhich metadataitemsneedto be up-
dated,aswell astrackingwheninterestin updatingpar-
ticular itemsat eachcachehassubsidedto avoid unnec-
essaryupdatepropagationfor the maintenanceof these
items.

In this paper we proposea protocol for perform-
ing ControlledUpdatePropagation(CUP) to maintain
cachesof metadatain a peer-to-peernetwork. CUP
asynchronouslybuildscachesof metadatawhile answer-
ing searchqueries.It thenpropagatesupdatesof meta-
datato maintainthesecaches.To moderatethis prop-
agation,CUP introducesthe notion of individual node
investmentreturn. Ratherthanimposinga globalprop-
agationpolicy, in CUP, nodesreceiveandpropagateup-
datesonly whenthey have personaleconomicincentive

to doso.Thisoccurswhentheinvestmentreturn(orben-
efit) anodesecuresby propagationoutweighsthecostof
propagationandthus,all overheadis recovered.

A node proactively receives updatesfor metadata
items from a neighboronly if the nodehasregistered
interestwith the neighbor. A nodethat proactively re-
ceivesan updatefor a metadataitem saves itself from
handlinga follow-upqueryfor thesameitemthat,with-
out theapplicationof theupdate,would otherwisemiss
at the node. Handlinga miss involvesgeneratingnet-
work traffic to forwardthequeryonto one’sneighbor(s)
andto receivea response.Therefore,from a node’sper-
spective,areceivedupdateis justifiedif theupdatesaves
thenodefrom thecostof handlingqueries.A nodewill
only have interestin receiving updatesaslongasit con-
tinuesto receivequeriesfor thatitem.

In CUP, eachnodeusesits own incentive-basedpol-
icy to determinewhento cut off its incomingsupplyof
updatesfor an item. This way the propagationof up-
datesis moderatedanddoesnot flood thenetwork. We
introduceseveralpopularity-basedincentivesto drive a
node’s decisionsto receive metadataupdates.The first
classof policiesis probabilisticwherea nodecomputes
the probability that a received updateis justified using
anestimateof the numberof nodesthatdependon this
nodefor answersto queriesfor the item. The second
classis “history-based,” wherethe nodecomparesthe
ratioof queryarrivalsto updatearrivalsin aslidingwin-
dow of updatearrivals. Thesepoliciesfavor the receipt
of updatesfor popularitemssincetheseitemsgenerate
queriesmostoften.

Similarly, nodesdecideindividually when to propa-
gateupdatesto interestedneighbors.This is necessary
becauseanodemaynotalwaysbeableor willing to for-
ward updatesto interestedneighbors.In fact, a node’s
ability or willingness to propagateupdatesmay vary
with its workload.A salientfeatureof CUPis thateven
whena node’s capacityto pushupdatesbecomeszero,
nodesdependenton the nodefor updatesfall back to
thecaseof PCXandincurno overhead.

We compareCUP againstPCX undertypical work-
loadsthat have beenobserved in measurementsof real
peer-to-peernetworks. We show that CUP reducesthe
averagequery latency by asmuchasan orderof mag-
nitude. CUP propagationoverheadis more thancom-
pensatedfor by its savings in cachemisses. The cost
of saved missescan be two to 300 times the cost of
updatespushed. Finally, since nodesmake propaga-
tion decisionsindependentlyand without coordination
from othernodes,CUPis simpleto implement,which is
crucialfor a peer-to-peernetwork with potentiallythou-
sandsof participants.

2 Background Terminology
The following terms give some backgroundon how
structuredpeer-to-peernetworksperformtheir indexing
andlookup operations.Thesehelp clarify the descrip-
tion of CUPoverstructurednetworksin thenext section.

Node: This is a node in the peer-to-peernetwork.
Each node periodically exchanges“keep-alive” mes-
sageswith its neighborsto confirm their existenceand
to triggerrecoverymechanismsshouldoneof theneigh-
borsfail.

Global Index: A fundamentaloperationin a peer-
to-peernetwork is that of locating content. The basic
ideain structuredpeer-to-peernetworksis thatahashing
schememapskeys (namesof contentfiles or keywords)
onto a virtual coordinatespaceusing a uniform hash
function that evenly distributes the keys to the space.
Thecoordinatespaceservesasaglobalindex thatstores
index entrieswhich are(key, value)pairs. Thevaluein
an index entry is a pointer (typically an IP address)to
thelocationof a nodethatstoresa replicaof thecontent
associatedwith theentry’skey. Therecanbeseveralin-
dex entriesfor thesamekey, onefor eachreplicaof the
content.

Authority Node: EachnodeN in a structuredpeer-to-
peersystemis dynamicallyallocateda subspaceof the
coordinatespace(i.e.,apartitionof theglobalindex) and
all index entriesmappedinto its subspaceareownedby
N. We refer to N asthe authoritynodeof theseentries.
Replicasof contentwhosekey correspondsto anauthor-
ity nodeN sendbirth messagesto N to announcethey
arewilling to serve the content. Dependingon the ap-
plicationsupported,replicasmight periodicallysendre-
freshmessagesto indicatethey arestill servinga piece
of content.They mightalsosenddeletionmessagesthat
explicitly indicatethey are no longer servingthe con-
tent. Thesedeletionmessagesnotify theauthoritynode
to deletethecorrespondingindex entryfrom its local in-
dex directory.

Local index directory: This is thesubsetof global in-
dex entriesownedby a node.

Search Query: A searchquerypostedat a nodeN is
a requestto locatea replicafor key K. The responseto
sucha searchqueryis a setof index entriesthatpoint to
replicasthatserve thecontentassociatedwith K.

Search/RoutingMechanism: In structurednetworks,
whena nodeissuesa queryfor key K, thequerywill be
routedalongawell-definedpathwith aboundednumber
of hopsfrom the queryingnodeto the authority node
for K. The routing mechanismis designedso that each
nodeon thepathhashesK usingthesamehashfunction
to deterministicallychoosewhich of its neighborswill
serveasthenext hop.TheCUPprotocolis awareof but
neitheraffectsnor is affectedby theunderlyingrouting
mechanism.

QueryPath for Key K: This is thepatha searchquery
for key K takes.Eachhopon thequerypathis in thedi-
rectionof theauthoritynodethatownsK. If aninterme-
diatenodeonthispathhasunexpiredentriescached,the
pathendsat the intermediatenode;otherwisethe path
endsat theauthoritynode.Thereverseof thispathis the
ReverseQueryPath for key K.

PCX: Recently, researchershave suggestedcaching
metadatawith expiration timesalongthe reversequery
path[gnu, SBK02,RFH� 01, SMK � 01] asthequeryre-
sponseis propagateddown to thequeryingnode.

Cached index entries: This is the set of index en-
tries cachedby a nodeN in the processof passingup
queriesandpropagatingdown queryresponsesfor keys
for whichN is not theauthority. Thesetof cachedindex
entriesandthelocal index directoryaredisjoint sets.

Lifetimeof index entries: Eachindex entrycachedat
anodehasassociatedwith it a lifetime duringwhichit is
consideredfreshandafterwhichit is consideredexpired.

3 CUP Protocol Design
We give a brief overview of CUPandthendescribethe
componentsof theCUPprotocolin detail.

3.1 CUP Overview
CUP is not tied to any particular searchmechanism
andthereforecanbe appliedin bothnetworks thatper-
form structuredsearchas well as networks that per-
form unstructuredsearch.As describedabove, in struc-
turedsearch,queriesfollow awell-definedpathfrom the
queryingnodeto an authority nodethat holds the in-
dex entriespertainingto the query [RFH� 01, RD01a,
SMK � 01, ZKJ01]; in unstructuredsearch,querieshap-
hazardlytravel throughthenetwork via floodingor ran-
domwalksin searchof index entries[gnu, LCC� 02].

In theinterestof space,in this paperwe describeand
evaluatehow CUP works to maintaincachesof index
entriesin structuredpeer-to-peernetworks. The basic
ideais thateverynodein thepeer-to-peernetwork main-
tainstwo logical channelsper neighbor:a querychan-
nel andan updatechannel. The querychannelis used
to forward searchqueriesfor objectsof interestto the
neighborthatis closestto theauthoritynodeholdingthe
entriesfor thoseobjects.Theupdatechannelis usedto
forward queryresponsesasynchronouslyto a neighbor
andto updateindex entriesthatarecachedat theneigh-
bor.

Queriesfor anitem travel “up” thequerychannelsof
nodesalongthe pathtoward theauthoritynodefor that
item. Updatestravel “down” theupdatechannelsalong
the reversepathtaken by a query. Figure1 shows this
process.Theprocessof queryingfor itemsandupdating
cachedindex entriespertainingto thoseitems forms a
CUP tree,similar to an application-level multicasttree

...

...

...

...

...

...

...

...

Q
�

N1 Q
�

N2

A1

UN2

A
�

2
�

UN1

N1

N2
�

Figure1: CUP Query& UpdateChannels.��� and �
	
areauthoritynodesfor someobjects. A queryarriving
at node ��	 for an item for which �� is the authority
is pushedonto querychannel����� to � � . If � � hasa
cachedunexpired entry for the item, it returnsit to � 	
through ����� . Otherwise,it forwardsthequerytowards
� � . Any updatefor an item originatingfrom authority
node � � flows downstreamto � � which may forward
it onto ��	 through � � � . The analogousprocessholds
for queriesat ��� for itemsfor which ��	 is oneof the
authoritynodes.

whereverticesarepeernodesinterestedin receiving up-
datesfor cachedindex entries.

The querychannelenables“query coalescing”. If a
nodereceivestwo or morequeriesfor anitemfor which
it doesnot have a freshresponse,thenodepushesonly
oneinstanceof thequeryfor thatitemupits querychan-
nel. This approachcanhave significantsavings in traf-
fic, becauseburstsof queriesfor an item arecoalesced
into a singlerequest.Throughsimplebookkeeping(set-
ting an interestbit) the noderegistersthe interestof its
neighborssoit knowswhichof its neighborsto pushthe
queryresponseto whenit arrives.

The cascadedpropagationof updatesfrom author-
ity nodesdown the reversepathsof searchquerieshas
many advantages.First, updatesextendthe lifetime of
cachedentriesallowing intermediatenodesto continue
servingqueriesfrom theircacheswithoutre-issuingnew
queries. It hasbeenshown that up to fifty percentof
contenthits at cachesare instanceswhere the content
is valid but staleand thereforecannotbe usedwithout
first beingre-validated[CK01c]. Theseoccurrencesare
calledfreshnessmisses. Second,a nodethatproactively
pushesupdatesto interestedneighborsreducesits load
of queriesgeneratedby thoseneighbors.Third, thefur-
therdownanupdategetspushed,theshorterthedistance
subsequentqueriesneedto travel to reachafreshcached
answer. As a result, searchquery latency is reduced.

Reducingsearchquerylatency is importantbecausethe
usermustwait until thesearchqueryhassuccessfullyre-
turnedasetof index entriesbeforechoosingfrom which
replicanodeto downloadthe content. Finally, updates
canhelppreventerrorsby invalidatingoutdatedentries.
For example,an updateto deletea freshbut invalid in-
dex entry preventsa nodefrom erroneouslyanswering
queriesusingtheentrybeforeit expires.

3.2 CUP UpdateTypes
We classify updatesinto threecategories: deletes,re-
freshes,andappends.Deletes,refreshes,andappends
originatefrom thereplicasof a pieceof contentandare
directedtoward the authoritynodethat owns the index
entriesfor thatcontent.

Deletesaredirectives to remove a cachedindex en-
try. Deletescanbetriggeredby two events:1) a replica
sendsamessageindicatingit no longerservesapieceof
contentto the authoritynodethat owns the index entry
pointingto that replica.2) Theauthoritynodenoticesa
replicahasstoppedsending“keep-alive” messagesand
assumesthereplicahasfailed. In eithercase,theauthor-
ity nodedeletesthe correspondingindex entry from its
local index directoryandpropagatesthedeleteto inter-
estedneighbors.

Refreshesaredirective messagesthatextendthe life-
timesof cachedindex entries.Refreshesthatarrive at a
cachedo not preventerrorsasdeletesdo, but helppre-
ventfreshnessmisses.

Finally, appendsaredirectivesto addindex entriesfor
new replicasof content. Theseupdateshelp alleviate
the demandfor contentfrom the existing set of repli-
cassincethey addto thenumberof replicasfrom which
clientscandownloadcontent.

3.3 CUP NodeBookkeeping
At eachnode,index entriesaregroupedtogetherby key.
For eachkey K, the nodestoresa “Pending-Response”
flag thatindicateswhetherthenodeis waiting to receive
a responseto a query for K, andan interestbit vector.
Eachbit in the vectorcorrespondsto a neighborandis
setor cleardependingon whetherthatneighboris or is
not interestedin receiving updatesfor K.

Eachnodetracksthepopularityor requestfrequency
of eachnon-localkey K for which it receivesqueries.
Thepopularitymeasurefor a key K canbe thenumber
of queriesfor K anodereceivesbetweenarrivalsof con-
secutive updatesfor K or a rateof queriesin a sliding
window of time. Onanupdatearrival for K, anodeuses
its popularitymeasureto re-evaluatewhetherit is ben-
eficial to continuecachingandreceiving updatesfor K.
We elaborateon this cut-off decisionin Section4.4.

Nodebookkeepingin CUPinvolvesnonetwork over-
headanda few megabytesfor hundredsof thousandsof

entries.With increasingCPUspeedsandmemorysizes,
this bookkeepingis negligible whenwe considerthere-
ductionin querylatency achieved.

3.4 Handling Queriesin CUP
Uponreceiptof aqueryfor akey K, therearethreebasic
casesto consider. In eachof thecases,thenodeupdates
its popularitymeasurefor K andsetstheappropriatebit
in the interestbit vector for K if the query originates
from a neighbor. Otherwise,if the query is from a lo-
cal client, thenodemaintainstheconnectionuntil it can
returna freshanswerto theclient. To simplify thepro-
tocol descriptionwe usethephrase“push thequery” to
indicatethata nodepushesaqueryupstreamtowardthe
authoritynode.We usethephrase“push theupdate”to
indicatethatanodepushesanupdatedownstreamin the
directionof thereversequerypath.

Case1: FreshEntries for key K are cached. The
nodeusesits cachedentriesfor K to pushthe response
to thequeryingneighboror local client.

Case2: Key K is not in cache. The nodeaddsK
to its cacheandmarksit with a Pending-Responseflag.
Theflag’s purposeis to coalesceburstsof queriesfor K
into onequery. A subsequentqueryfor K will be sup-
pressedsincethe nodeis alreadyawaiting the response
for thefirst queryof theburst. Querycoalescingresults
in significantnetwork savings, for both PCX andCUP.
In someof theworkloadsweevaluate,coalescedqueries
canform up to 90 percentof thetotalnumberof queries
thatmiss.

With every query push,a timer is set so that if the
queryresponseis delayed,the nodepushesup another
query.

Case3: All cachedentries for key K have expired.
The nodemustobtain the fresh index entriesfor K. If
thePending-Responseflag is set,thenodedoesnotneed
to pushthequery;otherwise,thenodesetstheflag and
pushesthequery.

3.5 Handling Updatesin CUP
A key featureof CUP is that a nodedoesnot forward
anupdatefor K to its neighborsunlessthoseneighbors
haveregisteredinterestin K. Therefore,with somelight
bookkeeping,CUPdoesnot pushunwantedupdates.

Upon receiptof an updatefor key K thereare three
casesto consider.

Case1: Pending-Responseflag is set. This means
thattheupdateis aqueryresponsecarryingasetof index
entriesin responseto a query. Thenodestorestheindex
entriesin its cache,clearsthe Pending-Responseflag,
andpushesthe updateto neighborswhoseinterestbits
aresetandto local client connectionsopenat thenode.

Case2: Pending-Responseflag is clear. If all the
interestbits for K are clear, the nodedecideswhether

it wantsto continuereceiving updatesfor K. The node
basesits decisiononK’spopularitymeasure.Eachnode
usesits own policy for decidingwhetherthe popularity
of a key is high enoughto warrantreceiving furtherup-
datesfor it. If the nodedecidesK’s popularity is low,
it pushesa Clear-Bit control messageto the senderof
theupdateto notify it that is no longerinterestedin K’s
updates.Otherwise,if thepopularityis high or someof
the neighbor’s interestbits areset,the nodeappliesthe
updateto its cacheandpushestheupdateto thoseneigh-
bors.

Notethata nodecanchoosenot to pushupdatesfor a
key K to interestedneighbors.This forcesdownstream
nodesto fall back to PCX for K. However, by choos-
ing to cut off downstreampropagation,a noderunsthe
risk of receiving subsequentqueriesfrom its neighbors
whichwouldcostit more,sinceit mustbothreceiveand
respondto thesequeries.Therefore,althougheachnode
hasthechoiceof stoppingtheupdatepropagationatany
time, it is in its bestinterestto pushupdatesfor which
thereareinterestedneighbors.

Case3: Incoming update has expired. This could
occur when the network path haslong delaysand the
updatedoesnot arrive in time. The nodedoesnot ap-
ply theupdateanddoesnot pushit downstream.If the
Pending-Responseflag is setthenthenodere-issuesan-
otherqueryfor K andpushesit upstream.

3.6 Handling Clear-Bit Messagesin CUP
A Clear-Bit controlmessageis pushedby a nodeto in-
dicateto its neighborthat it is no longer interestedin
receiving updatesfor a particularkey from that neigh-
bor.

Whenanodereceivesa Clear-Bit messagefor key K,
it clearstheinterestbit for theneighborfrom which the
messagewassent. If thenode’s popularitymeasurefor
K is low andall of its interestbits are clear, the node
alsopushesaClear-Bit messagefor K. Thispropagation
of Clear-Bit messagestoward the authoritynodefor K
continuesuntil a nodeis reachedwherethe popularity
of K is highor whereat leastoneinterestbit is set.

Clear-Bit messagescanbepiggybackedontoqueries
or updatesintendedfor the neighbor, or if thereareno
pendingqueriesor updates,they can be pushedsepa-
rately.

3.7 NodeArri vals and Departuresin CUP
Thepeer-to-peermodelassumesthatparticipatingnodes
will continuously join and leave the network. CUP
mustbeableto handlebothnodearrivalsanddepartures
seamlessly.

Arri vals. When a new nodeN entersa structured
peer-to-peernetwork, it becomesresponsiblefor a por-
tion of anothernode M’s shareof the global index

andbecomesthe authoritynodefor thoseindex entries
mappedinto that portion. N, M, and all surrounding
affectednodes(old neighborsof M) updatethe book-
keepingstructuresthey maintainfor indexing androut-
ing purposes.This is a necessarypart of maintaining
the connectivity of any structuredpeer-to-peernetwork
whenthesetof nodesin thenetwork changes.

For CUP, the issuesat handareupdatingthe interest
bit vectorsof theaffectednodesanddecidingwhatto do
with the index entriesstoredat M. This mayrequirebit
vectortranslation.For example,if anodethatpreviously
had M as its neighbornow hasN as its neighbor, the
nodemustmake thebit ID thatpointedto M now point
to N.

To deal with its storedindex entries,M could sim-
ply not handover any of its entriesto N. This would
causeentriesat someof M’s previous neighborsto ex-
pire andsubsequentqueriesfrom thosenodeswould es-
tablishnew updatepropagationsfrom N. Alternatively,
M could give a copy of its storedindex entriesto N.
Both N and M would then go througheachentry and
patchtheir bit vectors. Both solutionsareviable. The
first solutionrequiresno bit translationbut temporarily
losestheCUPupdatebenefitsandbehaveslikePCXfor
theuntransferredentries. Thesecondsolutiongetsthe
CUP benefitsfor the transferredentries,at the expense
of transferringthemandperformingthebit vectorpatch-
ing. Themetadataandbit vectorsfor thousandsof index
entriescanbecompressedinto a few kilobytesandcan
bepiggybackedontomessagesthatarealreadybeingex-
changedto reconfigurethe topology. Oncethe transfer
occurs,the bit vector patchingis an in-memory, local
operationthatwith today’sCPUandmemorycapacities
takesonly a few secondsfor a few million entries.

Departures. Node departurescan be either grace-
ful (planned)or ungraceful(dueto suddenfailure of a
node). In eithercasethepeer-to-peerindex mechanism
dictatesthata neighboringnodeM takeover thedepart-
ing nodeN’s portion of the global index. To support
CUP, the interestbit vectorsof all affectednodesmust
bepatchedto reflectN’sdeparture.

If N leavesgracefully, N canchoosenot to handover
to M its index entries.Any entriesat surroundingnodes
thatweredependenton N to beupdatedwill simply ex-
pire and subsequentquerieswill establishnew update
propagations. Again, alternatively N may give M its
set of entries. M must then merge its own set of in-
dex entrieswith N’s,byeliminatingduplicateentriesand
patchingthe interestbit vectorsasnecessary. If N’s de-
partureis dueto a failure, therecanbeno hand-overof
entriesandall entriesin theaffectedneighboringnodes
will expireasin PCX.

4 Evaluation
The main goal of CUP is to continuouslyharvest the
benefitsof PCX. In doing so, therearetwo key perfor-
mancequestionsto address.First, by how muchdoes
CUP reducethe averagequerylatency? Second,how
muchoverheaddoesCUPincur in providing this reduc-
tion?

We first definethenotionof a CUPtree. We usethis
definitionto presentacostmodelbasedoneconomicin-
centive usedby eachnodeto determinewhento cut off
thepropagationof updatesfor a particularkey. We give
a simpleanalysisof how the costper queryis reduced
(or eliminated)throughCUP. We thendescribeour ex-
perimentalresultscomparingthe performanceof CUP
with thatof PCX.

4.1 CUP Trees
Figure2 showsa snapshotof CUPin progressfor a net-
work with sevenpeernodes.The left half of eachnode
showsthesetof keysfor which thenodeis theauthority.
Theright half shows thesetof keys for which thenode
hascachedindex entriesasa resultof handlingqueries.
For example,nodeC owns K1 andK2 andhascached
entriesfor K3, K4, andK5.

The processof querying for a key K and updating
cachedindex entriespertainingto K formsa treewhich
we refer to as the Real CUP Tree. This tree, denoted
R(A,K), is similar to anapplication-level multicasttree
andhasasits root the authoritynodeA for K. The ex-
actstructureof R(A,K) dependson theactualworkload
of queriesfor K. The branchesof the tree are formed
by thepathstraveledby queriesfrom othernodesin the
network. For example,in Figure2, thetreeR(C,K1)has
grown branch � F, D, C � astheresultof a queryfor K1
atnodeF. Updatesfor K1 originateat theroot (authority
node)C andtravel down thetreeto interestednodesA,
D, E, andF. Theentireworkloadof queriesfor all keys
resultsin a collectionof criss-crossingRealCUPTrees
with overlappingbranches.

We definetheSpanningCUP Treefor key K, S(A,K)
asthe treethat containsall possiblequerypathsfor K.
This is the tree that would be generatedby issuing a
queryfor K from everynodein thepeer-to-peernetwork.
For example,in Figure2, S(C,K1) is rootedat C (level
0), hasnodesA, B, D, E at level 1, andnodesF andG at
level 2.

4.2 Cost Model
ConsideranodeN within spanningtreeS(A,K) thatis at
distance� from A. We definethe costperqueryfor K
at N asthenumberof hopsin thepeer-to-peernetwork
that mustbe traversedto returnan answerto N. When
a queryfor K is postedat N for thefirst time, it travels
towardA. If noneof thenodesbetweenN andA have a

K1, K5K3 K4 K2, K5

K6 K1, K3, K5

K1, K3, K4K5 K7 K1, K2, K3

K1, K2 K3, K4, K5

C
�

K8, K9 K3, K4

A
�

F

D

B

E

G
�

Figure2: CUPTrees

freshresponsecached,thecostof thequeryat N is ��� :
� hopsupand� hopsfor theresponseto traveldown. If
a nodeon thequerypathhasa freshanswercached,the
costis lessthan ��� . Subsequentqueriesfor K at N that
occurwithin thelifetime of theentriesnow cachedat N
have a costof zero.As a result,cachingat intermediate
nodescansignificantlyloweraveragequerylatency.

We cangaugethe performanceof CUP by calculat-
ing the percentageof updatesCUP propagatesthat are
“justified”, i.e., thosewhosecostis recoveredby a sub-
sequentquery. Updatesfor popularkeys arelikely to be
justifiedmoreoftenthanupdatesfor lesspopularkeys.

A refreshupdateis justified if a queryarrivessome-
timebetweenthepreviousexpirationof thecachedentry
andthenew expirationtime suppliedby therefreshup-
date.An appendupdateis justified if at leastonequery
arrivesbetweenthe time the appendis performedand
the time of its expiration. Finally, a deletionupdateis
justified if at leastone queryarrivesbetweenthe time
thedeletionis performedandtheexpirationtime of the
entryto bedeleted.

For eachupdate,let � bethecritical time interval de-
scribedaboveduringwhicha querymustarrive in order
for theupdateto be justified. Considera nodeN at dis-
tanceD from A in R(A,K). An updatepropagateddown
to N is justified if at leastonequeryis postedwithin �
time units at any of the nodesof the spanningsubtree
S(N,K). For example,if we assumea Poissonqueryar-
rival rate of onequerypersecondat nodesin S(N,K)
and �"!$# , thentheprobability thatanupdatearriving
at N is justifiedis %'&)(+*-,/.0!1%'&2(+* �4365 !87 9:9 .

Thebenefitof ajustifiedCUPupdategoesbeyondjust
recoveryof its cost.For eachhopa justifiedupdate; is
pusheddown to the root N of subtreeS(N,K), exactly
onehop is saved sincewithout ; ’s propagation,entries
in all nodesof S(N,K) will expire and the first subse-
quentquery landingat a node ��< in S(N,K) within �

time unitswill causetwo hops,from N to its parentand
back. This halvesthenumberof hopstraveledbetween
N andits parentwhich in turn reducesquerylatency. In
factall subsequentqueriespostedsomewherein S(N,K)
within � timeunitswill benefitfrom N receiving ; . The
cumulativebenefitanupdate; bringsto subtreeS(N,K)
increaseswhenN is closerto the authority nodesince
thereis a higherprobability that querieswill be posted
within S(N,K).We define“investmentreturn”asthecu-
mulativesavingsin hopsachievedby pushinga justified
updateto nodeN. Theexperimentsshow that thereturn
is largeevenwhenCUP’s reductionin latency is modest
andis substantiallylarge whenthe latency reductionis
high.

4.3 Experiment Setupand Metrics
We evaluateCUP by comparingit with PCX with coa-
lescing. We performour simulationexperimentsusing
modelsderivedfrom measurementsof realpeer-to-peer
workloads[Mar02, SGG02, LCC� 02, Sri01].

For our experiments, we simulate a content-
addressablenetwork (CAN) [RFH� 01] usingthe Stan-
ford Narsessimulator[MGB01]. Again, we stressthat
CUP is independentof the specificsearchmechanism
usedby the peer-to-peernetwork andcanbe usedasa
cachemaintenanceprotocolin any peer-to-peernetwork.

As in previous studies(e.g., [RFH� 01, SMK � 01,
RD01b, CRSB02,RKCD01,RD01a, ZKJ01]), we mea-
sureCUP performancein termsof the numberof hops
traversedin the overlaynetwork. Miss cost is the total
numberof hopsincurredby all misses,i.e. freshness
andfirst-time misses.CUP overheadis the total num-
berof hopstraveledby all updatessentdownstreamplus
the total numberof hopstraveledby all clear-bit mes-
sagesupstream.(We assumeclear-bit messagesarenot
piggybacked onto updates.This somewhat inflatesthe
overheadmeasure.)Total cost is the sum of the miss
costandall overheadhopsincurred. Note that in PCX,
thetotal costis equalto themisscost. Averagequeryla-
tencyis theaveragenumberof hopsa querymusttravel
to reacha freshanswerplusthenumberof hopsthean-
swer must travel downstreamto reachthe nodewhere
the querywasposted.For coalescedqueries,we count
the numberof hops eachcoalescedquery waits until
the answerarrives. Thus, the averagelatency is over
all queries,including hits, coalescedmissesand non-
coalescedmisses.

Wecomputeinvestmentreturn(IR) astheoverallratio
of savedmisscostto overheadincurredby CUP:

=+> !@?BADCEC/FG�CIHDJLKNM & ?BAOCECEFG�CIHDKQP-JR�S (/T�UV(EWYX FG�CIH KZP-J
Thus,as long asIR is greaterthanor equalto 1, CUP
fully recoversits cost.

Thesimulationtakesasinput thenumberof nodesin
the overlay peer-to-peernetwork, the numberof keys
owned per node, the distribution of queriesfor keys,
the distribution of query inter-arrival times, the num-
ber of replicasper key, the lifetime of index entriesin
the system,and the fraction of an entry’s lifetime re-
mainingat which refreshesfor theentryarepushedout
from the authority node. We presentexperimentsfor
n = �:[nodeswherek rangesfrom 7 to 14. After a
warm-upperiodfor allowing thepeer-to-peernetwork to
connect,themeasuredsimulationtime is 3000seconds.
Sinceboth Poissonand Paretoquery inter-arrival dis-
tributions have beenobserved in peer-to-peerenviron-
ments[LCC � 02, Mar02], we presentexperimentsfor
bothdistributions. Nodesarerandomlyselectedto post
queries.We alsoperformedexperimentswherequeries
arepostedat particular“hot spots” in the network and
found similar results. These,as well as other results
which we omit in the interestof space,can be found
elsewhere[Rou02].

We presentresultsfor experimentswhereindex entry
lifetimesarefiveminutesandrefreshesoccuroneminute
beforeexpiration. We choosethesevaluesto reflectthe
dynamicand unpredictablenatureof peer-to-peernet-
works.It hasbeenfoundthatthemedianusersessiondu-
rationof apeeris approximatelysixty minutes[SGG02].
However, contentmaybecomeavailableon a peeror be
deletedfrom the peerat any point during the userses-
sion.This resultsin actualcontentavailability thatis on
theorderof a few minutes[CLL02]. We thereforetake
the safeapproachof validating that the contentis still
available every few minutes. This is also in line with
designersof structuredpeer-to-peernetworks who ad-
vocateperiodicrefreshes(keep-alivemessages)between
thepeersstoringreplicasof a particularcontentandthe
authority nodefor that content[RFH� 01, RD01a]. If
thereweresomeway to ensurethat lifetimes of entries
couldbesetfor longer, thenwefind thatCUPcontinues
to providebenefits,albeitreduced,sincePCXwould in-
cur fewer misses.Unfortunately, makingsuchguaran-
teeswould requireplacing a global availability policy
acrossautonomouspeernodes.

Wepresentsix setsof experiments.First,wecompare
the effect on CUP performanceof different incentive-
basedcut-off policiesandcomparethe performanceof
thesepoliciesto thatof PCX.Second,usingthebestcut-
off policy of the first experiment,we study how CUP
performsas we scale the network. Third, we study
theeffect on CUPperformanceof varying thetopology
of the network by increasingthe averagenodedegree,
thusdecreasingthediameterof thenetwork. Fourth,we
studytheeffectonCUPperformanceof limiting theout-
going updatecapacitiesof nodes.Fifth, we studyhow
CUPperformswhenqueriesarrivein bursts,asobserved

Table1: Total costperkey perqueryratefor varyingcut-off policies.

Policy 1 q/s Total Cost 10 q/s Total Cost 100 q/s Total Cost 1000 q/s Total Cost
PCX 61568(1.00) 154502(1.00) 476420(1.00) 2296869(1.00)
Linear, \^]`_ba 	4c 55475(0.90) 72022(0.47) 49341(0.10) 196650(0.09)
Linear, \^]`_ba � _ 41281(0.67) 34311(0.22) 47132(0.10) 196650(0.09)
Logarithmic, \^]�_Ia c 31658(0.51) 27311(0.18) 47785(0.10) 196797(0.09)
Logarithmic, \^]�_Ia 	4c 30683(0.50) 24695(0.16) 48330(0.10) 196797(0.09)
Second-chance 16958(0.28) 23702(0.15) 48330(0.10) 196797(0.09)
Optimalpushlevel 15746(0.26) 23696(0.15) 45325(0.095) 153309(0.07)

with Paretointer-arrivals. Thesefive experimentsshow
the per-key benefitsof CUP whenkeys arequeriedfor
accordingto a uniform distribution. In the last experi-
ment,we show the overall benefitsof CUP whenkeys
arequeriedfor accordingto aZipf-lik edistribution.

4.4 Varying the Cut-Off Policies
As discussedin Section4.2, thepropagationof updates
is beneficialonly if the updatesare justified; when a
node’s incentive to receive updatesfor a particularkey
fades,continuingupdatepropagationto thatnodesimply
wastesnetwork bandwidth.Therefore,eachnodeneeds
an independentanddecentralizedway of controlling its
intakeof updates.

Webaseanode’sincentiveto receiveupdatesfor akey
onthepopularityof thekey at thenode.Themorepopu-
lar akey is, themoreincentivethereis to receiveupdates
for thatkey, becauseupdatesfor thatkey aremorelikely
to bejustified.For akey K, thepopularityis thenumber
of queriesanodehasreceivedfor K sincethelastupdate
for K arrivedat thenode.(Notethatthepopularitymet-
ric is node-dependentand could be definedin another
waysuchaswith a moving averageof queryarrivalsfor
K.)

We examinetwo typesof thresholdsagainstwhich to
testakey’spopularitywhenmakingthecut-off decision:
probability-basedandhistory-based.

A probability-basedthresholdusesthe distanceof a
nodeN from the authority nodeA to approximatethe
probability that an updatepushedto N is justified. Per
ourcostmodelof section4.2,thefurtherN is from A, the
lesslikely anupdateat N will bejustified. We examine
two suchthresholds,a linearoneanda logarithmicone.
With a linearthreshold,if anupdatefor key K arrivesat
a nodeat distance� andthe nodehasreceivedat leastd � queriesfor K sincethelastupdatefor someconstantdfe8g , thenK is consideredpopularandthenodecon-
tinuesto receiveupdatesfor K. Otherwise,thenodecuts
off its intake of updatesfor K by pushingup a clear-bit
message.The logarithmicpopularitythresholdis simi-
lar. A key K is popularif thenodehasreceived d�hjilk �nm
queriessincethe lastupdate.Thelogarithmicthreshold
is more lenient than the linear in that it increasesat a
slower rateaswe moveaway from theroot.

A history-basedthresholdis onethat is basedon the
recenthistoryof thelastn updatearrivalsat thenode. If
within n updates,thenodehasnot receivedany queries,
then the key is not popularand the nodepushesup a
clear-bit message.A specificexampleof ahistory-based
policy is the “second-chancepolicy”, op!q� . Whenan
updatearrives,if no querieshave arrived sincethe last
update,the policy givesthe key a “secondchance”and
waits for the next update. If at the next update,still
no queriesfor K have beenreceived, the nodepushes
a clear-bit message.The philosophybehindthis policy
is thatpushingthesetwo updatesdown from thenode’s
parentcoststhesameasonequerymissoccurringat the
node,sincea querymissincursonehop up to the par-
ent andonehop down. This meansthat just onequery
arriving at thenodebetweenthefirst updateandtheex-
pirationof thesecondupdateis enoughto recover their
propagationcost.

Table1 comparesPCXwith CUPusingthelinearand
logarithmicpolicesfor variousd values,with CUPusing
secondchance,andwith a versionof CUPthatdoesnot
useany cut-off policy but insteadpushesupdatesuntil
theoptimalpushlevel is reached.To determinetheop-
timal pushlevel we make CUPpropagateupdatesto all
queryingnodesthatareat most r hopsfrom theauthor-
ity node.By varyingthepushlevel r , we determinethe
level which achievesminimumtotal cost.This is shown
by the row labeled“optimal pushlevel” andusedasa
baselineagainstwhich to comparePCX andCUP with
thecut-off policiesdescribed.

In Table1 weshow thecut-off policy resultsfor anet-
work of 1024nodesandPoisson ratesof 1, 10, 100
and 1000 queriesper second. In eachtable entry, the
first numberis the total costand the numberin paren-
thesesis the total costnormalizedby the total cost for
PCX. First, we seethat regardlessof the cut-off pol-
icy used,CUPoutperformsPCX.Second,for the lower
queryrates,theperformanceof the linearandthe loga-
rithmic policiesis greatlyaffectedby the choiceof pa-
rameterd , whereasfor thehigherqueryrates,thechoice
of d is lessdramatic.Theseresultsshow thatchoosinga
priori an d valuefor the linearandlogarithmicpolicies
thatwill performwell acrossall workloadsis difficult.

For thehigherqueryrates,the history-basedsecond-

Table2: Per-Key Comparisonof CUPwith PCXfor varyingnetwork sizes,Poissonarrivalsof 1 query/second.

Network Size 128 256 512 1024 2048 4096 8192 16384
CUP/PCXMissCost 0.10 0.10 0.15 0.17 0.19 0.22 0.20 0.21
PCXAvgLat (s) 1.51(2.77) 2.67(3.96) 4.49(5.92) 6.74(8.25) 11.01(12.11) 17.47(17.49) 29.29(27.79) 45.56(40.31)
CUPAvgLat (s) 0.21(1.10) 0.46(1.60) 1.25(3.19) 2.17(4.37) 4.18(7.13) 7.70(11.28) 11.48(15.08) 19.17(23.75)
IR/CUPOvhdHop 4.15 4.88 6.29 7.83 11.43 16.14 24.85 35.98

chancepolicy performscomparablyto the probability-
basedpolicies,andfor thelowerqueryratesoutperforms
the probability-basedpolicies. In fact, acrossall rates,
thesecond-chancepolicy achievesa total costvery near
the optimal pushlevel total cost. In all remainingex-
periments,we usesecond-chanceasthecut-off policy.

4.5 Scalingthe Network
In this sectionwe studyCUP performanceaswe scale
thesizeof thenetwork.

Table2 comparesCUPandPCXfor network sizesbe-
tween ��t
!u%/��v and � �Dw !u%/#:x:v:y nodesfor a Poisson
rateof 1 querypersecond.Thefirst row showstheCUP
misscostasafractionof thePCXmisscost.Thesecond
andthird rows show the averagequery latency in hops
for PCXandCUPrespectively. Thenumberin parenthe-
sesis thestandarddeviation. As canbeobserved,CUP
reducesaveragequerylatency respectively by 9.77,and
17.81,and 26.39hopsfor the 4096, 8192, and 16384
nodenetworks. This is a substantialreductionin aver-
agequerylatency thatimproveswith increasingnetwork
size. Comparingthe standarddeviations of CUP and
PCX we seethat CUP also haslessvariability around
its averagequerylatency.

Thefourth row in Table2 shows theIR peroverhead
pushperformedby CUP. Weobserveagrowth in therate
of returnwith 16.14,24.85,and35.98for the last three
network sizes.Thesenumbersarequitestrong,consid-
eringthattheoverheadis completelyrecovered.

Figure3 showstheIR of CUPversusnetwork sizefor
Poissonwith = 1, 10, 100,and1000queriespersec-
ond.Fromthefigureweseethatfor aparticularnetwork
size,if we increasethequeryratethe IR increases,and
for a particularquery rate, if we increasethe network
size,theIR alsoincreases.This demonstratesthatCUP
scalesto higherqueryratesandhighernetwork sizes.

4.6 Varying the Network Topology
In general,differentpeer-to-peernetworks exhibit dif-
ferent topologiesandthusdifferentnetwork diameters.
Theparticulartopologycreateddependson theprotocol
thepeernodesuseto join thenetwork andto keepit con-
nected. The CAN designis basedon a d-dimensional
coordinatespace,with our experimentsthusfar having
beenfor Xz!{� . Increasingthe numberof dimensions
resultsin a topology wherenodeshave higher degree

1

10

100

1000

100 1000 10000

In
ve

st
m

en
t R

et
ur

n

|

Number of Nodes

1 q/s/key
10 q/s/key

100 q/s/key
1000 q/s/key

Figure3: IR vs. netsize.(Log-scaleaxes.)

andthenetwork hassmallerdiameter. Smallerdiameter
meansthat theaveragepathlengthof a queryon a miss
is shorterfor bothPCXandCUP, which impliesthatthe
benefitsof CUPmaybe lesspronounced.On theother
hand,CUP total updatecostalsodecreasessincethere
will be shorterdistancesfor updatesto travel. As a re-
sult, we find that CUP continuesto provide significant
savingsin termsof bothoverall totalcost,latency reduc-
tion, andIR peroverheadpush.

In this setof experimentswe study the effect of in-
creasingthe numberof CAN dimensionson a network
with 1024nodes.Thedimensionschosenfor thisexper-
iment are 2, 3, 5, and10. Thesedimensionsresult in
network diametersof 24, 12,8, and8 respectively. (For
anetwork of 1024nodes,increasingbeyondfivedimen-
sionsdoesnot reducethenetwork diameterany further.)
Thequeriesarriveaccordingto aPoissonprocesswith
rateof 1, 10, 100,and1000queriespersecond.Figure
4 showstheIR versusthequeryratefor eachdimension.
From the figure we seethat the curvesfor dimensions
5 and10 arevery similar becausethey have equalnet-
work diameters.We alsoseethatdimension2 achieves
thehighestIR acrossall queryrates,andthattheIR de-
creaseswith dimension. However, even for the higher
dimensions(5 and10),theIR is at least2.1for 1 q/sand
increasesto 36.6for 1000q/s.

4.7 Varying Outgoing UpdateCapacity
Our experimentsthus far show that CUP outperforms
PCX underconditionswhereall nodeshave full outgo-
ing updatecapacity. A nodewith full outgoingcapac-

1

10

100

1 10 100 1000

In
ve

st
m

en
t R

et
ur

n

Query Rate

10-d
5-d
3-d
2-d

Figure4: IR vs. queryrate,varyingdimensions.(Log-
scaleaxes.)

ity is a nodethatcananddoespropagateall updatesfor
which thereareinterestedneighbors.In reality, anindi-
vidualnode’soutgoingcapacitywill varywith its work-
load,network connectivity, andwillingnessto propagate
updates.In this sectionwe studytheeffecton CUPper-
formanceof reducingthe outgoingupdatecapacityof
nodes.

We presentan experimentrun on a network of 1024
nodes.In this experiment,after a five minutewarm up
period,we randomlyselecttwentypercentof thenodes
andreducetheir outgoingcapacityto a fractionof their
full capacity. Thesenodesoperateat reducedcapacity
for ten minutesafter which they returnto full capacity.
After anotherfiveminutesfor stabilization,werandomly
selectanotherset of twenty percentof the nodesand
reducetheir capacityfor ten minutes. We proceedthis
way for the entire 3000 secondsduring which queries
are posted,so capacityloss occursthreetimes during
thesimulation.

Figure5showstheratioof CUPtotalcosttoPCXtotal
costversuscapacity } for this experimentand for four
differentPoissonqueryrates . The capacity } ranges
from 0, implying that no updatesarepropagated,to 1,
wherenodeshavefull outgoingcapacity. }^!87~�:� means
that a nodeis only capable/willingof pushingout one-
fourth theupdatesit receives.

Note that even when one fifth of the nodesdo not
propagateany updates,the total cost incurredby CUP
is abouthalf thatof PCX. As the outgoingcapacityin-
creases,the total cost decreasessmoothlyuntil }2!�%
whereCUP achievesits full potential. A key observa-
tion from theseexperimentsis thatCUP’s performance
degradesgracefullyasthecapacity} decreases.This is
becausereductionin updatepropagationalsoresultsin
reductionof its associatedoverhead. Therefore,theca-
pacityreductionshouldbeseenasa missedopportunity
for higherreturnsratherthanasanoverall loss.Clearly

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ot

al
 C

os
t R

at
io

�

Update Propagation Capacity

1 q/s/key
10 q/s/key

100 q/s/key
1000 q/s/key

Figure5: Total costratio vs. updatepropagationcapac-
ity

though,CUP achievesits full potentialwhenall nodes
havemaximumpropagationcapacity.

4.8 ParetoQuery Arri vals

Recentwork hasobservedthatin somepeer-to-peernet-
works,queryinter-arrivalsexhibit burstinesson several
time scales[Mar02], making the Paretodistribution a
good candidatefor modeling theseinter-arrival times.
Therefore,in this sectionwe compareCUP with PCX
underParetointer-arrivals.

TheParetodistributionhastwo parametersassociated
with it: theshapeparameterd���g andthescaleparame-
ter � ��g . Thecumulativedistribution functionof inter-
arrival timedurationsis � k�� m�!8%Q& k���j� � �I� m \ 7 Thisdis-
tribution is heavy-tailedwith unboundedvariancewhendz� � . For d�� % , theaveragenumberof queryarrivals
per time unit is equalto

� \ * � �� . For d�� !�% , the ex-
pectationof an inter-arrival durationis unboundedand
thereforetheaveragenumberof queryarrivalsper time
unit is 0.

We ran experimentsfor a rangeof d and � values
but canonly presentrepresentative resultshere.Table3
comparesCUP with PCX for d equalto 1.25 and1.1
respectively for a network of 1024 nodes. We set the
valueof � in eachrunsothattheaveragerateof arrivals� \ * � �� equals1, 10,100,and1000queriespersecondto
matchthe rateof thePoissonexperimentsin previous
sections.

As d decreasestoward 1, query interarrivals be-
comemorebursty. Queriesarrive in morefrequentand
moreintensebursts,followedby idle periodsof varying
lengths.If anidle periodoccasionallyfalls in theheavy-
tail portion of the Paretodistribution (i.e., it is a very
long idle period),thensecondchanceCUPpropagation
costcould be unrecoverable,sincethe next querymay
arrive long afterthecachedentryhasexpired.However,
CUP doeswell underbursty conditionsbecausewhen

Table3: Per-Key, Per-QueryRateComparisonof CUPwith PCXfor Paretoarrivals.

Average Rate (q/s) 1 1 10 10 100 100 1000 1000
Pareto rate (a) 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1
CUP/PCXMissCost 0.24 0.14 0.08 0.07 0.07 0.09 0.08 0.08
PCX AvgLat (s) 7.77(9.28) 6.99(9.43) 3.84(8.41) 4.01(8.75) 1.75(5.88) 1.61(5.53) 1.00(4.02) 1.10(4.16)
CUPAvgLat (s) 3.16(5.75) 1.71(4.44) 0.42(3.03) 0.37(2.80) 0.13(1.66) 0.15(1.71) 0.08(1.17) 0.09(1.24)
IR/CUPOvhdHop 6.41 7.49 13.09 16.03 43.25 53.57 223.97 293.30

it is ableto refresha cachebeforea burst of queries,it
savesa largepenaltywhich by far outweighsany unre-
coveredoverheadthatoccursduringtheoccasional,very
long idle period.Therefore,refreshingthecachein time
providesgreaterbenefitswith increasingburstiness.The
table resultsconfirm this. In going from d !�%:7~�:� tod !1%:7�% , weseethattheaveragequerylatency reduction
CUP achievesgenerallyimprovesandthe IR increases
for all queryrates.

4.9 Zipf-lik e KeyDistrib utions

A recentstudyhasshown thatqueriesfor multiple keys
in a peer-to-peernetwork follow a Zipf-lik e distribu-
tion, with a small portion of the keys getting the most
queries[Sri01]. That is, thenumberof queriesreceived
by the i’ th most popularkey is proportionalto �<�� for
constantd .

In this sectionwe compareCUP with PCX in a net-
work of 1024nodes,whereeachnodeownsonekey. The
querydistribution amongthe1024keys follows a Zipf-
like distributionwith parameterd !�%:7~� . Table4 shows
resultsfor Poissonarrivalswheretheoverall ratesare
100,1000,10000,and100000queriespersecond.(We
also ran experimentswith d = 0.80 and2.40 andwith
Paretoarrivals,andtheresultsweresimilar.)

From the table we seethat CUP outperformsPCX
with IR rangingfrom 6.57to 30.02.Thelatency reduc-
tion rangesfrom 3.2 (for 100 q/s) to an orderof mag-
nitudereduction(for 100000q/s, latency droppedfrom
1.53to 0.13). TheZipf-lik e distribution causessomeof
thekeys to geta largepercentageof thequeries,leaving
othersto beaskedfor quiterarely. For rarekeys,caching
doesnothelpsincetheentryexpiresby thetime thekey
is queriedfor again,and the query rate for thesekeys
is not high enoughto recover the updatepropagation.
However, theIR for thevery hot keys is high enoughto
by faroffsettheunrecoveredcostof theunpopularkeys.
As a result,CUPachievesanoverall IR of at least6.57
for 100q/sandasmuchas30.02for 100000q/s.

5 RelatedWork

Wedescriberelatedwork specificallyin thepeer-to-peer
literature,followedby relatedwork in thesystemsliter-
aturein general.

5.1 RelatedPeer-to-Peer Work

To our knowledge,CUP is the first protocol aimedat
maintainingcachesof index entriesto improve search
queries in peer-to-peer networks. While designers
of peer-to-peer systemsadvocate caching index en-
triesto improveperformance[gnu, RFH� 01, SMK � 01,
RD01a], therehasbeenlittle follow-up work studying
whenandwhereto cacheentriesandhow to maintain
thesecachedentriesin a peer-to-peersystem.

Cox et al. [CMM02] study providing DNS service
over a peer-to-peernetwork as an alternative to tradi-
tional DNS. They cacheindex entries,which areDNS
mappings,alongsearchquerypaths.Similarly, theTer-
raDir Distributed Directory cachingscheme[SBK02]
hasnodesalongthesearchquerypathcachepointersto
othernodespreviously traversedby the query. In each
of theseexamples,cachedindex entrieshave expiration
timesandarenot refreshedor maintaineduntil amissor
failureoccurs.

Path caching of content in peer-to-peer systems
has received more attention. Freenet [CSWH00],
CFS [DKK � 01], PAST [RD01b], and Lv et
al. [LCC � 02] eachperformpathcaching,or cachingof
contentalongthesearchpathof a query. Thesestudies
do not focuson cachemaintenance,but ratherdepend
on expiration or cachesize constraintsto implicitly
preventtheuseof stalecontent.

CUP trees are similar to application-level multi-
cast trees, particularly those built on peer-to-peer
networks. These include Scribe [RKCD01] and
Bayeaux[ZZJ� 01]. Scribe is a publish-subscribein-
frastructurebuilt on top of Pastry [RD01a] wheresub-
scribersinterestedin a topic join its correspondingmul-
ticast group. Scribecreatesa multicast tree rootedat
the rendez-vous point of eachmulticast group. Pub-
lisherssenda messageto the rendez-vouspoint which
thentransmitsthemessageto theentiregroupby send-
ing it down the multicast tree. The multicast tree is
formedby joining thePastryroutesfrom eachsubscriber
nodeto therendez-vouspoint. Scribecouldbenefitfrom
our CUPideasto provide updatepropagationfor cache
maintenancein Pastry.

Table4: Cross-Key Comparisonof CUPwith PCX,for PoissonarrivalsandZipf-lik ekey distribution

Overall AvgRate q/s 100 1000 10000 100000
CUP/PCXMissCost 0.45 0.23 0.10 0.08
PCXAvgLat (s) 10.6(9.9) 6.9(8.9) 3.4 (7.5) 1.53(5.47)
CUPAvgLat (s) 7.4(8.5) 2.6(5.2) 0.4 (2.7) 0.13(1.67)
IR 6.57 8.52 10.98 30.02

5.2 RelatedDistrib uted CachingWork
DNS [Moc87a, Moc87b] is the largestandbestknown
distributed directory service for the Internet. Name
servers, like CUP nodes,can be viewed as distributed
cachesthathold index entries(DNS name-to-IPaddress
mappings)with Time-to-Live (TTL) fields indicating
how long they shouldbe consideredvalid. The main-
tenanceof DNS cacheshastypically beenpull-driven,
wherenameserverseitherpull a freshversionof a stale
cachedmappingin responseto aclientrequest,or proac-
tively, in anticipationof a request[CK01b]. CUPmain-
tainscachesthrougha proactivepush-drivenapproach,
whereupdatesarepushedto all interestednodesin the
overlaynetwork. DNS is generallyintendedto support
slowly-changingmappingswith TTLs on the order of
hours(e.g.,24 hours)[CK01b], whereasCUPis geared
towardmaintainingcachesof metadatathatchangefre-
quently, on theorderof minutes.

Distributed cachingtechniqueshave beenlooked at
in the context of distributedfile systems(e.g., [HO93,
ADN � 95], wherethe focus is on achieving cacheco-
herenceamongstgroupsof participatingfile writersthat
havecachedfilesandcommunicateoveralocal-areanet-
work. CUP is designedfor peer-to-peerenvironments,
where there may be thousandsof participatingnodes
spreadacrossthe Internet,andwhereupdatesfor a par-
ticularmetadataitemaretypically generatedby only one
peernode.

Distributedcachingtechniqueshavealsobeenlooked
at in thecontext of webcaching.Many previousstudies
have focusedon cachereplacementpoliciessincecache
sizebecomesa finite sourcewhencachingcontentfor
potentiallythousandsof clients[Mog96, WAS� 96]. In
CUP, cachesizeis notanissuesincemetadataaresmall.

Data caching and movement techniquesbasedon
economic models of locally computed interest have
beenstudiedin the context of theMariposaDistributed
DatabaseManagementSystem[SDK � 94]. Mariposa
builds a market-basedsystemwith a virtual currency
whereserversadvertisepricesto provideresourcessuch
asCPUcyclesandstorageservicesfor queryprocessing
suchthat they maximizetheir local revenueincomeper
time unit. If a server is underutilized,it will lower the
price of its resourcesto attractmorerequests.In CUP,
the notion of economicbenefitis different;a nodethat
derivesbenefitby propagatinganupdateis saving itself

from futurework (queryrequests).

Many schemeshave beenproposedfor the mainte-
nanceof cachedwebcontent.Someproposepush-based
invalidation schemeswhere a web server/proxy noti-
fies proxies/clientswhen cachedobjectsare modified
(e.g.,[LC99]), pull-basedvalidationschemes,wherethe
proxy/clientvalidateswith the server/proxycachedob-
jects that have expired [CK01c], and hybrid schemes,
wheretheserverpiggybacksvalidationsonresponsesto
requestsfor relatedobjects(e.g., [KW97]. CUP dif-
fers from previousweb maintenanceschemesby using
push-drivenpropagationthat is drivenby theindividual
economicincentiveof participatingnodes.

Cooperative caching has been proposedto allow
groupsof participatingcachesto exchangecachedweb
contentamongstthemselves.Theoverallgoalis to bring
a particularweb object to the cachethat is closestto
theclientsrequestingthatwebobject.Previouspropos-
alsincludehierarchicalcacheschemes(e.g.,[CDN � 96,
KLL � 97, squ, CK01a]), hash-basedschemes[KLL � 97,
VR98], directory-basedschemes[FCAB98, MIB98,
TDVK99], andmulticast-basedschemes(e.g.,[Tou98]).
Of thesecooperativecachingstudies,thosemostrelated
to CUP arework on refreshmentpolicies for cascaded
cachesby Cohenet al. [CK01a] andwork on distribut-
ing locationhintsacrossahierarchyof cachesby Tewari
et al. [TDVK99].

CohenandKaplanstudytheeffect thatagingthrough
cascadedcacheshas on the miss ratesof web client
caches[CK01a]. For eachobjectan intermediatecache
refreshesits copy of the object when its ageexceeds
a fraction v of the lifetime duration. The intermediate
cachedoesnot pushthis refreshto theclient cache;in-
stead,the client cachewaits until its own copy hasex-
pired at which point it fetchesthe intermediatecache’s
copy with the remaininglifetime. For somesequences
of requestsat the client cacheandsomev’s, the client
cachecansuffer from a highermissratethanif the in-
termediatecacheonly refreshedon expiration. A CUP
treecould be viewed asa seriesof cascadedcachesin
thateachnodedependson thepreviousnodein thetree
for updatesto anindex entry. Thekey differenceis that
in CUP, refreshesarepusheddown theentiretreeof in-
terestednodes.Therefore,whenevera parentcachegets
a refreshsodoesthe interestedchild node. In suchsit-
uations,we find themissrateat thechild nodeactually

improves.
Tewari et al. [TDVK99] cachelocationhints in addi-

tion to webcontentatwebcachesin awebcachehierar-
chy. Locationhints areusedby requestingleaf caches
to accesscopiesof web contentdirectly from remote
cachesholding the content,ratherthanwaiting for the
contentto travel through the root and down to them.
Propagationof hint updatesis consideredinexpensive,
andoccursproactively andindependentlyof therequest
patternof theweb objectthehint represents.CUP em-
phasizesrecoveringpropagationoverhead.CUPmakes
thepropagationdecisionby comparingthecostof prop-
agatinga particularupdatewith the benefit(investment
return)theupdatewill bring to thetreebelow thenode.
CUP only propagatesupdatesthat are likely to benefit
subsequentqueriesin thesubtreebelow.

6 Conclusions
CUP providesa generalpurposeframework for main-
taining cachesof metadatain peer-to-peer networks,
wherecontinuousupdatesareexpected,yet nodesmust
have personaleconomicincentive to participatein the
maintenance. CUP is a completeprotocolwith query
channelsfor coalescingbursts of queriesand update
channelsfor asynchronousdelivery of queryresponses
andupdatesof cachedmetadata.To moderatepropaga-
tion without imposinga global policy, CUP introduces
thenotionof investmentreturnfor motivatingeachnode
to participatein theupdatepropagationandpoliciesfor
estimatingwhenthebenefitceasesto outweightheover-
head.For thecaseof locatingcontentin a peer-to-peer
network, we find thatCUPsecuresaninvestmentreturn
of 2 to 300 timesthepropagationcostandsignificantly
reducesquerylatency.

We have leveragedtheCUPprotocolto delivermeta-
data required for effective load-balancingof content
downloadsacrossmultiple replicanodes[Rou02]. As
with regular searches,the economic incentive-based
model helps to moderateand control the amount of
metadataupdatepropagationin a highly dynamicenvi-
ronmentwhereload informationchangesvery rapidly.
Future work includes the use of CUP to enhance
managementof dynamic contentreplication, publish-
subscribeapplications,and price negotiation and auc-
tioning of servicesamongstnodesin a peer-to-peernet-
work.

7 Acknowledgments
This researchis supportedby the StanfordNetworking
ResearchCenter, andby DARPA (contractN66001-00-
C-8015).

We thank Brian Noble, our papershepherd,for his
guidance. The work presentedhere has benefitted
greatlyfrom discussionswith PetrosManiatis,Armando

Fox, Nick McKeown, andRajeev Motwani. We thank
themfor their invaluablefeedback.

References
[ADN � 95] T. Anderson,M. Dahlin, J. Neefe,D. Patterson,

D. Roselli,andR. Wang.ServerlessNetwork File
Systems.In SOSP, 1995.

[CDN � 96] A. Chankhunthood,P.B. Danzig, C. Neerdaels,
M.F. Schwartz, andK.J. Worrell. A Hierarhical
InternetObjectCache.In USENIX, January1996.

[CK01a] E. Cohenand H. Kaplan. Aging ThroughCas-
cadedCaches:PerformanceIssuesin the Distri-
butionof WebContent.In Sigcomm, 2001.

[CK01b] E. Cohenand H. Kaplan. Proactive cachingof
DNS records: Addressinga performancebottle-
neck.In SAINT, 2001.

[CK01c] E. Cohenand H. Kaplan. RefreshmentPolicies
for WebContentCaches.In Infocom, 2001.

[CLL02] J.Chu,K. Labonte,andB. N. Levine.Availability
and Locality Measurementsof Peer-to-PeerFile
Systems.In Proc. ITCom: ScalabilityandTraffic
Control in IP NetworksII Conferences, July2002.

[CMM02] R. Cox, A. Muthitacharoen,and R. T. Morris.
ServingDNS using a Peer-to-PeerLookup Ser-
vice. In IPTPS, March2002.

[CRSB02] Y. Chawathe, S. Ratnasamy, S. Shenker,
and L. Breslau. Can Heterogeneity
Make Gnutella Scale? May 2002.
http://research.att.com/yatin/publications/.

[CSWH00] I. Clarke,O.Sandberg, B. Wiley, andT. W. Hong.
Freenet: A Distributed AnonymousInformation
Storageand Retrieval System. In DIAU, July
2000.

[DKK � 01] F. Dabek,M. F. Kaashoek,D. Karger, R. Morris,
andI. Stoica.Wide-areaCooperativeStoragewith
CFS.In SOSP, 2001.

[FCAB98] L. Fan,P. Cao,J.Almeida,andA.Z. Broder. Sum-
mary Cache: A scalableWide-areaWeb Cache
SharingProtocol.In SIGCOMM, 1998.

[gnu] The Gnutella Protocol Specification v0.4.
http://gnutella.wego.com/.

[HO93] J. HartmanandJ. Ousterhout.TheZebraStriped
Network File System.In SOSP, 1993.

[KLL � 97] D. Karger, E. Lehman,T. Leighton, M. Levine,
D. Lewin, andR. Panigrahy. ConsistentHashing
and RandomTrees: Distributed CachingProto-
cols for Relieving Hot Spotson the World Wide
Web. In STOC, 1997.

[KW97] B. KrishnamurthyandC.E. Wills. Studyof Pig-
gybackCacheValidationfor ProxyCachesin the
World WideWeb. In USITS, 1997.

[LC99] Dan Li and David Cheriton. Scalable Web
Caching of FrequentlyUpdatedObjects Using
ReliableMulticast. In USITS, 1999.

[LCC � 02] Q. Lv, P. Cao,E. Cohen,K. Li, andS. Shenker.
SearchandReplicationin UnstructuredP2PNet-
works. In ICS, 2002.

[Mar02] E. P. Markatos.Tracingalarge-scalePeer-to-Peer
System:an hour in the life of Gnutella. In 2nd
IEEE/ACM International Symposiumon Cluster
ComputingandtheGrid, 2002.

[MGB01] P. Maniatis, T.J. Giuli, and M. Baker. En-
abling the Long-Term Archival of SignedDocu-
mentsthroughTime Stamping.TechnicalReport
cs.DC/0106058,StanfordUniversity, June2001.

[MIB98] J.M. Menaud,V. Issarny, andM. Banatre.A New
Protocol for Efficient TransversalWeb Caching.
In SymposiumonDistributedComputing, 1998.

[Moc87a] P. Mockapetris.Domainnames- ConceptandFa-
cilities. In RFC1034, 1987.

[Moc87b] P. Mockapetris.Domainnames- Implementation
andPractice.In RFC1035, 1987.

[Mog96] J.Mogul. HintedCachingin theWeb.In SIGOPS,
1996.

[RD01a] A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and routing for
large-scalepeer-to-peersystems.In MiddleWare,
November2001.

[RD01b] A. RowstronandP. Druschel. StorageManage-
mentandCachingin PAST, A Large-scale,Persis-
tentPeer-to-peerStorageUtility”. In SOSP, Octo-
ber2001.

[RFH� 01] S. Ratnasamy, P. Francis,M. Handley, R. Karp,
andS. Shenker. A ScalableContent-Addressable
Network. In Sigcomm, 2001.

[RKCD01] A. Rowstron,A. Kermarrec,M. Castro,andP. Dr-
uschel.SCRIBE:Thedesignof alarge-scaleevent
notificationinfrastructure.In NGC, 2001.

[Rou02] M. Roussopoulos.Controlled UpdatePropaga-
tion in Peer-to-PeerNetworks. PhD thesis,Stan-
ford University, 2002.

[SBK02] B. Silaghi, B. Bhattacharjee,and P. Keleher.
Routingin the TerraDirDirectory Service,2002.
http://motefs.cs.umd.edu/terradir/.

[SDK � 94] M. Stonebraker, R. Devine, M. Kornacker,
W. Litwin, A. Pfeffer, A. Sah,and C. Staeline.
An EconomicParadigmfor QueryProcessingand
DataMigration in Mariposa.In 3rd International
Conferenceon Parallel andDistributedInforma-
tion Systems, 1994.

[SGG02] S. Saroiu,P. K. Gummadi,andS. D. Gribble. A
MeasurementStudyof Peer-to-PeerFile Sharing
Systems.In MMCN, 2002.

[SMK � 01] I. Stoica,R. Morris, D. Karger, F. Kaashoek,and
H. Balakrishnan.Chord:A ScalablePeer-to-peer
LookupServicefor InternetApplications.In Sig-
comm, 2001.

[squ] Squid Internet Object Cache.
http://squid.nlanr.net.

[Sri01] K. Sripanidkulchai. The Popularityof Gnutella
Queries and its Implication on Scalability,
February2001. http://www-2.cs.cmu.edu/kun-
wadee/research/p2p/gnutella.html.

[TDVK99] R. Tewari, M. Dahlin,H. Vin, andJ.Kay. Design
Considerationsfor DistributedCachingon theIn-
ternet.In ICDCS, 1999.

[Tou98] J. Touch. TheLSAM ProxyCache- A Multicast
DistributedVirtual Cache.In 3rd WWWCaching
Workshop, June1998.

[VR98] V. Valloppilli andK.W. Ross.CacheArray Rout-
ing Protocol v1.0 (Work in Progress),February
1998. ftp://ftp.isi.edu/internet-drafts/draft-vinod-
carp-v1-02.txt.

[WAS� 96] S. Williams, M. Abrams, C.R. Standbridge,
G. Abdulla, andE.A. Fox. Removal Policiesin
Network Cachesfor World-WideWebDocument.
In Sigcomm, 1996.

[ZKJ01] B. Y. Zhao,J. D. Kubiatowicz, andA. D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant
Wide-areaLocationandRouting. TechnicalRe-
port UCB/CSD-01-1141,U. C. Berkeley, April
2001.

[ZZJ� 01] S.Q.Zhuang,B.Y. Zhao,A.D. Joseph,R.H. Katz,
andJ.Kubiatowicz. Bayeux:An Architecturefor
ScalableandFault-tolerantWide-AreaDataDis-
semination.In NOSSDAV, June2001.

