
1

APPENDIX A
TRANSLATION OF HETEROGENEOUS SERVICE
DESCRIPTIONS TO PROTEUS SERVICE ADVER-
TISEMENTS

One of the most valuable features of the Proteus query
model is its ability to operate in diverse service-oriented
environments, where services with different character-
istics are described by heterogeneous languages. Such
ability is attained by enabling the proper translation of
the heterogeneous service descriptions into a common
format, which is conveniently provided by the Proteus
service advertisement. It is important to stress that,
the latter is not intended as an alternative solution to
service description. Rather, it provides Proteus with a
convenient, unified way of describing the various ser-
vice properties, so that service discovery queries can
be formulated and executed in a service technology-
independent manner. In this appendix, we present the
algorithms and entailed mapping rules that drive the
translation of documents written in various service de-
scription languages into Proteus service advertisements,
while also ensuring that no useful information is lost in
the process.

A.1 Translating WSDL Documents
The Web Services Description Language (WSDL)1 is the
predominant industry standard for the description of
Web services. A WSDL document is fundamentally split
into two parts: The abstract part is used to describe the
interface of a Web service, in terms of the operations
it provides, and the messages that these operations
consume and/or produce. The concrete part on the other
hand is used to describe the implementation of that
interface, in terms of the technology-specific bindings
and ports required to access and invoke these operations.

Even though service requesters commonly set their
requirements on the capability, input, and output of the
desired Web service operation, which are described by
the abstract part of the WSDL document, it is important
that the Proteus service advertisement also captures the
invocation details of the concrete part. This necessity is
accommodated by our Algorithm A.1, which illustrates
the way the contents of a WSDL document are traversed
upon translation. As it can be seen in lines 9–28, the
translator generates one service advertisement for each
operation found in the document that also has an imple-
mentation, i.e. it is reachable through a port. Thus, each
produced service advertisement corresponds to a Web
service operation and is generally populated with five
properties, namely the Service, Capability, Input, Output,
and WSInvocationInfo, which result from the application
of the following mapping rules.

The wsdl:service element is mapped to the Service
property (see line 11). The latter uses the string value
feature to capture the name attribute of that element,

1. http://www.w3.org/TR/wsdl

Algorithm A.1: Translate a given WSDL docu-
ment that is accessible by a URL into one or more
Proteus service advertisements.

input : the URL of a WSDL document, url
result: a set of Proteus service advertisements, SA

1 begin
2 D ← get WSDL document from url
3 d← get definitions element from D
4 S ← get all service elements from d
5 foreach s ∈ S do
6 P ← get all port elements from s
7 foreach p ∈ P do
8 O ← get all operation elements from p
9 foreach o ∈ O do

10 A← new service advertisement
11 Service ← map (s)
12 add Service to A
13 Capability ← map (o)
14 add Capability to A
15 if o has input message then
16 mi ← get input message from o
17 Input ← map (mi)
18 add Input to A
19 end
20 if o has output message then
21 mo ← get output message from o
22 Output ← map (mo)
23 add Output to A
24 end
25 WSInvocationInfo ← map (s, p, o, url)
26 add WSInvocationInfo to A
27 add A to SA
28 end
29 end
30 end
31 end

while the semantics feature is employed to capture both
its name attribute and wsdl:documentation sub-element.
This way, the Service property provides information
related to the operation’s service as a whole. Similarly,
the wsdl:operation element is mapped to the Capability
property (see line 13), which describes the functionality
offered by the operation.

The wsdl:message element that corresponds to the op-
eration’s input message is mapped to the Input property
(see line 17). In addition to the use of the string value
and semantics features in the same way as previously
described, this property also uses the sub-properties group
feature to capture the wsdl:part sub-elements of the
wsdl:message element. The content of each such sub-
element is mapped to a Parameter property, as follows:

• The name attribute is mapped to both the string
value and semantics features of the Parameter.

• The type, or element, attribute is mapped to the data
type feature of the Parameter.

The mapping of the wsdl:message element that corre-
sponds to the operation’s output message to the Output
property is performed in a similar manner (see line 22).
In other words, the resulting Input and Output properties
have the same structure.



2

Finally, the WSInvocationInfo property employs the
qualifiers feature, which is populated with the Servi-
ceName, PortName, OperationName, and WSDL prop-
erties capturing the name attribute values of the
wsdl:service, wsdl:port, and wsdl:operation elements, as
well as the URL of the WSDL document, respectively
(see line 25). Specifically, each one of these attribute
values is assigned to the string value feature of its corre-
sponding property.

In conclusion, our WSDL translation algorithm and
mapping rules manage to preserve all meaningful infor-
mation in the generated Proteus service advertisements.
This information is captured by the Service, Capabil-
ity, Input, Output, and WSInvocationInfo properties, and
serves the purposes of both service discovery and service
invocation.

A.2 Translating WSRF-enhanced WSDL Documents

The WSDL standard was also adopted by the Grid
community in order to describe the Grid services that
are offered by virtual organizations. The Web Services
Resource Framework (WSRF)2, which has become a
standard for the implementation of service-oriented
Grids, supports the stateful interactions with service
consumers, by establishing a strong relation between
a provided functionality and its underlying resource.
The latter has one or more resource properties, which
are included in the WSDL description by extending the
portType element(s).

Hence, Algorithm A.1 can be easily adapted to map
WSRF-enhanced WSDL documents into their equivalent
Proteus service advertisements. Specifically, right after
line 6, we introduce an additional step to retrieve the
value of the wsrp:ResourceProperties attribute of the
portType that is associated with the currently processing
port, p. This value points at a complex typed XSD ele-
ment in the types section of the WSDL document, which
is mapped to the Resource property in the Proteus service
advertisement, as follows:

• The name attribute of the XSD element is mapped
to the string value and semantics features of the
Resource property.

• Each one of the XSD sub-elements in the element’s
complex type are captured by a ResourceProperty
property, by mapping their name attribute to the
property’s string value and semantics features, while
their type attribute is mapped to the property’s data
type feature. Also, the minOccurs and maxOccurs
attributes are mapped to the numeric value features
of their namesake properties, while the latter are
grouped by the qualifiers feature of the Resource-
Property property. Finally, all produced Resource-
Property properties are consolidated into the sub-
properties group feature of the Resource property.

2. http://www.oasis-open.org/committees/wsrf/

A.3 Translating OWL-S Documents
The OWL-S upper ontology for services3 has been estab-
lished over the last years as a fine-grained solution for
the semantic description of Web services. Briefly, the on-
tology defines three top-level OWL classes, namely the
ServiceProfile, the ServiceModel, and the ServiceGrounding,
which are used to semantically describe a Web service
from different perspectives, and accommodate different
needs. Since only the ServiceProfile class is intended to
facilitate service discovery, we describe in this section
the translation of an OWL-S 1.1 Profile document to its
equivalent Proteus service advertisement.

Algorithm A.2: Translate a given OWL-S Profile
document into its equivalent Proteus service ad-
vertisement. It is assumed that the OWL-S Profile
document contains only one Profile element.

input : an OWL-S Profile document, D
result: a Proteus service advertisement, A

1 begin
2 A← new service advertisement
3 Ps ← get Profile element from D
4 s← get presentedBy element from Ps

5 ps ← get has process element from Ps

6 cs ← get serviceClassification element from Ps

7 πs ← get serviceProduct element from Ps

8 κs ← get serviceCategory element from Ps

9 Cs ← get contactInformation elements from Ps

10 Service ← map (s, ps, cs, πs, κs, Cs)
11 add Service to A
12 ns ← get serviceName element from Ps

13 ds ← get textDescription element from Ps

14 Capability ← map (ns, ds)
15 add Capability to A
16 I ← get hasInput elements from Ps

17 Input ← map (I)
18 add Input to A
19 O ← get hasOutput elements from Ps

20 Output ← map (O)
21 add Output to A
22 P ← get hasPrecondition elements from Ps

23 Preconditions ← map (P )
24 add Preconditions to A
25 E ← get hasResult elements from Ps

26 Results ← map (E)
27 add Results to A
28 Sp ← get all serviceParameter elements from Ps

29 foreach sp ∈ Sp do
30 p← new Proteus property
31 n← get serviceParameterName from sp
32 o← get sParameter from sp
33 set n as the name of p
34 set o as the semantics of p
35 add p to A
36 end
37 end

As it can be seen in our Algorithm A.2, the translation
of an OWL-S profile maps its contents to the following
properties in the generated Proteus service advertise-
ment: Service, Capability, Input, Output, Preconditions, and

3. http://www.w3.org/Submission/OWL-S/



3

Results. Further, as we will see, extensibility elements
of the OWL-S profile are also preserved thanks to the
generic nature of the Proteus service property structure.

The Service property is conveniently used as a con-
tainer for the mapping results of numerous elements
found in the OWL-S profile (see lines 4–10). Specif-
ically, the presentedBy element, which points at the
service implementation of the profile, is mapped to the
semantics feature of the property. Then, the qualifiers
feature is employed to host the mapping results for
the has process, serviceClassification, serviceProduct,
serviceCategory, and contactInformation elements. For
each one of these elements, a corresponding property
is generated and added to the qualifiers of the Service,
as follows:

• The value of the has process element, which is the
URI of the corresponding concept in the Process
ontology, is mapped to the semantics feature of the
Process property.

• The value of the serviceClassification element is
mapped to the semantics feature of the Classification
property.

• The value of the serviceProduct element is mapped
to the semantics feature of the Product property.

• The values of the categoryName, taxonomy, and
code sub-elements of the serviceCategory element
are mapped to the string value features of their
equivalent properties, Name, Taxonomy, and Code,
which are then grouped by the qualifiers feature of
the Category property, while the value sub-element
is mapped to the property’s string value feature.

• The Actor sub-element of each contactInformation
element is mapped to a Contact property. The values
of the name, title, phone, fax, email, physicalAddress,
and webURL sub-elements of the Actor are mapped
to the string value features of their equivalent prop-
erties, Name, Title, Phone, Email, PhysicalAddress,
and WebURL. The latter are then grouped by the
Contact property through the qualifiers feature. Fi-
nally, the generated Contact properties are grouped
by the ContactInformation property through the sub-
properties group feature. This way, we manage to
map all contactInformation elements into a single
property in the Proteus service advertisement.

The Capability property captures the information con-
veyed by the serviceName and textDescription elements
of the OWL-S profile (see lines 12–14). Specifically, the
serviceName value is mapped to both the string value
and semantics features of the Capability, whereas the
textDescription value is mapped to the semantics feature
only. In other words, the value of the semantics feature of
the Capability property is a concatenation of the values
of the serviceName and textDescription elements.

All the hasInput elements found in the OWL-S profile
are mapped to Parameter properties, which are subse-
quently grouped into a single Input property, with the
use of the sub-properties group feature. Each Parameter

makes use of the semantics feature to capture the value
of the resource attribute of its corresponding hasInput
element. In the same way, the hasOutput elements are
mapped to a single Output property in the Proteus
service advertisement. Also following similar mapping
rules, the hasPrecondition and hasResult elements are
mapped and accordingly grouped to the Preconditions
and Results properties, respectively.

Finally, the expandable list of serviceParameter ele-
ments that may be specified in an OWL-S profile are
naturally mapped to Proteus properties, as described
in lines 28–36 of Algorithm A.2. To summarize, our
algorithm and mapping rules presented in this section
manage to translate an OWL-S 1.1 profile document into
its equivalent Proteus service advertisement, preserving
all included information.

A.4 Translating hRESTS Microformats
The HTML for RESTful Services (abbreviated to
hRESTS)4 is a microformat that is used for the machine-
readable description of Web APIs. hRESTS is under-
pinned by a minimal service model, which defines a
small set of concepts along with their relations. Accord-
ing to this model, a service has one or more operations,
while each operation consumes zero or more inputs, and
produces zero or more outputs. Further, each operation
has a URI address, and an HTTP method, which are
required by clients in order to invoke it.

The aforementioned concepts are captured by a set of
XHTML classes, which give shape to the basic hRESTS
microformat. Nevertheless, it is possible to blend an
hRESTS description with other microformats so as to
further annotate a service with additional information,
such as semantics or QoS. For instance, the MicroWSMO
microformat can be used to semantically annotate a
RESTful service that is described with hRESTS. Given
the RDF form of an XHTML document with hRESTS
and MicroWSMO microformat markups, Algorithm A.3
is applied to generate one or more Proteus service adver-
tisements. The algorithm produces one Proteus service
advertisement for each hasOperation property found in
the given RDF document (see lines 4–26). Each service
advertisement is populated with the properties Service,
Capability, RESTInvocationInfo, Input, and Output.

The Service property captures the information con-
veyed by its namesake RDF resource (lines 7–8). Specif-
ically, the string value feature is employed to capture the
local name of the RDF Service resource URI, while the
semantics feature is used to capture (i) the local name
of the RDF Service resource URI concatenated with the
value of the RDFS label sub-property, and (ii) the value
of the MicroWSMO modelReference sub-property. In
exactly the same way, the RDF Operation resource is

4. J. Kopecký, K. Gomadam, and T. Vitvar, hRESTS: An HTML
Microformat for Describing RESTful Web Services. In Proceedings of
the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology - Volume 01, pp. 619–625, IEEE Computer
Society, 2008.



4

Algorithm A.3: Translate a given RDF represen-
tation of a RESTful service description in hREST
and MicroWSMO, into its equivalent Proteus ser-
vice advertisements.

input : the RDF document of hRESTS description, D
result: a set of Proteus service advertisements, SA

1 begin
2 s← get Service resource from D
3 PO ← get all hasOperation properties of s
4 foreach p ∈ PO do
5 o← get Operation resource pointed by p
6 A← new service advertisement
7 Service ← map (s)
8 add Service to A
9 Capability ← map (o)

10 add Capability to A
11 a← get hasAddress property of o
12 m← get hasMethod property of o
13 RESTInvocationInfo ← map (a, m)
14 add RESTInvocationInfo to A
15 I ← get all hasInputMessage properties of o
16 if I ̸= ∅ then
17 Input ← map (I)
18 add Input to A
19 end
20 O ← get all hasOutputMessage properties of o
21 if O ̸= ∅ then
22 Output ← map (O)
23 add Output to A
24 end
25 add A to SA

26 end
27 end

mapped to the Capability property in the Proteus service
advertisement (lines 9–10).

In order to invoke an operation offered by a RESTful
service, clients primarily need to know its correspond-
ing address and HTTP method. The RESTInvocationInfo
property is introduced to sustain that information in
the produced Proteus service advertisement (lines 11–
13). The algorithm maps the RDF resources pointed by
the hasAddress and hasMethod properties of the RDF
Operation resource, into the string value features of the
corresponding properties, Address and HTTPMethod.
The latter are then added to the qualifiers feature of the
RESTInvocationInfo property.

In hRESTS, each input or output parameter of an
operation corresponds to an RDF Message resource.
Hence, to capture the inputs/outputs of the service oper-
ation, the algorithm generates an Input/Output property,
and maps all input/output messages to their corre-
sponding Proteus Parameter properties. The latter are
consolidated by the sub-properties group feature of the
Input/Output property (see lines 15–24). The contents of
each Parameter property are shaped as follows:

• The local name of the corresponding RDF Message
resource is mapped to the string value feature.

• Both the local name and the RDFS label property of
the RDF Message are mapped to the text part of the

semantics feature.
• The modelReference property of the RDF Message

is mapped to the ontology reference part of the
semantics feature.

• The lowerSchemaMapping and liftingSchemaMap-
ping properties of the RDF Message are mapped
to the string value features of their namesake Pro-
teus properties, while the latter are grouped by the
qualifiers feature of the Parameter property.

In conclusion, the presented algorithm and mapping
rules capture the contents of an hRESTS description
given in RDF format, thus producing one or more
Proteus service advertisements that correspond to the
declared operations of the RESTful service, without any
loss of information.

A.5 Translating JXTA MSA Documents
JXTA5 is a collection of programming language– and
platform–independent protocols for P2P computing. Ac-
cording to these protocols, peers expose their function-
ality through P2P services which they appropriately
publish within the network, so that other peers can
discover and invoke them. To support the service pub-
lication and discovery processes, the JXTA specification
defines the Module Spec Advertisement (MSA), a simple,
XML-based document that is used for the description
of P2P services. Although MSA documents typically
contain minimal information about a service, they are
the default choice for service description in JXTA, and
are supported by the standard service discovery and
invocation mechanisms of the JXTA specification. Thus,
for the Proteus query model to become applicable to P2P
service discovery in JXTA environments, there is a need
of properly translating MSA documents into Proteus
service advertisements.

Due to the simplicity of MSA documents, the overall
translation process is straightforward, and is captured
by Algorithm A.4. In addition to the MSA document,
the translator also expects the peer and peer group
identifiers as input, so as to associate the MSA with
its owner peer and the group it belongs to. Such data
are easily obtained by the Proteus crawler ahead of
the translation, by issuing appropriate queries via the
default JXTA discovery mechanism, since JXTA adver-
tisements are automatically indexed on the basis of their
peer and peer group ids. Nevertheless, as it can be seen
in the algorithm, the information contained in the MSA
document is mapped and organized into four properties
in the produced Proteus service advertisement, namely
the Peer, Service, Capability, and JXTAInvocationInfo.

We introduce the Peer property to capture the id of
the peer owning the MSA, as well as the id of the peer’s
belonging group. These values are mapped to the string
value features of the PeerID and PeerGroupID properties,
respectively, which are then grouped by the qualifiers
feature of the Peer property.

5. http://jxta.kenai.com/



5

Algorithm A.4: Translate a given JXTA Module
Spec Advertisement (MSA) into its equivalent Pro-
teus service advertisement. The ids of the peer
owning the corresponding service, as well as its
peer group are also provided as input.

input : a JXTA MSA document, D
input : the id of the owner peer, pid
input : the id of the peer group, gid
result: a Proteus service advertisement, A

1 begin
2 A← new service advertisement
3 idA ← get MSID element from D
4 Peer ← map (pid, gid)
5 add Peer to A
6 vers← get Vers element from D
7 crtr ← get Crtr element from D
8 suri← get SURI element from D
9 Service ← map (vers, crtr, suri)

10 add Service to A
11 name← get Name element from D
12 desc← get Desc element from D
13 if name ̸= null or desc ̸= null then
14 Capability ← map (name, desc)
15 add Capability to A
16 end
17 pipe← get PipeAdvertisement element from D
18 proxy ← get Proxy element from D
19 auth← get Auth element from D
20 if pipe ̸= null or proxy ̸= null or auth ̸= null then
21 JXTAInvocationInfo ← map (pipe, proxy, auth)
22 add JXTAInvocationInfo to A
23 end
24 end

The Service property is used to map a number of
elements of the MSA that provide general information
about the P2P service (see lines 6–9). Specifically, the
Vers, Crtr, and SURI elements are mapped to the string
value features of the respective properties Version, Cre-
ator, and SpecURI, which are followingly grouped by
the qualifiers feature of the Service property.

The Name and Desc elements in the MSA are mapped
to the Capability property in the Proteus service adver-
tisement (see lines 11–16). The value of the Name is
mapped to both the string value and semantics features,
while the value of the Desc is mapped to the seman-
tics feature only. Besides, since the MSA may contain
information that is useful to the invocation of the corre-
sponding P2P service, we employ the JXTAInvocationInfo
property to capture the respective elements (see lines 17–
23), as follows:

• The PipeAdvertisement element is mapped to a
property with the same name. Specifically, the val-
ues of the Id, Type, Name, and Desc sub-elements
are mapped to the string value features of their
equivalent, namesake properties, which are grouped
into the qualifiers feature of the PipeAdvertisement
property.

• The values of the Proxy and Auth elements are
mapped to the string value of the ProxySpecID and

AuthenticatorSpecID propeprties, respectively.
Finally, the PipeAdvertisement, ProxySpecID, and Au-

thenticatorSpecID properties are grouped into the quali-
fiers feature of the JXTAInvocationInfo property.

A.6 Capturing QoS descriptions
This section demonstrates the ability of Proteus to cap-
ture non-functional service properties, in addition to
functional properties such as the capability, inputs and
outputs of a service operation. As example, we have
selected the WS-QoS6 schema, which provides a series
of elements allowing for the annotation of WSDL docu-
ments, and potentially other kinds of service description
formats, with QoS information.

The WS-QoS specification supports the expression of
as many as 10 application-level QoS properties, such
as the service availability, reliability, average processing
time, etc. All these elements can be fully captured by the
following properties within a Proteus service advertise-
ment:

• The value of the price element, included in the
QoSDefinition element of a WS-QoS document, is
mapped to the numeric value feature of the Price
property. Moreover, the currency attribute of the
price element is captured by the string value feature
of the Currency property, which is included in the
qualifiers feature of the Price property.

• The values of the processingTime, requestsPerSec-
ond, availability, and reliability elements, both in-
cluded in the serverQoSMetrics container of a WS-
QoS document, are mapped to the numeric value
features of their namesake properties.

• The values of the delay, jitter, throughput, packet-
Loss are mapped to the numeric value features of
namesake properties in the Proteus service adver-
tisement. Furthermore, the values of their min and
max sub-elements are mapped to the numeric value
features of their namesake sub-properties, which
are then included in the qualifiers feature of the
respective properties.

Besides, the extensibility of the WS-QoS schema,
which is particularly supported by the customMetric and
customPriority elements, is retained during the transla-
tion process. Instances of these elements are preserved
in the Proteus service advertisement as follows: Their
name attribute is used as the name of the corresponding
property, whereas their ontology attribute is mapped
to the semantics feature of that property. This way, we
manage to fully incorporate the contents of a WS-QoS
document into a Proteus service advertisement, without
any loss of information.

6. M. Tian, A. Gramm, H. Ritter, and J. Schiller, Efficient Selection
and Monitoring of QoS-aware Web Services with the WS-QoS Frame-
work, In Proceedings of the 2004 IEEE/WIC/ACM International Conference
on Web Intelligence, WI ’04, pp. 152–158, IEEE Computer Society, 2004.


