
+DQGERRN�RI�5HVHDUFK�
RQ�$UFKLWHFWXUDO�7UHQGV�
LQ�6HUYLFH�'ULYHQ�
&RPSXWLQJ

5DMD�5DPDQDWKDQ
,QGHSHQGHQW�5HVHDUFKHU��86$

.LUWDQD�5DMD
,%0��86$

$�YROXPH�LQ�WKH�$GYDQFHV�LQ�6\VWHPV�$QDO\VLV��
6RIWZDUH�(QJLQHHULQJ��DQG�+LJK�3HUIRUPDQFH�
&RPSXWLQJ��$6$6(+3&��%RRN�6HULHV�

��

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

&KDSWHU���
'LVWULEXWHG�DQG�$GDSWLYH�
%XVLQHVV�3URFHVV�([HFXWLRQ�

$�6FDODEOH�DQG�3HUIRUPDQW�
6ROXWLRQ�$UFKLWHFWXUH

$%675$&7

Centralized business process execution engines are not adequate to guarantee smooth process execution
in the presence of multiple, concurrent, long-running process instances exchanging voluminous data.
In the centralized architecture of most BPEL engine solutions, the execution of BPEL processes is per-
formed in a closed runtime environment where process instances are isolated from each other, as well
as from any other potential sources of information. This prevents processes from finding relative data at
runtime to adapt their behavior in a dynamic manner. The goal of this chapter is to present a solution
for the performance improvement of BPEL engines by using a distributed architecture that enables the
scalable execution of service-oriented processes, while also supporting their data-driven adaptation.
The authors propose a decentralized BPEL engine architecture using a hypercube peer-to-peer topol-
ogy with data-driven adaptation capabilities that incorporates Artificial Intelligence (AI) planning and
context-aware computing techniques to support the discovery of process execution paths at deployment
time and improve the overall throughput of the execution infrastructure. The proposed solution is part
of the runtime infrastructure that was developed for the environmental science industry to support the
efficient execution and monitoring of service-oriented environmental science models.

Michael Pantazoglou
National and Kapodistrian University of

Athens, Greece

George Athanasopoulos
National and Kapodistrian University of

Athens, Greece

Aphrodite Tsalgatidou
National and Kapodistrian University of

Athens, Greece

Pigi Kouki
National and Kapodistrian University of

Athens, Greece

DOI: 10.4018/978-1-4666-6178-3.ch003

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

,1752'8&7,21

Alongside high-level business process notation
languages such as BPMN 2.0 (OMG, 2011), Web
Services Business Process Execution Language
(Alves et al., 2007), abbreviated to WS-BPEL or
BPEL, is widely considered to be the de facto
standard for the implementation of executable
service-oriented business processes as composi-
tions of Web services.

In many cases, which have become evident in
various application domains, centralized BPEL
engines are clearly not adequate to guarantee
smooth process execution, and thereby ensure
client satisfaction in the presence of multiple, con-
current, long-running process instances exchang-
ing voluminous data. Indeed, as the numbers of
clients grow, the underlying infrastructure needs
to maintain and handle multiple process instances
while waiting for the external Web services that
are invoked to complete their execution.

In some cases, clustering techniques can be
employed to address the scalability issue, by dis-
patching the execution of each incoming process
request to the BPEL engine residing on the cluster
member with the lowest workload. However, the
deployment and maintenance of clusters consist-
ing of two or more centralized BPEL engines, sets
requirements on the underlying hardware resources
that cannot be always fulfilled by the involved
organizations. Furthermore, clustering could
prove to be an inefficient approach under certain
conditions, as it cannot overcome the emergence
of bottlenecks that are caused by specific activities
of a BPEL process. Moreover, as the execution of
a process instance still takes place in a centralized
manner, issues relating to large volumes of data
are not effectively addressed. In such context,
inevitably, the BPEL engine becomes bloated
with pending requests coming from multiple
concurrent clients. Hence, the overall throughput
of the execution infrastructure is dramatically
deteriorated, while the process execution times
escalate to unacceptable levels.

Aside from the aforementioned scalability is-
sues that derive from the centralized architecture
of most BPEL engine solutions, the execution of
BPEL processes is also performed in a closed
runtime environment. More specifically, process
instances are isolated from each other, as well as
from any other potential sources of information.
This prevents processes from finding and exploit-
ing relative data at runtime, in order to improve
their predefined behavior in a dynamic manner. By
relative data we refer to semantically annotated,
structured data that are semantically associated to
a given process. Instead, it becomes the responsi-
bility of the process designer to manually adapt
the process specification so as to accommodate
emerging data sources. For example, rendering
a weather calculation process able to incorpo-
rate data stemming from a satellite that was not
available during process design-time would deem
process redesign.

In order to address all these challenges, we
propose a decentralized BPEL engine architec-
ture with data-driven adaptation capabilities. Our
engine employs the hypercube peer-to-peer (P2P)
topology along with a set of distributed algorithms
in order to improve the average process execu-
tion times, and the enhancement of the overall
throughput of the execution infrastructure in the
presence of multiple, concurrent, and long-running
process instances.

In addition to the decentralized architecture, the
proposed engine accommodates the provisioning
of adaptable BPEL processes by exploiting infor-
mation available to the process environment along
with existing services. Adaptation in the context
of our approach is about the identification and use
of possible alternatives for the achievement of the
goals and sub-goals defined in a BPEL process;
these include the utilization of available, related
information and/or services (or service chains).

Data-driven adaptation incorporates Artificial
Intelligence (AI) planning and context-aware
computing techniques to support the discovery of
process execution path substitutions at deployment

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

time. When calculating the possible choices, the
goal of our approach is to reduce the number of
steps, i.e., the number of activities defined in the
original process. In the context of our approach
we argue that the reduction of unnecessary process
activities can lead to shorter execution times. In
this way, data-driven adaptation complements the
enhancement of the overall performance of our
decentralized BPEL engine.

The chapter is organized as follows: the
background section provides an overview of the
literature in decentralized BPEL process execu-
tion and data-driven adaptation and includes a
case study that highlights the need for adapta-
tion as well as improving the performance of
service oriented processes. This is followed by a
detailed presentation of the architecture solution
for improving the performance of service-oriented
process executions based on the use of distributed
and adaptable processes, by using an illustrative
example from the environmental science domain.
Finally, future research directions are discussed
and the conclusion is presented.

%$&.*5281'

WS-BPEL 2.0 is a widely known OASIS standard
used for the provisioning of executable busi-
ness processes. Since almost the onset of the
Service-oriented Computing vision, WS-BPEL
has emerged as the prominent approach for the
interoperable specification of intra-corporate and
business-to-business interactions, by providing a
model and a grammar capable of describing the
behavior of a business process in terms of inter-
actions between the process and its partners. As
it is a popular language for the specification of
service-oriented processes, it is briefly presented
and analyzed here.

Technically, WS-BPEL provides a language
for the formal specification and modeling of
both forms of business processes: executable and
abstract business processes. Executable business

processes model actual behavior of a participant in
a business interaction, whereas abstract business
processes use process descriptions to specify the
mutually visible message exchange behavior of
the parties involved in the process. A brief list of
its principal characteristics is the following:

• It is an XML-based language that is based
on XML Schema (Sperberg-McQueen &
Thompson, 2000) for the definition of data
structures and on XPath (Clark & DeRoso,
1999) for retrieval of XML elements (data
manipulation).

• It models a business process as a compo-
sition of elementary Web Services and
depends on the W3C standards WSDL
(Christensen et al., 2001) for the descrip-
tion of the inputs, outputs, and operations
of a Web service.

• WS-BPEL defined business processes are
exposed as Web services (WSs), so they
can be invoked from another business
process.

A WS-BPEL process specification is defined
in terms of the following six main artifacts.

• Partner Link: The interaction with each
partner occurs through Web service inter-
faces. Particularly, a Partner Link encapsu-
lates the structure of the relationship at the
interface level between two partners (e.g.,
a Web Service and a process). A respective
partner link type must be first defined to
specify the required and provided WSDL
port types. As we will see below, while
partner link is the one which provides the
communication channel to remote WSs, the
use of partner link type creates problems.

• Variables: They are used to store both
message data of Web service interactions
and control data of the process.

• Correlation: Correlation sets specify in
which business process instance a returned

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

message from a WS should be retrieved,
and that because long-running business
processes are supported, so there may be
several process instances waiting for the
arrival of a Web service message.

• Basic Activities: They are separated in
activities that communicate with Web ser-
vices (invoke, receive, reply), in activities
that manipulate variables (assign), and in
activities that wait or terminate a process
(wait, exit).

• Structured Activities: They can define
the control flow of basic activities. They
include activities which specify sequential/
parallel execution (sequence/flow), activi-
ties that decide which branch will be ex-
ecuted (if-else), and activity loops (while).

• Handlers: They are provided so as to deal
with unexpected or exceptional situations
and they are available in two forms, event
handlers and fault handlers.

In general, a workflow (or seamlessly a process
model), consists of three dimensions:

1. Process logic, namely “what” is to be done?
2. Organization, namely “who” does it?
3. Infrastructure, namely “which” tools are

used?

In WS-BPEL the “what” dimension is based
on activities and the “which” dimension is based
on Web Services. From the moment that activities
directly refer to WSDL operations in order to call
a Web Service, we infer that “which” and “what”
dimensions are closely related. Indeed this bond
is far from desirable and has been the source of
severe criticism on WS-BPEL.

This strong bond hinders the exploitation of
services, which do not comply with the WSDL
specification. Thus, the flexibility and reusabil-
ity properties of WS-BPEL are largely affected.
The advent of Semantic Web (McGuinness &
Harmelen, 2004) and Semantic Web Services

(SWS) (Steinmetz & Toma, 2008; Martin et al.,
2004) has aggravated this problem. SWS provide
a declarative description of the service functional-
ity, contrary to conventional Web Services where
syntactic descriptions are the prime means for
service interface definition. SWS give the op-
portunity to be discovered by criteria based on
their functionality and not on their signature. This
new opportunity cannot be directly exploited by
WS-BPEL due to its strong bond with WSDL.

Another strong point of criticism to WS-BPEL
is its strict nature, which poses significant barriers
in the provisioning of dynamic process models.
As business models (and process models conse-
quently) mature, the ability to evolve and adapt
to changing conditions is becoming a necessity.
Process models defined in WS-BPEL are unable
to accommodate changes in user requirements and
operational environments due to the inherently
static nature of the WS-BPEL process flow speci-
fication. Thus, a process defined in WS-BPEL
has to be redesigned in cases where additional
services or information have to be integrated. This
inability is a significant barrier to the use of WS-
BPEL in the provisioning of modern context-aware
systems and many approaches have emerged in
order to surpass it.

'LVWULEXWHG�6FLHQWLILF�
:RUNIORZ�6\VWHPV

In the last few years, developments in Scientific
Workflow (SWF) systems have made possible the
efficient and scalable execution of long-running
workflows that comprise large numbers of paral-
lel tasks; and operate on large sets of data. Since
the challenges met by those efforts bear some
resemblance to the motivation behind our work,
we would like to emphasize on their different
scope and technical foundations.

By definition, the majority of SWF solutions
are particularly designed to support the modeling
and execution of in silico simulations and scientific
experiments. Moreover, they are mostly based

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

on proprietary executable languages, which are
tailor-made to the needs of such applications. On
the other hand, by using the BPEL standard as its
underlying basis, our engine has more general
purposes and can be used to support a wider range
of environments and applications. The different
scopes of our proposed engine and the various
SWF systems are also reflected by their pursued
programming models.

Due to their data-flow orientation, most SWF
engines, for instance Taverna (Missier et al., 2010),
follow a functional data-driven model, whereas
BPEL engines, including the one presented in this
chapter, implement an imperative control-driven
model. Hence, the focus of our contribution is
on implementing algorithms that distribute the
control flow of processes, in a way that no central
coordinator is required. On the other hand, since the
control flow is of minor importance to scientific
workflows, SWF systems build on efficient paral-
lelization and pipelining techniques, in order to
improve the processing of large-scale data flows.

For instance, Pegasus (Callaghan et al., 2010)
attains scalability by mainly addressing the large
number of parallel tasks in a single workflow, and
the corresponding voluminous data sets, through
task clustering and in-advance resource provision-
ing. In our work, we are primarily interested in
improving the throughput of the BPEL engine,
defined as the number of incoming process re-
quests being served per minute, and the average
process execution times, in the presence of large
numbers of concurrently running process instances
that are long-running and consume potentially
large data sets.

Most SWF systems, e.g., Kepler (Altintas et
al., 2004), Triana (Taylor et al., 2003), or Pegasus
(Deelman et al., 2005) exhibit a clear separation
of concerns between the design of a workflow and
the execution infrastructure, although much effort
has been spent on supporting Grid settings such as
Globus. In general, however, Grid infrastructures
are heavyweight, complex, and thus difficult to
manage and maintain. In contrast, our BPEL en-

gine is able to seamlessly organize and manage
any set of nodes in a hypercube topology, so as
to engage them in the execution of long-running
and resource-demanding processes.

Still, despite their inherently different scopes,
programming models, and scalability concerns,
SWF systems have effectively dealt with advanced
data management aspects, such as provenance
(Altintas, Barney, & Jaeger-Frank, 2006), or high-
speed data transfer (Allcock et al., 2005). These
features are complementary to our approach and
could be accommodated by our BPEL engine to
further enhance its capabilities and performance.

%3(/�'HFHQWUDOL]DWLRQ

The decomposition and decentralized enactment
of BPEL processes is a valid problem that has
been the subject of many research efforts in the
past years. In this section, we review a number
of related results that have become available in
the literature.

A P2P-based workflow management system
called SwinDeW that enables the decentralized
execution of workflows was proposed by Yan,
Yang, & Raikundalia (2006). According to the
authors, the generic workflow representation
model is compatible with most concrete work-
flow languages including BPEL, although this
compatibility is not demonstrated. In any case,
similar to our presented approach, SwinDeW is
based on the decomposition of a given workflow
into its constituent tasks, and their subsequent as-
signment to the available nodes of a P2P network,
in order to remove the performance bottleneck of
centralized engines.

A main difference between that approach
and the one presented in this chapter lies in their
corresponding worker recruitment algorithms:
SwinDeW makes use of the JXTA (Gong, 2001)
peer discovery mechanism to find nodes with
specific capabilities, and then quantifies their
workload before assigning the given task to the
one with the minimum workload. Since the respec-

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

tive discovery protocol cannot guarantee that all
relevant peers will be found upon a query, it may
become possible that not all available nodes in the
P2P network are equally utilized. In our approach,
the recruitment algorithm relies on the hypercube
topology, the inherent ability to perform efficient
random walks, and the frequency of use of each
node in order to evenly divide the workload and
thereby exploit all available resources.

The NINOS orchestration architecture (Li,
Muthusamy, & Jacobsen, 2010) is based on a
distributed content-based publish/subscribe (pub/
sub hereinafter) infrastructure, which is leveraged
to transform BPEL processes into fine-grained
pub/sub agents. The latter then interact using pub/
sub messages and collaborate in order to execute a
process in a distributed manner. A critical depar-
ture of our work from the NINOS approach lies in
the respective process deployment mechanisms. In
NINOS, a BPEL process is deployed prior to its
execution on a number of agents, which remain the
same for all subsequent executions of the process.
Hence, the infrastructure may underperform in
the presence of multiple concurrent instances of
the same process. In our case, the BPEL process
is decomposed and its constituent activities are
assigned to the available nodes in the P2P network
at runtime, depending on their current workload,
which is inferred by their frequency of use.

In an attempt to improve the throughput of
the BPEL process execution infrastructure in the
presence of multiple concurrent clients, a pro-
gram partitioning technique has been proposed
by Nanda, Chandra, & Sarkar (2004), which
splits a given BPEL process specification into
an equivalent set of processes. The latter are then
executed by different server nodes without the need
of a centralized coordinator. Similar approaches
have also been proposed by Baresi, Maurino, &
Modafferi (2006) as well as by Yildiz & Godart
(2007). Along the same lines, the use of a penalty-
based genetic algorithm to partition a given BPEL
process and thereby allow decentralized execution
was proposed by Ai, Tang, & Fidge (2011).

However, to realize these partitioning tech-
niques, each participating node must host a full-
fledged BPEL engine, which is often heavyweight
and therefore not always affordable by many small
organizations and businesses. In our approach,
there is no such requirement imposed on the nodes
forming the underlying P2P infrastructure, and
thus each node has a relatively small memory
footprint. This way, our distributed BPEL engine
can leverage and be deployed on hardware with
limited capabilities.

A solution to the problem of decentralized
BPEL workflow enactment that is based on the use
of tuplespace technology was reported by Wutke,
Martin, & Leymann (2008). According to that ap-
proach, workflows are defined as BPEL processes,
which are split among all participating partners,
and are implemented directly by the individual
components. The latter are deployed and coordi-
nate themselves using shared tuplespace(s). Like
our approach, the tuplespace technology facilitates
the execution of data-intensive workflows, since it
allows for data distribution and yields a decrease
of messages being passed between the interact-
ing components. Unlike our approach, however,
the overall decomposition requires considerable
preparatory work such as component configura-
tion to be conducted at deployment time, which
could eventually become a scalability bottleneck.

In order to effectively separate the concerns of
regular BPEL engines and various other complex
aspects, including decentralized orchestration,
Jimenez-Peris, Patino Martinez, & Martel-Jordan
(2008) proposed the ZenFlow BPEL engine. Ze-
nFlow employs techniques from reflective and
aspect-oriented programming, and makes use of
specialized meta-objects to describe and plug the
extensions necessary for de-centralized execution
into the centralized BPEL engine. In this work,
however, decentralization is enabled by means
of a cluster of centralized BPEL engines, with
each one being responsible for the execution of
the whole process each time. We follow a fine-
grained decentralization strategy, whereby the

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

BPEL process is decomposed into the constituent
activities, the execution of which is distributed
among the nodes of a P2P network.

The CEKK machine that was presented by Yu
(2007) supports P2P execution of BPEL processes
based on the continuation-passing style. In this
approach, the execution control is formalized
as a continuation, and is passed along from one
processing unit to another without the interfer-
ence of a central coordinating component. In
this distributed execution environment, special
attention is paid to the problem of failure han-
dling and recovery, while a number of extensions
to the BPEL language are introduced. Overall,
this approach focuses on the formalization of a
distributed process execution model and does
not address aspects related to the structure of the
P2P infrastructure, or the distribution of process
activities and variables. Furthermore, it lacks an
evaluation that would allow us to assess its ap-
plicability to the execution of long running and
data-intensive BPEL processes.

Details of the proposed architecture are de-
scribed in the following section.

$'$37,9(�$1'�6&$/$%/(�
352&(66�(;(&87,21�
$5&+,7(&785(

This section first presents a motivation case study
followed by the architecture of the proposed
Adaptive Execution Infrastructure and describes
its main components and functionality.

&DVH�6WXG\

To better illustrate the motivation and need for
improvements on the performance of service-
oriented processes, we hereby present a case
study, which stems from the environmental
domain. More specifically, the presented case
study is related to the estimation of the landslide
probability at a given area in Guadeloupe. The

illustrated process was designed and developed
in the ENVISION (ENVIronmental Services
Infrastructure with Ontologies) project1 and is
part of the decision support system dedicated to
landslide risk assessment.

As it can be seen in Figure 1, the landslide
process orchestrates four OGC2 (Open Geospatial
Consortium) Web Services. First, a digital eleva-
tion model of the specified area is retrieved by
invoking a Web Coverage Service (WCS) (OGC,
2012) through activity Digital Elevation Modeling.

In parallel, a Sensor Observation Service (SOS)
(OGC, 2007a), named Precipitation Service, is
called in order to retrieve the precipitation data
of the user-specified area. This data along with
a set of user input parameters are fed to a Web
Processing Service (WPS) (OGC, 2007b) titled
Hydrological Modeling, which simulates the
main mechanisms of the water cycle by a sys-
tem of reservoir. The produced digital elevation
model and the hydrological model containing the
produced map of groundwater level in that area
are finally passed as input to another WPS called
Landslide Probability Calculation, which performs
static mechanical analysis in order to calculate the
landslide probabilities in the area of study, in the
form of a map of safety factors ranging between
zero and one. That map is finally returned to the
user as the process output.

Even though the presented process model
(Figure 1) is rather simple in terms of control
flow, the complexities of the incorporated opera-
tions, which are implemented by the specified
external services, render it a long-running pro-
cess. Moreover, considering that this is usually
executed repeatedly, its performance becomes
an issue of paramount importance. In addition,
another requirement that is clearly highlighted is
the need to provide several customizations to the
executing process in order to simulate the distinct
conditions of several execution scenarios. For ex-
ample, process clients would like to use historical
measurements of ground water cycles, and digital

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

elevation models calculated from different sensors
or cached measurements.

Therefore, reducing the process execution time
and supporting adaptation would assist decision
makers in selecting and customizing the actions

that should be performed in order to compensate
possible landslide effects. In this frame, contem-
porary languages and mechanisms used for the
specification and offering of service-oriented

Figure 1. The Landslide process model

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

processes cannot accommodate these challenges.
More advanced solutions are clearly needed.

'DWD�'ULYHQ�$GDSWDWLRQ

The prime assumption of the Data-Driven Process
Adaptation approach (DDA) is that a service-ori-
ented process comprising heterogeneous services
should be able to use the information available
within its environment and adapt its execution
accordingly. To facilitate the provisioning of such
adaptable processes, Athanasopoulos & Tsalga-
tidou (2010), proposed an approach that exploits
information contained within a specific “space”
to adapt a service-oriented process.

The space is considered to be the process’s
environment, which is open to other processes
and systems for information exchange. Appropri-
ate algorithms specify adaptation paths for given
processes along with queries that can be executed
in the shared space; these queries search for rel-
evant information, which when found, is fed to a
process execution engine. The execution engine
uses the discovered information for controlling
the execution and adaptation of running process
instances according to the adaptation paths speci-
fied by the provided algorithms.

The proposed solution accommodates the nec-
essary components to address the following three
basic functional needs: collection of contextual
information, execution of heterogeneous service
processes, and process adaptation driven by col-
lected information. Therefore, the accommodating
infrastructure comprises three main components:

• A Semantic Context Space Engine (SCS
Engine) that supports the exchange of con-
textual information.

• A Service Orchestration Engine that exe-
cutes heterogeneous service processes and
uses contextual information to adapt a run-
ning process.

• A Process Optimizer, which generates
Data Driven Adaptable Service-Oriented
Processes (DDA-SoP).

The SCS Engine provides an open space
where one may i) write and retrieve information,
which is annotated with meta-information, and
ii) logically group information of interest, e.g.,
information pertaining to a specific domain,
such as, weather conditions, and specify associa-
tions among groups, which contain information
from related/depending domains, e.g., a weather
conditions group can be associated to a group
with information on the aquatic conditions of a
specific region.

The Service Orchestration Engine provides
a BPEL-based engine executing heterogeneous
service orchestrations, e.g., comprising Web,
Grid, P2P, and OGC services (Doyle et al., 2001).
The orchestration engine supports the monitoring
and reconfiguration of running process instances
according to the suggestions made by the Process
Optimizer.

The Process Optimizer component imple-
ments an AI planner to discover process plans
controlling the execution and adaptation of service
processes upon the emergence of related informa-
tion. Specifically, according to Athanasopoulos &
Tsalgatidou (2010), the problem of Data-Driven
Adaptation can be modeled as a non-deterministic,
partially observable planning problem (Ghallab,
Nau, & Traverso, 2004). Indeed, considering that
services used in a process model act as black boxes,
whose outcome can vary e.g., both normal and
abnormal outcomes in case of system failures, the
behavior of the process cannot be deterministically
identified at each time. In this frame, solutions
are modeled as conditional plans, which contain
branching control structures, i.e., if-then-else, that
decide on the execution path that will be followed
based on the values of specified conditions.

A crucial step in the provisioning of data-
driven adaptable service-oriented processes is the
introduction of extensions to the planning problem

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

representation. This step can be regarded as the
incorporation of additional “sensors” for monitor-
ing the process, along with appropriate actions
for handling the accruing “observations”. More
specifically, this extension process comprises the
following:

• The semantic-based extension of
observations.

• The extension of the action set with actions
capable of supporting the exploitation of
the introduced observations.

• The consolidation of the extended action
and observation sets.

The execution of the aforementioned expan-
sion actions vies to support the introduction of
appropriate adaptation steps that would enable
the execution of alternate process paths upon the
discovery of related information. In the context of
the DDA approach, adaptation steps are selected
points in a process model where the existence or
absence of appropriate information, i.e., observa-
tions, could be exploited for deciding whether an
alternate service or service chain could be used.
Adaptation steps are introduced so as to reduce
the set of actions that have to be executed for
achieving the process goal.

6ROXWLRQ�$UFKLWHFWXUH

Overall, the solution is characterized by the fol-
lowing features.

• Fully Decentralized, P2P-Based BPEL
Engine Architecture: BPEL processes
are deployed, executed, and monitored by a
set of nodes organized in a hypercube P2P
topology. Each node does not fully take
charge of executing the whole process;
rather, it contributes by running a subset
of the process activities, and maintaining
a sub-set of the generated process data.
Thus the BPEL execution engine is fully

operational without the need of any central
controller components.

• Fine-Grained Distribution of Process
Activities: Decentralization of process ex-
ecution fits to the nature of long-running
business-to-business interactions, and sig-
nificantly improves the performance and
throughput of the execution infrastructure.
BPEL processes are fully de- composed
into their constituent activities. Large-
scale parallelization is feasible as the vari-
ous activities designated to run in parallel
can be synchronized and executed by dif-
ferent nodes.

• Proximity-Based Distribution of Process
Variables: Since in many application do-
mains processes consume and produce
large volumes of data, it is important that
those data are distributed in order to avoid
resource exhaustion situations. Our algo-
rithms make sure that the data produced
by a BPEL process will be distributed
across the nodes involved in its execution.
Moreover, they will stay close to the pro-
cess activities that produce them, thereby
avoiding the unnecessary transfer of poten-
tially large volumes of data between nodes
as much as possible.

• Asynchronous Interaction with the
Client: Even if a BPEL process is syn-
chronous, following the request-response
communication pattern, the interaction
between the client and the distributed ex-
ecution engine occurs in an asynchronous,
non-blocking manner. This way, the execu-
tion engine is able to serve multiple long-
running process instances without the need
to maintain open connections to the re-
spective clients over long periods of time.
Furthermore, while waiting for a long-run-
ning process instance to complete, clients
are given the monitoring mechanisms to
retrieve intermediate results, without in-

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

tervening or inflicting additional delays on
the process execution.

• Efficient Use of the Available Resources
and Balanced Workload Distribution:
The proposed algorithms ensure that all
nodes available in the P2P infrastructure
will contribute to the execution of BPEL
processes. The frequency of use of each
node is taken into account upon load bal-
ancing, while efficient routing techniques
are employed in order to achieve an even
distribution of the workload at any given
time and thereby avoiding the emergence
of performance bottlenecks.

• Reuse of Available Data and Services for
Process Adaptation: The provided BPEL
processes are expanded at deployment
time with alternative execution paths and
extension points. The latter are evaluated
at runtime, so as to accommodate process
adaptation based on the exploitation of
available information elements, which are
external to the process execution context.

• Exchange of Semantically Annotated
Information with External Sources:
BPEL process instances are able to ex-
change information with external sources
as long as the provided information is an-
notated with appropriate semantics. The
infrastructure complies with a Linda-based
architectural model; hence, it permits the
interaction of BPEL processes with any
type of external information source. This
mechanism is extendable with regards to
the metadata primitives used for the an-
notation of information elements and sup-
ports their logical organization into groups.

• Calculation of Process Adaptation Paths
at Pre-Execution Time: Calculation of
possible process adaptation paths involves
the execution of time consuming compu-
tations and interactions with external sys-
tems, e.g., service registries. To avoid the
overhead that would be introduced to the

process execution by an on-the-fly adap-
tation approach, we perform all required
computations at process deployment time.

All the aforementioned features are supported
by the engine in a transparent fashion. Thus, no
additional overhead is imposed on the BPEL
process designer, the process clients, and the
administrator of the execution infrastructure.
Figure 2 illustrates a high-level architectural view
of the Adaptive Execution Infrastructure. As it
can be seen, it comprises of a set of three main
components, namely the Deployment Service, the
Semantic Context Space (SCS) Engine, and the
Service Orchestration Engine. The infrastructure
also provides a set of interfaces, namely the De-
ployment Interface, the Data Acquisition Interface,
and the Execution Interface. These components
and interfaces enable the deployment and adaptive
execution of BPEL processes in a distributed and
scalable manner.

Let us briefly describe how the above men-
tioned components cooperate with each other dur-
ing the deployment and execution of an environ-
mental science model that has been implemented
as a BPEL process.

'HSOR\PHQW�6HUYLFH

The Deployment Service is the entry point to the
Adaptive Execution Infrastructure. It supports
the deployment of WS-BPEL processes (e.g.,
environmental science models), as well as the
un-deployment of the models that were previ-
ously deployed but are no longer used, or they
need to be substituted. In a typical usage scenario,
this component accepts a bundle from the client,
which contains the BPEL process file and all its
accompanying artifacts i.e., the WSDL (Chris-
tensen, Curbera, Meredith, & Weerawarana, 2001)
documents of the constituent services, the external
XSD (Sperberg-McQueen & Thompson, 2000)
files, and any required XSLT (Clark, 1999) files.

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

The contents of the submitted bundle are
processed by the Process Optimizer, which is an
internal component of the Deployment Service
and is further described in the remainder of this
paragraph. The outcome of this processing is an
expanded BPEL process definition that is dis-
patched to the Service Orchestration Engine. In
turn, the latter binds the deployed BPEL process to
a unique Web service endpoint address. Hence, in
compliance with standards and common practices,
all BPEL processes that are deployed to the Adap-
tive Execution Infrastructure can be conveniently
invoked as standard SOAP Web services.

The Process Optimizer performs all necessary
work to expand and render the originally submitted
BPEL process adaptive. Its main objectives are
to (i) expand the provided BPEL processes with
extension points that are evaluated at runtime, and
(ii) accommodate process adaptation based on the
exploitation of available information elements,
which are external to the process execution context.

These objectives are met by the Process Op-
timizer by specifying (i) the set of information
elements which are relevant to a given process
model, and should be pushed by the SCS Engine
to the model instances upon execution, and (ii) the

adaptation steps (equivalently referred to as plans)
that should be performed upon the discovery of
such information at runtime.

Taking a closer look into the operational se-
mantics of the Process Optimizer, there are four
distinct phases in the generation of the extended
process model (see Figure 3). These distinct steps
support:

• The transformation of the provided input
(i.e., the bundle fed to the Deployment
Service) into an internal finite state ma-
chine model representation (referred to
as State Transition System model, or STS
model, hereinafter).

• The expansion of the generated STS model
with the inclusion of observations and ad-
ditional actions (i.e., service operations).

• The generation of Planning Domain
Definition Language (PDDL)-based repre-
sentations for the extended planning prob-
lem domain and goal descriptions which
are fed to an external Artificial Intelligence
(AI) planner.

• The extraction of the extended WS-BPEL
specification out of the planner outcomes.

Figure 2. High-level architecture of the Adaptive Execution Infrastructure

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

The above steps are implemented by the
internal components of the Process Optimizer,
which are shown in Figure 4. More specifically,
the Input Translator is responsible for manag-
ing the transformation of the provided input to a
finite state machine model (STS model), whilst
its comprising sub-components, namely the Ob-
servation & Service Expansion Engine and the
Planner Input Producer, are responsible for the
expansion of the generated STS model, and the
planning problem domain and goal descriptions,
respectively.

The planning problem domain and goal de-
scriptions provide an abstract representation of the
set of available activities (along with complemen-
tary descriptions of variables, constants, states,
transitions, etc.) and of the expected initial and
final states of the requested controlling automa-
ton (i.e., the STS representation of the extended
process). We need to state here that final states
(or goal states) of a process model can be easily
identified as these correspond to the resulting
states of the normal or abnormal, i.e., exceptional,
process ends; these are also semantically annotated
as they correspond to the exposed process service
outcomes, which are described in the ushering
semantic description. This abstract representation
is described in terms of Non-deterministic Plan-
ning Domain Definition Language (NuPDDL)
(Bertoli et al., 2003) constructs. The Planner
Proxy component provides a wrapper service to
the employed planner, and the Output Provider
facilitates the extraction of the extended BPEL
descriptions based on the outcome of the planner.

The execution flow along with the artifacts
exchanged between the components of the Process

Optimizer and the external components are pre-
sented in Figure 5. As it can be seen, the provided
process specification (i.e., the BPEL file) and the
associated service descriptions (i.e., the WSDL
documents) are all fed to the Input Translator.
The Input Translator generates the corresponding
STS model representations using, in addition to
the provided BPEL and WSDL descriptions, the
semantic descriptions of all related services i.e.,
WSMO-Lite specifications (Vitvar et al., 2008).

All these artifacts are then pushed to the Ob-
servation & Service Expansion Engine, which
defines an initial set of observations on the given
process model and then expands it based on the
use of appropriate semantic similarity measures.
The Observation & Service Expansion Engine is
then able to identify additional services, which are
also transformed to STS representations. All the
STS representations are combined by the Planner
Input Producer and jointly constitute the planning
problem domain. The planning problem goals are
extracted from the originally specified process
model using a backward searching approach that
is able to identify expected final states from a
given BPEL description.

The backward searching feature is particularly
important in cases where the final process outcome
is a combination of simpler internal outcomes.
Starting from the process final states, the algo-
rithm is able to extract the conditions standing at
the process end even if the final process outcomes
are combinations of outcomes calculated in
previous steps. The generated planning problem
descriptions are submitted to the Planner Proxy
component, which pushes them to the planner. At
the end, the generated planning problem solution

Figure 3. Phases of BPEL process expansion

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

is retrieved from the Outcome Provider, which
uses it for extracting the expanded BPEL process.

To better exemplify the expansion process
employed by the Process Optimizer, let us con-
sider the BPEL process of Figure 1 represented in
detail in Figure 6. Overall, the process consists of
activities which are represented in the diagram as
rounded boxes, and variables, which are shown as
cornered boxes. The control flow of the process is
indicated by normal arrows connecting the vari-
ous activities, while the dashed arrows pointing
from the variables to the activities and vice versa
display its data flow. The various assign activi-
ties in the process are used to copy data from one
variable to another; the invoke activities allow the
process to interact with external Web services; the
receive and reply activities are used by the process
in order to retrieve the user input and send the
final output, respectively. Finally, the structured
sequence and flow activities dictate the order in
which their included activities will be executed.

The expansion of the landslide process starts
with the transformation into the corresponding
STS representation. A simplified illustration of
the generated STS model for the nominal process
flow (i.e., without any consideration of potential
exceptions) is presented in Figure 7. A set of
original observations are identified and associ-
ated to the end states of service invocations; these
include invocations of external services that are
not part of a loop construct in the process model.

Each of the identified observations is linked
to a specific ontology concept. For example, the
observation used for monitoring the outcome
of the SOS service returning the precipitation
of a given area (activity Invoke2 in Figure 6),
is linked to the geoevents:#precipitation ontol-
ogy concept. Given an expansion ratio of 0.80
value, the Observation and Service Expansion
Engine proposes a set of candidate observations,
which consists of {geoevents:#precipitation,
geoevents:#flow}. This set of candidate observa-

Figure 4. Overview of the internal architecture of the Process Optimizer

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

tion concepts provides the input required for the
discovery of alternate service chains. Starting
from the geoevents:#flow concept and using a
forward search strategy, the Observation and
Service Expansion Engine identifies a candidate
service chain that returns the hydrological model.
This chain comprises a single WPS service named
“Water Flow Level Estimation” that accepts water
flow measurements and calculates an estimate of
the hydrological model.

Assuming that the input required by this ser-
vice chain, i.e., the properties monitored by the
proposed candidate observation, are available to
the landslide process prior to the execution of the
SOS precipitation service, then this chain can be
used as an optimization to the set of activities
specified in Sequence3. Along the same lines,
similar suggestions can be identified for the rest
of the process activities, i.e., in case there are
services that can exploit the related candidate
observations.

The STS models of the identified candidate
service chains and the STS model of the original

landslide process are combined in order to formu-
late the planning problem domain. The extraction
of the planning problem goals can be achieved
through the discovery of the expected goal states
of the landslide process model using the backward
search algorithm that has been mentioned before.
According to Figure 7, the (nominal) goal state
is achieved when the landslide process response
is assembled out of the SafetyFactorsMapOutput,
which is returned from Invoke4 activity. Both the
domain and goal planning problem descriptions
are sent to the planner for the calculation of the
planning problem solution.

The solution proposed by the planner is gen-
erated by the Output Provider and is graphically
illustrated in Figure 8. To avoid unnecessary
clutter, our example focuses on the extensions
introduced to the Sequence3 activities, but simi-
lar extensions can be provided to the whole list
of process activities. As it can be seen in Figure
8, the provided extensions (marked with a gray
background) include in addition to the original
two alternative paths, i.e., these additional paths

Figure 5. Process Optimizer execution flow

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

correspond to the activity sequences occurring
when floodObs condition is true and the sequence
occurring when PrecipitationObs condition is

false. These paths enable the exploitation of flow-
and/or precipitation-related information, which

Figure 6. The Landslide BPEL process

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

may become available on the SCS Engine, for the
adaptation of the landslide process.

For example, in the case of flow related
information emerging at the SCS Engine prior
to the execution of Invoke2 activity (i.e., the
[floodObs==true] condition is valid), the Service
Orchestration Engine will invoke Invoke6 activity.
Considering that the alternative path includes a
smaller set of activities, it is probable that this
leads to smaller execution times. Similarly, the

emergence of precipitation-related information
to the SCS Engine prior to the execution of the
Invoke2 activity can save execution time, as the
invocation of the corresponding SOS will be
skipped.

6HPDQWLF�&RQWH[W�6SDFH�(QJLQH

The Semantic Context Space (SCS) Engine fa-
cilitates the provisioning of adaptable processes

Figure 7. The Landslide Process STS model

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

by offering an open mechanism for the collection
and sharing of external information elements. In-
formation elements refer to structured, annotated
data, i.e., semantically and/or spatio-temporally,
and contained within a specific space. The pro-
vided mechanism is independent of the metadata
primitives used for the annotation of information
elements and supports their logical organization
into groups, similarly called scopes. The SCS
Engine provides its clients with a basic set of
operations, which include writing, grouping, and
retrieving of information elements. Specifically
the core features of the SCS Engine are:

• The acquisition of semantically and spa-
tio-temporally enhanced information el-
ements. The need for the semantic an-
notations leads to the support of WSML
(Steinmetz & Toma, 2008) and RDFS
(Brickley, Guha, & Botts 2004) meta-in-
formation models along with associated
meta-information search engines.

• The support for the logical grouping of
information, the so-called “information
islands” (e.g., information pertaining to
weather conditions), as well as the speci-
fication of associations among those infor-
mation scopes.

• The provision of a loosely coupled coor-
dination model, and more particularly, a
subscribe-notify model, which ensures the
decoupling between the client and the SCS
Engine.

Each information entity stored in the SCS En-
gine abides by a specific form, which is illustrated
in Figure 9. In particular, the main attributes of
an information entity are: a unique identifier Id of
each information element, a Lease that represents
a fixed period of time in which the information
element is considered to be valid, and a set of
MetaInformation objects, which are responsible
for holding the attributed meta-information prop-
erties. Instances of the Scope class are used for

maintaining details about the logical groups that
an information entity pertains to.

The MetaInformation class is further refined
via the RDFSMetaInformation and WSMLMe-
taInformation classes that hold semantic exten-
sions described in RDFS and WSML notations
respectively, as well as the SpatialFeature and
TemporalFeature classes which store spatial
and temporal characteristics about the inserted
information accordingly. The implementation
can be easily extended so as to offer other types
of MetaInformation if needed.

The acquisition mechanism is independent of
the metadata primitives used for the annotation
of information elements, and supports their logi-
cal organization into groups, also referred to as
scopes. The SCS Engine provides its connected
clients, i.e., external data sources, with a basic
set of operations, which support the efficient
writing, grouping, and retrieving of information
elements. The latter can be enhanced with the ad-
dition of semantic, spatial, and temporal metadata
annotations.

Let us exemplify the role of the SCS Engine
in the execution of the expanded Landslide BPEL
process of Figure 8. For the sake of our example,
we assume that a sensor is available and plays the
role of an external source. We also assume that we
have available an application that wraps the sensor.
This application is directly connected to the RMI
interface provided by the SCS Engine and can
execute the provided operations. It is also aware
of the landslide ontology. To keep the example
simple, we decided to omit using spatiotemporal
annotations, so we assume that the sensor is located
in the same area that the SOS refers to.

Figure 10 graphically illustrates the described
example showing SCS Engine’s interaction with a
sensor playing the role of an external source and
the Service Orchestration Engine respectively. The
sensor periodically gathers the precipitation value
of the area and writes this value along with its
meta-information in the SCS. In detail, the sensor

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

performs a write operation with input of type: <
valueOf Precipitation, geoevents:#precipitation >.

Taking into account Figure 8, let us suppose
that the process starts executing Sequence3. In
the evaluation of the If2 condition, the Service

Figure 8. Expanded version of the Landslide BPEL process

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

Orchestration Engine needs the value of the
precipitation. The Service Orchestration Engine
will first search in the SCS Engine for the pre-
cipitation value. As the Service Orchestration
Engine is integrated with the SCS Engine, this
is translated into a simple read call in the SCS
for values which are annotated with the meta-
information geoevents:#precipitation. If the read
operation returns a value for the given query,
then the Assign2 and Invoke2 operations will not
be executed, as the Precipitation data is already
available through the result of that operation. This
way, we save time by omitting the execution of
the SOS (Invoke2).

6HUYLFH�2UFKHVWUDWLRQ�(QJLQH

The Service Orchestration Engine is the main
component of the ENVISION Adaptive Execu-
tion Infrastructure, and is responsible for the de-
centralized execution of environmental science
models that are implemented and deployed as
BPEL processes. Central to its architecture is
the underlying P2P infrastructure, dubbed P2P
Engine hereinafter, which implements a binary
hypercube topology to organize an arbitrary
number of available nodes. Each node hosts an
instance of the Service Orchestration Engine and
cooperates with the rest of the available nodes
in the hypercube for the distributed deployment,
execution, and monitoring of BPEL processes.

Figure 11 illustrates a complete three-dimen-
sional binary hypercube topology. The number on

each edge denotes the dimension in which the two
connected nodes are neighbors, while each node
is identified by its position, which is conveniently
given in Gray code. In general, a complete binary
hypercube consists of N = 2d nodes, where, d is
the number of dimensions equaling to the number
of neighbors each node has. Hence the network
diameter, i.e., the smallest number of hops con-
necting two most distant nodes in the topology
is D = log2 N.

Hypercubes have been widely used in P2P
computing (Schlosser, Sintek, Decker, & Nejdl,
2002; Ren, Wang, & Liu, 2006; Anceaume et
al., 2008), and are particularly known for a set
of attributes, which are also fundamental for the
applicability of our approach:

• Network Symmetry: All nodes in a hyper-
cube topology are equivalent. No node in-
corporates a more prominent position than
the others, while any node is inherently al-
lowed to issue a broadcast. Consequently,
in our case, any node can become the entry
point for the deployment and execution of
a process.

• Efficient Broadcasting: It is guaranteed
that, upon a broadcast, a total of exactly
N - 1 messages are required to reach all
N nodes in the hypercube network, with
the last ones being reached after ∆ steps,
regardless of the broadcasting source.
Since broadcasts are extensively used
in our approach for the deployment and

Figure 9. Information model of the SCS Engine

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

un-deployment of BPEL processes, this
property proves to be critical in terms of
performance.

• Cost-Effectiveness: The topology exhibits
O (log2 N) complexity with respect to the
messages that have to be sent, for a node
to join or leave the network. Hence, the
execution of the respective join and leave
protocols does not inflict the overall per-
formance of the distributed BPEL engine.

• Churn Resilience: It is always possible
for the hypercube topology to recover from

sudden node losses. This makes possible
the deployment of the distributed BPEL
engine in less controlled WAN environ-
ments, if needed, where churn rates are
naturally higher than the ones met in cen-
trally administered LANs.

Each node participating in the P2P Engine is
capable of executing one or more individual BPEL
activities as part of one or more process instance
executions, while also maintaining one or more
of the instance data variables. Thus, one or more

Figure 10. Interaction of the SCS Engine with an external source and the Service Orchestration Engine

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

nodes are recruited to contribute in the execution
of a given process instance, and coordinate with
each other in a completely decentralized manner
that is exclusively driven by the structure of the
corresponding process.

The main internal components of a node par-
ticipating in the P2P Engine are shown in Figure
12. The P2P Connection Listener acts as the entry
point of each node accepting incoming requests
from other nodes in the hypercube. Each request
is bound to a new P2P connection, which is then
passed to a P2P Connection Handler for further
processing. Since the latter runs in a separate
thread, it is possible for a node to simultaneously
serve more than one incoming request.

Depending on its type, a request is always
associated with a particular P2P service, which
the P2P Connection Handler selects, instantiates,
and executes. P2P services fall into two distinct
categories:

1. Hypercube Services: Used by the node to
perform the various tasks needed for the
maintenance of the hypercube topology.
Such tasks implement the join and leave
algorithms of the hypercube protocol, as well
as additional functionality such as broadcast-
ing, random walks, heartbeat, etc., which is
essential for the network.

Figure 11. A three-dimensional hypercube topology

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

2. BPEL Services: Encapsulate all function-
ality necessary for the distributed deploy-
ment, execution, and monitoring of BPEL
processes by the nodes of the P2P Engine.
Such services provide for the execution of
individual BPEL activities (by employing
the appropriate BPEL activity executors), the
read/write of process variables, the response
to notifications such as the completion of an
activity or the completion of a process, etc.

P2P services may follow a simple one-way
communication, or otherwise implement the
request-response pattern, in which case the cor-
responding P2P Connection Handler is used to
send back the response message. The execution
of most supported P2P services includes the
invocation of one or more P2P services on other
nodes within the hypercube. This is typical, for
instance, in the hypercube service implementing
the broadcast scheme, or the BPEL service that
is used to execute a particular activity.

To support such situations, each node is
equipped with a P2P Service Client, which is
responsible for establishing a P2P connection with
a specified node and consequently submitting the
prepared service request. Finally, the majority of
the supported P2P services make use of a local

database that is embedded within the node. The
database holds all information that is needed by
a node to participate in the hypercube topology,
and also maintains the various tuples, which are
generated upon deployment and execution of a
BPEL process.

For a BPEL process to be deployed to the
Service Orchestration Engine, a request contain-
ing a bundle with all necessary files needs to be
submitted to one of the available nodes in the
hypercube. In particular, this bundle contains the
BPEL process specification, the WSDL interface,
the WSDL files of all external services, as well
as any potentially required XML schemas and/
or XSLT transformation files. Upon receipt of
the deploy request, the node first performs a
syntactic validation of the included files, and
then decomposes the process into its constituent
activities and variables. The goal is to generate
a convenient process representation that will
facilitate its decentralized execution. The BPEL
decomposition mechanism relies on the use of
Program Dependence Graphs (PDGs) for rep-
resenting the control, data, and synchronization
dependencies of the process activities. From a
well-formed PDG, it is then easy to decompose
the original BPEL process (i.e., to identify the

Figure 12. Internal architecture and main components of the P2P Engine node

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

individual process activities and variables) by
simply traversing the graph structure.

Before starting out the execution of the process,
a distributed recruitment algorithm is carried out
(Pantazoglou, Pogkas, & Tsalgatidou, 2013). In
a nutshell, the algorithm exploits the hypercube
structure to visit the least recently used nodes
and appoint them responsible for the constituent
activities of the BPEL process. At the same time,
the algorithm ensures that the node responsible
for the execution of a given activity will be also
responsible for holding any output data produced
by that activity. In this way, the transfer of volu-
minous data in between nodes is minimized to
the maximum possible extent.

Let us illustrate how the node recruitment al-
gorithm works in the case of the landslide BPEL
process of Figure 6. For the sake of simplicity in
our example, we assume that the Service Orches-
tration Engine has just started and comprises a
hypercube of eight nodes (3-cube). Figure 13, read
from left to right and top to bottom, demonstrates
the sequence in which the hypercube nodes are
visited upon receipt of an execution request by
node 000, while Table 1 shows the recruitment
results, i.e., the distribution of the BPEL activi-
ties and variables to the hypercube nodes. As it
can be seen, the recruitment algorithm managed
to engage all available nodes while taking into
account their frequency of use upon distribution
of the workload.

Let us now describe how the structured activ-
ity Sequence2 of the landslide BPEL process will
be executed based on the results of the recruit-
ment procedure shown in Table 1. In principle,
a sequence activity within a BPEL process is
responsible for sequentially executing all its child
activities. In our example, node 010, which is
responsible for the execution of Sequence2, sends
an ExecuteActivity request to node 011, and waits
until it receives back an ActivityCompleted notifi-
cation. Node 011 is responsible for the execution
of activity Assign1, which is the first child activity
of Sequence2.

Since the activity Assign1 is synchronized
with activity Assign2 through a BPEL link (see
arrow in Figure 6), node 011 will wait until an
ActivityCompleted notification is sent from node
001. Then, it sends a ReadVariable request to
node 000, in order to retrieve the value of the
LandslideInput variable. After that, the node pro-
ceeds with the execution of the copy statements
within the assign activity, and locally writes the
produced outcome to the DEMInput variable. At
this point, the Assign1 activity has completed and
node 011 sends an ActivityCompleted notifica-
tion to node 010, which is in charge of the parent
activity, Sequence2.

Node 010 resumes the execution of Sequence2,
which dictates that the Invoke1 activity is executed
next. To do so, an ExecuteActivity request is sent
to node 111, which is responsible for that activity.
Before performing the actual invocation of the
Digital Elevation Model WCS, node 111 retrieves
the required input by reading the DEMInput vari-
able from node 011. After invocation, the service
output is locally written to variable DEM, and
an ActivityCompleted notification is sent back to
node 010, allowing it to complete the execution
of activity Sequence2, and send the appropriate
notification to node 110, which is in charge of the
execution of the parent Flow activity.

A number of experiments detailed in a previous
publication (Pantazoglou, Pogkas, & Tsalgatidou,
2013) attest that the described distributed way of
BPEL process execution outperforms centralized
and clustered approaches in the case of BPEL
processes that are long-running, involve the
exchange of voluminous data with external Web
services, and are concurrently accessed by large
numbers of users.

)8785(�5(6($5&+�',5(&7,216

The results of this work could be extended and/or
improved in numerous ways. The implementation
of a WPS interface on top of the Adaptive Execu-

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

tion Infrastructure will render it more aligned to
the ongoing developments in the environmental
science domain. Support for data provenance,
as well as the provisioning of efficient big-data
transferring mechanisms would further enhance
our results and help transforming the Adaptive Ex-
ecution Infrastructure from a functional prototype
into a full-fledged solution for the environmental
science domain and beyond.

Finally, we are interested in extending the
hypercube-based architecture to support Cloud-
based deployment of the Service Orchestration
Engine. We anticipate that by moving the Adaptive
Execution Infrastructure to the Cloud, we will be
able to exploit elasticity capabilities for dynami-
cally increasing or decreasing the hypercube di-
mension. This way, the execution engine will

Figure 13. Recruitment of workers for the execution of the landslide BPEL process

Table 1. Recruitment procedure results

Hypercube Node Assigned Activities Assigned Variables
000 Receive, Reply, Invoke2 LandslideInput, Precipitation
100 Sequence1, Assign3 HydroModelInput
110 Flow, Invoke3 HydrologicalModel
010 Sequence2, Assign4 SafetyFactorsMapInput
011 Assign1, Invoke4 DEMInput, SafetyFactorsMapOutput
111 Invoke1, Assign5 DEM, LandslideOutput
101 Sequence3 -
001 Assign2 PrecipitationInput

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

be able to more effectively respond to workload
changes in a timely manner.

&21&/86,21

The presented Adaptive Execution Infrastructure
revolves around the implementation of the follow-
ing two innovative features:

• Data-Driven Adaptation: Running in-
stances of the deployed BPEL processes
are aware of information, which may come
from external sources (i.e., third-party en-
tities that were not anticipated at design-
time). Moreover, they can leverage such
data in order to alter their execution, and
thereby enhance the performance of the
execution infrastructure. Typical scenar-
ios of data-driven adaptation include the
cross-instance data re-use and sharing,
the invocation of alternative services, the
skipping of time-consuming activities, etc.
Our Adaptive Execution Infrastructure is
equipped with the mechanisms necessary
to support adaptation by exploiting seman-
tic and spatiotemporal annotations on the
available data.

• Decentralized Execution: A distributed
architecture based on the hypercube P2P
topology along with a set of algorithms
that enable the decentralized execution of
BPEL processes has been implemented.
Our approach targets the improvement of
the average process execution times and
the enhancement of the overall throughput
of the execution infrastructure, in the pres-
ence of multiple long-running process in-
stances that involve the exchange of large
data. Such cases are typical in many appli-
cations, as well as in the environmental sci-
ence domain, where we validated our ap-
proach. The presented algorithms support
the decomposition of a given BPEL pro-

cess and the subsequent assignment of the
constituent activities and data variables to
the available hypercube nodes. Execution
is then performed in a completely decen-
tralized manner without the existence of a
central coordinator.

From our experience with the BPEL processes
that were developed in the context of the ENVI-
SION pilots, those features are deemed important
to ensure a smooth, scalable and efficient execution
environment without requiring the involvement
of the end-user. The qualitative evaluation of our
Service Orchestration Engine on the basis of the
landslide ENVISION pilot demonstrated the ben-
efits accruing from our approach to decentralized
execution with the use of hypercubes.

Besides, by applying the data-driven adaptation
to the same pilot, we verified that such approach
holds a potential for future use by many applica-
tions in the environmental science domain, as
it contributes to the improvement of execution
times. Moreover, by leveraging external infor-
mation and data that can be easily inserted to the
system, this feature allows for smart alteration
of a model at runtime, without any additional
workload imposed on the model’s designer or
end-user. Indeed, as it was found out through the
comparison of our overall approach to a number
of renowned solutions for scientific workflow
enactment, the Adaptive Execution Infrastructure
is currently the only solution encompassing all
the aforementioned features, in response to the
requirements set by the project.

5()(5(1&(6

Ai, L., Tang, M., & Fidge, C. (2011). Partitioning
composite web services for decentralized execu-
tion using a genetic algorithm. Future Generation
Computer Systems, 27(2), 157–172. doi:10.1016/j.
future.2010.08.003

http://dx.doi.org/10.1016/j.future.2010.08.003
http://dx.doi.org/10.1016/j.future.2010.08.003

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

AllcockW.BresnahanJ.KettimuthuR.LinkM.
DumitrescuC.RaicuI.FosterI. (2005). The Glo-
bus striped GridFTP framework and server. In
Proceedings of the ACM/IEEE Conference on
Supercomputing. Washington, DC: ACM/IEEE.
10.1109/SC.2005.72

AltintasI.BarneyO.Jaeger-FrankE. (2006). Prov-
enance collection support in the Kepler scientific
workflow system. In Proceedings of the 2006
International Conference on Provenance and
Annotation of Data. Berlin: Springer-Verlag.
10.1007/11890850_14

Altintas, I., Berkley, C., Jaeger, E., Jones, M.,
Ludäscher, B., & Mock, S. (2004). Kepler: An
extensible system for design and execution of
scientific workflows. In Proceedings of SS-
DBM, (pp. 423–424). IEEE Computer Society.
doi:10.1109/SSDM.2004.131124110.1109/
SSDM.2004.1311241

Anceaume, E., Ludinard, R., Ravoaja, A., &
Brasileiro, F. V. (2008). Peercube: A hypercube-
based p2p overlay robust against collusion and
churn. In S. A. Brueckner, P. Robertson, & U.
Bellur (Eds.), Proceedings of the Second IEEE
International Conference on Self-Adaptive and
Self- Organizing Systems (pp. 15-24). IEEE
Computer Society.

AthanasopoulosG.TsalgatidouA. (2010). An
Approach to Data-Driven Adaptable Service
Processes. In Proceedings of the 5th International
Conference on Software and Data Technologies.
Athens, Greece: Academic Press.

Baresi, L., Maurino, A., & Modafferi, S. (2006).
Towards distributed BPEL orchestrations. Elec-
tronic Communications of the EASST, 3.

BertoliP.CimattiA.Dal LagoU.PistoreM. (2003).
Extending PDDL to non-determinism, limited
sensing and iterative conditional plans. In Pro-
ceedings of ICAPS Workshop on PDDL. Trento,
Italy: ICAPS.

Brickley, D., Guha, R. V., & Botts, M. (2004).
RDF Vocabulary Description Language 1.0 RDF
Schema, W3C Recommendation. Retrieved from
http://www.w3.org/TR/rdf-schema/

Callaghan, S., Deelman, E., Gunter, D., Juve, G.,
Maechling, P., & Brooks, C. et al. (2010). Scal-
ing up workflow-based applications. Journal of
Computer and System Sciences, 76(6), 428–446.
doi:10.1016/j.jcss.2009.11.005

Christensen, E., Curbera, F., Meredith, G., &
Weerawarana, S. (2001). Web Service Descrip-
tion Language (WSDL) 1.1. World Wide Web
Consortium (W3C). Retrieved June 17, 2013,
from http://www.w3.org/TR/wsdl

Clark, J. (Ed.). (1999). XSL Transformations
(XSLT) Version 1.0. World Wide Web Consortium
(W3C). Retrieved June 17, 2013, from http://www.
w3.org/tr/xslt

Clark, J., & DeRoso, S. (Eds.). (1999). XML Path
Language (XPath) Version 1.0. World Wide Web
Consortium (W3C). Retrieved June 17, 2013, from
http://www.w3.org/tr/xpath

Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y.,
& Kesselman, C. et al. (2005). Pegasus: A frame-
work for mapping complex scientific workflows
onto distributed systems. Scientific Programming
Journal, 13(3), 219–237.

Doyle, A., Reed, C., Harrison, J., & Reich-
ardt, M. (2001). Introduction to OGC Web
Services (White Paper). Retrieved from http://
portal.opengeospatial.org/files/?artifact_
id=6209&version=1&format=htm

Ghallab, M., Nau, D., & Traverso, P. (2004).
Automated Planning: Theory & Practice. San
Francisco, CA: Morgan Kaufmann Publishers.

Gong, L. (2001). JXTA: A Network Programming
Environment. IEEE Internet Computing, 5(3),
88–95. doi:10.1109/4236.935182

http://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1016/j.jcss.2009.11.005
http://www.w3.org/TR/wsdl
http://www.w3.org/tr/xslt
http://www.w3.org/tr/xslt
http://www.w3.org/tr/xpath
http://portal.opengeospatial.org/files/?artifact_id=6209&version=1&format=htm
http://portal.opengeospatial.org/files/?artifact_id=6209&version=1&format=htm
http://portal.opengeospatial.org/files/?artifact_id=6209&version=1&format=htm
http://dx.doi.org/10.1109/4236.935182

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

Jimenez-PerisR.Patino MartinezM.Martel-
JordanE. (2008). Decentralized web service
orchestration: A reflective approach. In Pro-
ceedings of the 23rd Annual ACM Symposium
on Applied Computing, (pp. 494-498). ACM.
10.1145/1363686.1363808

Li, G., Muthusamy, V., & Jacobsen, H.-A. (2010).
A distributed service oriented architecture for
business process execution. ACM Transactions
on the Web, 4(1).

Martin, D., Burstein, M., Hobbs, J., Lassila,
O., McDermott, D., & Mcllairth, S. … Sycara,
K. (2004). OWL-S: Semantic Markup for Web
Services. Retrieved from http://www.w3.org/
submission/owl-s/

McGuinness, D., & Harmelen, F. (2004). OWL
Web Ontology Language Overview. Retrieved
June 17, 2013, from http://www.w3.org/TR/
owl-features/

Missier, P., Soiland-Reyes, S., Owen, S., Tan, W.,
Nenadic, A., & Dunlop, I. … Goble, C. (2010).
Taverna reloaded. Lecture Notes in Computer
Science, 6187, 471-481.

NandaM. G.ChandraS.SarkarV. (2004). Decen-
tralizing execution of composite web services.
In VlissidesJ.M.SchmidtD.C. (Eds.), Proceedings
of the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (pp. 170-187). ACM.

OASIS. (2007). Web Services Business Process
Execution Language Version 2.0. OASIS Standard.
Retrieved June 17, 2013, from http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

OGC. (2007a). OGC® Sensor Observation Ser-
vice. Open Geospatial Consortium. Retrieved
June 17, 2013, from http://www.opengeospatial.
org/standards/sos

OGC. (2007b). OGC® Web Processing Service
1.0.0. Open Geospatial Consortium. Retrieved
June 17, 2013, from http://www.opengeospatial.
org/standards/wps

OGC. (2012). OGC® Web Coverage Service 2.0
Primer: Core and Extensions Overview. Open
Geospatial Consortium. Retrieved June 17, 2013,
from http://www.opengeospatial.org/standards/
wcs

OMG. (2011). Business Process Model and Nota-
tion (BPMN) Version 2.0. Retrieved November 24,
2013, from http://www.omg.org/spec/BPMN/2.0/

Pantazoglou, M., Pogkas, I., & Tsalgatidou, A.
(2013). Decentralized enactment of BPEL pro-
cesses. IEEE Transactions on Services Computing.
Retrieved from http://doi.ieeecomputersociety.
org/10.1109/TSC.2013.6

Ren, H., Wang, Z., & Liu, Z. (2006). A hyper-cube
based p2p information service for data grid. In
Proceedings of the Fifth International Confer-
ence on Grid and Cooperative Computing, (pp.
508-513). IEEE Computer Society.

Schlosser, M. T., Sintek, M., Decker, S., & Nejdl,
W. (2002). Hypercup - hypercubes, ontologies, and
efficient search on peer-to-peer networks. Lec-
ture Notes in Computer Science, 2530, 112–124.
doi:10.1007/3-540-45074-2_11

Sperberg-McQueen, C. M., & Thompson, H.
(2000). XML Schema. World Wide Web Consor-
tium (W3C). Retrieved June 17, 2013, from http://
www.w3.org/XML/Schema

Steinmetz, N., & Toma, I. (Eds.). (2008). Web
Service Modeling Language. Retrieved June 17,
2013, from http://www.wsmo.org/tr/d16/d16.1/
v1.0/

http://www.w3.org/submission/owl-s/
http://www.w3.org/submission/owl-s/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wcs
http://www.omg.org/spec/BPMN/2.0/
http://doi.ieeecomputersociety.org/10.1109/TSC.2013.6
http://doi.ieeecomputersociety.org/10.1109/TSC.2013.6
http://dx.doi.org/10.1007/3-540-45074-2_11
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.wsmo.org/tr/d16/d16.1/v1.0/
http://www.wsmo.org/tr/d16/d16.1/v1.0/

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

Taylor, I. J., Shields, M. S., Wang, I., & Philip,
R. (2003). Distributed P2P Computing within
Triana: A Galaxy Visualization Test Case. In
Proceedings of the 17th International Parallel and
Distributed Processing Symposium, (pp. 16–27).
IEEE Computer Society.

VitvarT.KopeckýJ.ViskovaJ.FenselD. (2008).
WSMO-Lite Annotations for Web Services. In
Proceedings of the 5th European Semantic Web
Conference. Berlin, Heidelberg: Springer.

WutkeD.MartinD.LeymannF. (2008). Model and
infrastructure for decentralized workflow enact-
ment. In Proceedings of the ACM Symposium
on Applied Computing. New York, NY: ACM.
10.1145/1363686.1363712

Yan, J., Yang, Y., & Raikundalia, G. K. (2006).
SwinDeW-a p2p-based decentralized workflow
management system. IEEE Transactions on
Systems, Man, and Cybernetics Part A, 36(5),
922–935. doi:10.1109/TSMCA.2005.855789

YildizU.GodartC. (2007). Towards decentralized
service orchestrations. In Proceedings of the ACM
Symposium on Applied Computing. New York,
NY: ACM Press.

YuW. (2007). Peer-to-peer execution of bpel process-
es. In EderJ.TomassenS.L.OpdahlA.L.SindreG.
(Eds.), Proceedings of CEUR Workshop, CAiSE
Forum (vol. 247). CEUR.

$'',7,21$/�5($',1*

AuT.-C.NauD. A. (2006). The incompleteness
of planning with volatile external information.
In Proceedings of the European Conference on
Artificial Intelligence, pp. 839–840.

Bertoli, P., Cimatti, A., Roveri, M., & Traverso,
P. (2001). Planning in nondeterministic domains
under partial observability via symbolic model
checking. In Proceedings of the International Joint
Conference on Artificial Intelligence, Seattle, WA,
pp. 473-478. Morgan Kaufmann.

Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., & Orchard, D. (2004).
Web Services Architecture. Working Group Note.
Retrieved from http://www.w3.org/TR/ws-arch/

DaremaF. (2004). Dynamic Data Driven Appli-
cation Systems: A new paradigm for application
simulations and measurements. In Proceedings
of the 4th International Conference on Compu-
tational Science, pp. 662-669. 10.1007/978-3-
540-24688-6_86

DEMAC. (n.d.). DEMAC project. Retrieved No-
vember 25, 2013, from http://vsisls1.informatik.
uni-hamburg.de//projects/demac/

Dey, K. A. (2001). Understanding and Using
Context. Personal and Ubiquitous Computing,
5(1), 4–7. doi:10.1007/s007790170019

Freeman, E., Hupfer, S., & Arnold, K. (1999).
JavaSpaces Principles, Patterns, and Practice:
Principles, Patterns, and Practice. Addison-
Wesley.

Gelernter, D. (1985). Generative communica-
tion in Linda. ACM Transactions on Program-
ming Languages and Systems, 7(1), 80–112.
doi:10.1145/2363.2433

Jean Paoli, C.M.-M. (2008). Extensible Markup
Language (XML) 1.0. W3C.

Jinghai, R., & Xiaomeng, S. (2004). In J. Cardoso,
& P. A. Sheth (Eds.), A Survey of Automated
Web Service Composition Methods (Vol. 3387,
pp. 43–54). Lecture Notes in Computer Science
Springer.

http://dx.doi.org/10.1109/TSMCA.2005.855789
http://www.w3.org/TR/ws-arch/
http://vsisls1.informatik.uni-hamburg.de//projects/demac/
http://vsisls1.informatik.uni-hamburg.de//projects/demac/
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1145/2363.2433

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

KaldeliE.LazovikA.AielloM. (2011). Continual
Planning with Sensing for Web Service Compo-
sition. In Proceedings of the 25th Conference on
Artificial Intelligence, San Francisco, CA, pp.
1198-1203.

Kuter, U., Nau, D., Reisner, E., & Goldman, R.
(2007). Conditionalization: Adapting forward-
chaining planners to partially observable environ-
ments. In M. Boddy, M. Fox, & S. Thiébaux (Eds.),
Proceedings of the Workshop on Planning and
Execution for Real-World Systems, Principles and
Practices for Planning in Execution. AAAI Press.

Lirong, Q., Zhongzhi, S., & Fen, L. (2006). Context
Optimization of AI planning for Services Compo-
sition. In Proceedings of the IEEE International
Conference on e-Business Engineering, Shanghai,
China, pp. 610-617. IEEE Computer Society.

Marconi, A., Pistore, M., Sirbu, A., Leymann, F.,
Eberle, H., & Unger, T. (2009). Lecture Notes in
Computer Science: Vol. 5900. Enabling Adap-
tation of Pervasive Flows: Built-in Contextual
Adaptation (pp. 445–454). Springer.

Mendling, J. (n.d.). Business Process Execution
Language for Web Service (BPEL). Vienna Uni-
versity of Economics and Business Administration.

Nixon, L., Simperl, E., Krummenacher, R., &
Martin-recuerda, F. (2008). Tuplespace-based
computing for the semantic web: A survey of
the state-of-the-art. The Knowledge Engineer-
ing Review, 23(2), 181–212. doi:10.1017/
S0269888907001221

Papazoglou, M., & Georgakopoulos, D. (2003).
Introduction: Service-oriented computing.
Communications of the ACM, 46(10), 24–28.
doi:10.1145/944217.944233

Pistore, M., Marconi, A., Bertoli, P., & Traverso, P.
(2005). Automated Composition of Web Services
by Planning at the Knowledge Level. In Proceed-
ings of Automated Composition of Web Services
by Planning at the Knowledge Level.

PistoreM.TraversoP.BertoliP.MarconiA. (2005).
Automated Synthesis of Composite BPEL4WS
Web Services. In Proceedings of the IEEE Inter-
national Conference on Web Services, Orlando,
Florida, pp. 293- 301. 10.1109/ICWS.2005.27

Russell, S., & Norvig, P. (2003). Artificial Intel-
ligence: A Modern Approach (2nd ed.). Upper
Saddle River, New Jersey: Prentice Hall.

Tsalgatidou, A., & Pilioura, T. (2002). An Over-
view of Standards and Related Technology in
Web Services. Distributed and Parallel Databases,
12, 135-162. Springer. Zwegers (Eds.), At your
service: An overview of results of projects in the
field of service engineering of the IST programme
(pp. 67-100). MIT Press Series on Information
Systems.

Vogels, W. (2003). Web Services Are Not Dis-
tributed Objects. IEEE Internet Computing, 7(6),
59–66. doi:10.1109/MIC.2003.1250585

VukovicM.RobinsonP. (2004). Adaptive, plan-
ning-based, Web service composition for context
awareness. In Proceedings of the International
Conference on Pervasive Computing, Vienna,
Austria.

Waldo, J., & Team, J. T. (2000). The Jini TM Speci-
fication (2nd ed.). Addison-Wesley Professional.

Zeng, L., Lei, H., & Chandramouli, B. (2005).
In B. Benatallah, F. Casati, & P. Traverso (Eds.),
Semantic Tuplespace (Vol. 3826, pp. 366–381).
Lecture Notes in Computer Science Springer-
Verlag.

.(<�7(506�$1'�'(),1,7,216

Context Aware Computing: Context Aware
Computing is a contemporary trend, which accom-
modates the provisioning of software systems that
are able to exploit contextual information, e.g.,

��

'LVWULEXWHG�DQG�$GDSWLYH�%XVLQHVV�3URFHVV�([HFXWLRQ
�

location, state, mood, in order to accommodate
user requirements.

Data-Driven Adaptation: The ability of a
service-oriented process to use the information
available within its environment and adapt its
execution accordingly.

Distributed Process Execution: The execu-
tion of process models in a distributed manner
that moves beyond clusters and other centralized
approaches.

Environmental Processes: Process models
addressing environmental science problems nor-
mally comprising spatially related types of services
to retrieve geospatial information.

Heterogeneous Services: Heterogeneous
services comprise the contemporary instantiations
of the service-oriented model, e.g., Web services,
WSRF services, Peer-to-Peer services, Open
Geospatial Consortium services, etc.

Semantic Tuplespace: Refers to an extended
version of the Linda model, where information is
annotated with appropriate semantics and provided
API is enhanced so as to accommodate and exploit
the underlying semantics.

Service-Oriented Process: Process models
implemented in terms of services.

(1'127(6

1 www.envision-project.eu
2 OGC is an international industry consor-

tium to develop publicly available interface
standards that support interoperable solu-
tions to “geo-enable” the Web, wireless and
location-based services and mainstream IT.

	Instructions
	Title Page
	Distributed and Adaptive Business Process Execution:

