
4 Unified Discovery and Composition of Heterogeneous Services:
The SODIUM Approach

Aphrodite Tsalgatidou, George Athanasopoulos, Michael Pantazoglou, Arne J. Berre,

Cesare Pautasso, Roy Grønmo, and Hjørdis Hoff

4.1 Introduction

Service-oriented computing (SOC) is an emerging software engineering trend that promises

to reform the way applications are built. Services, the main building blocks in this new

engineering trend, provide the means to utilize functionality that is o¤ered by service pro-

viders via message exchanges over the Internet. The unique characteristics of a service have

been a highly debated research issue (see, for example, Kozlenkov et al. 2006; Czajkowski

et al. 2004; Vogels 2003, 59); nonetheless, all researchers agree that a service possesses

properties such as self-description, Internet accessibility, and message-oriented communi-

cation. Normally, a service can be described, discovered, and invoked using XML-based

protocols and standards which lie on top of other proven communication protocols, such

as HTTP.

Web Services (Booth et al. 2004) is the best-known instantiation of the SOC paradigm.

Other instantiations include Grid Services (Czajkowski et al. 2004), which emerged from

the scientific application domain, and Peer-to-Peer (P2P) Services (Li 2001, 88), which ori-

ginated from community-oriented systems and applications, such as instant messaging and

file sharing.

All these services, regardless of their type, o¤er functionality which can be very useful

in the development of service-oriented applications. For example, the applications in the

crisis management domain require functionality, which may be provided by services from

the health care domain, or services from the tra‰c management domain. However, such

services are usually heterogeneous and are published in divers registries and networks.

Thus, their distinct features, properties, supported protocols, and architectural models

render them incompatible (Athanasopoulos, Tsalgatidou, and Pantazoglou 2006). Further-

more, it is notable that besides the interoperability issues between di¤erent service types,

there are also interoperability concerns among services of the same type, for example,

between P2P Services, as they mostly adhere to proprietary protocols and standards, or

between Web Services, owing to di¤erent existing implementations. The latter has given

rise to approaches such as the one undertaken by WS-I (Web Service Interoperability



Org.), which has established the basic interoperability profile (Ballinger et al. 2006) to deal

with the discrepancies between Web Services.

The service heterogeneity and the lack of interoperability between services of the same

type, as well as between services of di¤erent types, constitute a major obstacle to their

widespread utilization in new service-oriented applications of diverse domains. Specifically,

the activities of service discovery and service composition, which are two of the most im-

portant tasks in service-oriented engineering, become really cumbersome when one has to

deal with services adhering to heterogeneous protocols and standards. We believe that this

situation can be greatly improved by a unified approach toward the discovery and compo-

sition of heterogeneous types of services; such an approach can relieve the developer of a

service-oriented application from the burden of dealing with the heterogeneity of the cur-

rent service protocols, standards, and architectural models. This is the approach that is fol-

lowed by the SODIUM (Service-Oriented Development In a Unified fraMework) project,

which in this way supports the exploitation of the useful functionality o¤ered by existing

heterogeneous services and thus facilitates the development of service-oriented applica-

tions. Specifically, the goal of SODIUM is to create an open and extensible platform com-

prising appropriate tools and middleware that abstract developers from the underlying

characteristics of the addressed service types. At the same time, SODIUM allows each

type of service to retain its unique characteristics, without altering or enforcing any restric-

tions upon the underlying service provision platforms. Hence, developers are able to utilize

the distinct traits of each service type. The types of services addressed by the current tools

and languages of SODIUM are Web Services, P2P Services, and Grid Services. Neverthe-

less, the openness and extensibility of the SODIUM solution allow for the support of other

service types, such as UPnP (Newmarch 2005) or sensor services (Gibbons et al. 2003, 22),

by the provision of the appropriate extensions and plug-ins.

The contribution of SODIUM is mainly positioned in the service integration layer of the

NESSI framework (NESSI), but it can also be positioned in the interoperability layer.

Specifically, SODIUM lies in the bottom and middle layers of the SOC road map pro-

posed in Papazoglou and Georgakopoulos (2003, 24), since it provides innovative solu-

tions for the description, discovery, and composition of heterogeneous services. It also

touches the upper layer of the SOC road map, as it provides some support related to the

monitoring of compositions of heterogeneous services. Finally, it should be noted that the

SODIUM solution for service discovery and composition exploits existing work on seman-

tics and quality of service without, however, making a specific contribution in these areas.

In the following sections we present the approach employed by the SODIUM project

and its outcomes as follows. We describe a motivating scenario that illustrates the need to

integrate heterogeneous services (section 4.2). This scenario comes from the crisis manage-

ment domain, and it was implemented by one of the pilot applications developed for the

evaluation of the SODIUM platform (Ho¤, Hansen, and Skogan 2006). We continue by

68 Tsalgatidou and colleagues



illustrating the existing heterogeneity and discrepancies in the protocols and standards

used for service description, discovery, invocation, and composition with respect to Web,

P2P and Grid services which hinder the reuse of such services in other service-oriented

applications (section 4.3). Then, we exemplify the SODIUM approach and present the

main elements of the SODIUM platform (section 4.4). Finally, we compare our work

with similar approaches (section 4.5) and present some concluding remarks (section 4.6).

4.2 Motivating Scenario

Our motivating scenario comes from the crisis management domain, where an important

task is to determine how to get to a crisis location and dispatch the appropriate emergency

units as fast as possible. For example, in case of an accident with severely injured people, it

is critical to reach these persons with the appropriate equipment within minutes. In such

cases, if the injury causes lack of oxygen to the brain for three to five minutes, brain cells

start to die, and after approximately 15 minutes the damage is irreversible. Thus, it is vital

that properly equipped ambulances and other rescue units be located within a 15-minute

range at all times and places, to increase the possibility of reaching injured people before

it is too late.

This requirement is hard to achieve owing to the vast set of parameters that need to be

taken into account (e.g., accident/injury probability, population density and composition,

accessibility, time of day/week/month/year, weather conditions, hospital locations, and

many others). Furthermore, the integration of information stemming from various systems

that calculate all these parameters (i.e., weather forecasting systems, tra‰c management

systems, hospital information systems, etc.) is a complicated problem. Therefore, the use

of a service-oriented approach in the development of applications satisfying the require-

ments mentioned above can be very beneficial. Some examples of services that provide

useful functionality for the implementation of the above scenario are the following:

1. Web Services providing weather information, such as temperature and precipitation, or

tra‰c conditions from roadside speed sensors and video surveillance cameras

2. Grid Services providing driving route calculations, weather forecasting information,

and ‘‘response range’’ calculations based on current positions and conditions

3. P2P services providing information about the locations and status of emergency

vehicles, and messaging facilities to the emergency vehicles with reposition message

commands

Alas, such existing services and systems (e.g., services and systems from the health care

management domain, weather forecasting systems, and so on) are highly heterogeneous,

and thus di‰cult to be discovered and combined. Therefore, a service-oriented application

supporting this scenario needs to be able to integrate heterogeneous services such as the

Unified Discovery and Composition of Heterogeneous Services 69



ones mentioned above. Nevertheless, this is not an easy task, as was mentioned in the in-

troduction, due to the incompatibility of the existing service types; some of the incompati-

bilities that need to be dealt with are presented in the following section.

The rest of the chapter presents the SODIUM approach, which provides a unified

solution to the discovery and composition of heterogeneous services (i.e., Web, Grid, and

P2P services) that has been used for implementing the motivating scenario described

above.

4.3 Heterogeneous Services Computing

The requirements imposed by real-world applications, such as the ones presented in the

previous section, induce the need for discovery and composition of various types of ser-

vices. In the following paragraphs, we outline the results of a thorough analysis on the

technologies of Web, P2P, and Grid services, conducted within the context of SODIUM,

which revealed a number of heterogeneities, and discrepancies spanning across aspects

such as service description, discovery, invocation, and composition. A detailed description

of the state-of-the-art analysis is available in Tsalgatidou et al. (2005).

4.3.1 State of the Art in Service Description

The information conveyed by the description of a service generally falls into one or more

of the following categories:

1. Syntactic information, which refers mainly to the structure of the service interface, and

the provided operation signatures

2. Semantic information, which is provided to describe the capability of the service (i.e., its

o¤ered functionality)

3. Quality information, which describes the nonfunctional, qualitative characteristics of

the service, such as its reliability, availability and performance.

The Web Services Description Language (WSDL) (Christensen et al. 2001) has been

established as the de facto standard for syntactically describing a service. Still, the peculiar-

ities of the various service types, such as Grid and P2P, have yielded numeral extensions to

the standard. The Web Service Resource Framework (WSRF) (Banks 2006) defines a set

of extension elements in WSDL in order to describe the properties of the resource being

handled by a Grid Service. On the other hand, network topology concepts, such as peers

or peer groups, need to be described in a P2P service description to allow its invocation.

This requirement has yielded extensions, such as the ones described in Athanasopoulos,

Tsalgatidou, and Pantazoglou (2006), to the WSDL standard.

Over the last years, a number of diverse protocols were proposed to address the lack

of semantic information in WSDL descriptions. The Web Service Modeling Ontology

70 Tsalgatidou and colleagues



(WSMO) (Roman et al. 2005) and OWL-S (Martin et al. 2004) frameworks, along with

the latest SAWSDL specification (Farrell and Lausen 2007), are the most prominent

approaches in this direction. These protocols were further extended to meet the require-

ments of the Grid, as they were also utilized to provide semantic annotations to the

descriptions of sharing resources (Babik et al. 2006).

Many heterogeneous protocols have also been proposed with respect to the quality of

service (QoS). The Web Service Level Agreement (WSLA) (Keller and Ludwig 2003, 57),

the WS-QoS (Tian et al. 2004), and the Web Service O¤ering Language (WSOL) (Tosic

et al. 2003) are some of the proposed specifications that can be used to describe the QoS

of a Web Service. As for Grid services, approaches such as the G-QoSM (Al-Ali et al.

2002) and the Globus Architecture for Reservation and Allocation (GARA) (Foster et al.

1999) cater for advanced quality specification and support management of services, re-

sources, and the underlying network infrastructure. Finally, although not directly addressed

in terms of language specifications, QoS has been taken into account in the P2P world, and

many algorithmic approaches (Sahin et al. 2005; Vu, Hauswirth, and Aberer 2005) have

been proposed to optimize the qualitative aspects of P2P networks.

4.3.2 State of the Art in Service Discovery

Besides the heterogeneity in their descriptions, Web, P2P, and Grid services have employed

diverse publication and discovery mechanisms. Registries complying with the universal de-

scription, discovery, and integration specifications (UDDI; Clement et al. 2004) and the

ebXML standard (EBXML 2002) are commonly used for publishing and discovering

Web Services. On the other hand, Grid infrastructures, such as Globus (http://www.globus

.org) or the latest gLite (http://glite.web.cern.ch/glite), have established their own mecha-

nisms for publishing and discovering resources and services within virtual organizations.

Such mechanisms utilize directories and services which rely on the Lightweight Directory

Access Protocol (LDAP) (Koutsonikola and Vakali 2004, 66). Completely di¤erent dis-

covery approaches are realized by P2P technologies, such as JXTA (Li 2001, 88) or Edu-

tella (Nejdl et al. 2002), where services and resources are advertised and discovered in a

distributed manner, all over the network.

4.3.3 State of the Art in Service Invocation

Web Services are traditionally communicated through the exchange of SOAP messages

(Mitra 2003) over proven network protocols, such as HTTP and SMTP. The same invoca-

tion pattern is also applied to Grid Services, with the exception that the service client needs

first to acquire the necessary credentials in order to gain access to a virtual organization.

When it comes to P2P services, their invocation is tightly coupled with the specific P2P

technology. Thus, services provided by peers in a Gnutella network (http://www.gnutella

.com) are invoked in a di¤erent manner than services provided by peers in a JXTA

Unified Discovery and Composition of Heterogeneous Services 71



network, and so on. Nevertheless, in most cases, the service client must either join the P2P

network as a peer, or use an existing proxy peer to be able to invoke P2P services.

4.3.4 State of the Art in Service Composition

The Business Process Execution Language for Web Services (BPEL4WS) (Alves et al.

2007) has been established as a standard for composing Web Services into business pro-

cesses. However, despite its wide adoption, BPEL4WS lacks the flexibility that would al-

low it to encompass other types of services as well, such as P2P and/or Grid services, also

taking into account their specialized characteristics. Research e¤orts such as the Kepler en-

gine (Altintas et al. 2004) have risen to support the execution of Grid Service scientific

workflows in Grid environments. Other e¤orts, such as the one described in Gerke, Reichl,

and Stiller (2005), have been proposed to enable the composition of P2P services in a P2P

network. However, to the best of our knowledge, there is no approach, protocol, or stan-

dard to enable the composition of Web, P2P, and Grid services.

All the aforementioned protocols and standards suggest a heterogeneous situation that

overwhelms developers and hinders the wide utilization of Web, P2P, and Grid services in

a single service-oriented application. We believe that this challenge can be e¤ectively

addressed by establishing a unified approach in service-oriented computing as regards

the various existing and emerging types of services. This is the exact contribution of the

SODIUM project, the significant results of which we present in the following sections.

4.4 The SODIUM Approach to the Discovery and Composition of Heterogeneous Services

The primary goal of SODIUM is to facilitate the unified discovery and composition of het-

erogeneous services (with focus on Web, P2P, and Grid services), and thus to promote

interoperability at the service discovery and composition levels. The SODIUM approach

achieves this goal by providing an abstraction layer that hides the technical details of

each service type from both developers and end users, without altering or modifying

the distinct properties and characteristics of the underlying technologies. Specifically, the

SODIUM solution comprises the following:

1. A generic service model (GeSMO) that supports the definition of the common as well as

distinct characteristics of Web, P2P, and Grid services, thereby providing a solid concep-

tual basis to the SODIUM approach

2. A set of languages:
� The Visual Service Composition Language (VSCL), which supports the visual composi-

tion of heterogeneous services
� The Unified Service Query Language (USQL), which supports the unified discovery of

heterogeneous services
� The Unified Service Composition Language (USCL), which provides a format for the

executable representation of visual compositions made of heterogeneous services

72 Tsalgatidou and colleagues



3. A set of tools and supporting middleware:
� The composition visual editor, which implements the VSCL and supports the visual

design of heterogeneous service compositions, as well as their translation to the USCL

format
� The USQL service discovery engine, which implements the USQL and supports the uni-

fied discovery of di¤erent types of services from a wide spectrum of registries, repositories,

and networks
� The USCL execution engine, which supports the execution and monitoring of heteroge-

neous service compositions that are expressed with the USCL format.

Figure 4.1 depicts the overall architecture of the SODIUM solution and also outlines

the interactions between the constituent tools.

The SODIUM solution is divided in two main subsets, the composition suite and the

runtime environment, which support the design and the runtime phases of the develop-

ment process, respectively. Nevertheless, as figure 4.1 shows, the constituent tools are

loosely coupled and communicate through document exchanges by means of well-defined

Figure 4.1
The SODIUM Platform

Unified Discovery and Composition of Heterogeneous Services 73



interfaces. Therefore, they can be integrated with other tools in the future so as to create a

customized service-oriented development environment.

Along with the SODIUM conceptual model, languages, and tools comes a model-driven

methodology, which provides a way of composing existing yet heterogeneous services in

order to execute a complex task.

In the following sections, we present and describe the SODIUM results.

4.4.1 The Generic Service Model

The generic service model (GeSMO) provides the conceptual basis upon which the

SODIUM languages and tools were developed. Its specification was driven by the results

of a thorough investigation of the state of the art in Web, P2P, and Grid service technolo-

gies outlined above. In general, the model is characterized by its generality, abstraction,

simplicity, modularity, expressiveness, and extensibility.

GeSMO has adopted a layered architecture (see figure 4.2).

1. The core layer, which models all common concepts among the investigated service types

(i.e., Web, P2P, and Grid services)

2. The extensions layer, which sits on top of the core layer and caters for the distinct fea-

tures of each service type (i.e., Web, P2P, and Grid services)

3. A number of layers, orthogonal to the core and extensions layers, which model addi-

tional cross-cutting features, such as semantics, quality of service, trust and security, and

management

Naturally, the fundamental concept of GeSMO is service. With the combination of

concepts deriving from the layers described above, it is possible to describe a service from

multiple points of view. Figure 4.3 outlines the di¤erent views that have been defined by

GeSMO along with their interdependencies.

Figure 4.2
Architecture of the SODIUM Generic Service Model

74 Tsalgatidou and colleagues



These service views are briefly described as follows.

1. Abstract view: It looks into the service notion from an abstract point of view and tries

to identify its relationships with elements of the software engineering field.

2. Basic view: It pinpoints the minimal set of elements that need to be provided. The ele-

ments that are identified within this view may be further analyzed in other subviews.

3. Description view: This view focuses on the elements that are related to the description

of a service.

4. Structure view: It identifies the structural elements that a service may comprise.

5. Semantics & QoS view: This view identifies the elements of the service model that may

have semantic and QoS annotations.

6. Message Structure view: It provides a look into the structure and the elements of mes-

sages that are exchanged among a service and its clients.

7. Communication view: It identifies the elements related to the underlying network com-

munication details (i.e., communication protocols that are used, network address, message

wire format, etc.).

The basic, description, and structure views of GeSMO are shown in figures 4.4, 4.5, and

4.6.

Figure 4.3
Views defined by the SODIUM Generic Service Model (GeSMO)

Unified Discovery and Composition of Heterogeneous Services 75



Figure 4.4
The Basic service view defined by GeSMO

Figure 4.5
The Description service view defined by GeSMO

Figure 4.6
Structure view of a service as defined by GeSMO

76 Tsalgatidou and colleagues



The basic service model depicts a minimal set of concepts and their respective relation-

ships that define the concept of service. This set of constructs, according to Vogels (2003,

59), su‰ces for the invocation of a service, but it needs to be further extended so as to fa-

cilitate the whole set of operations that are supported by the service model (i.e., publica-

tion, discovery, invocation, composition, etc.).

The service description model provides a detailed specification of the information that a

description document may convey. A description document may provide descriptions or

links to other documents for the whole or for parts of the information that is depicted in

figure 4.5.

The structure model defines the set of structural elements that a service may be broken

down into. A detailed description of all views defined in GeSMO is available in Tsalgati-

dou et al. (2005).

GeSMO shares many common concepts with the SeCSE Conceptual Model (Colombo

et al. 2005). However, in GeSMO we focused primarily on the definition of di¤erent points

of view, with the ultimate goal of describing services independently of their actual technol-

ogy. In this respect, the conceptual service views provided by GeSMO may be considered

as complementary to the SeCSE conceptual model.

Within the context of SODIUM, GeSMO served as a multipurpose tool. More

specifically:

1. It was used as a conceptual basis for the specification of the three SODIUM languages

(VSCL, USQL, and USCL), as well as for the development of the P2P Service Description

Language (PSDL) (Athanasopoulos, Tsalgatidou, and Pantazoglou 2006), a WSDL-based

format that was utilized in SODIUM for the description and invocation of JXTA P2P

services.

2. It provided a common point of reference that facilitated communication and knowledge

exchange among the project stakeholders.

3. Its abstraction and extensibility drove specific design decisions regarding the SODIUM

tools, such as the plug-in–based architecture adopted by most of them.

In conclusion, the GeSMO specification currently caters for Web, P2P, and Grid

services, nevertheless its extensibility allows for seamlessly accommodating other types of

services.

4.4.2 Visual Service Composition

SODIUM supports the visual service composition through the Visual Service Composition

Language (VSCL) and the Composition Suite.

The Visual Service Composition Language (VSCL) The VSCL is based on UML v2.0 (UML

2002), and supports the visual representation of service compositions which leverage Web,

Grid, and P2P services. Specifically, the VSCL uses the concepts of the UML activity

Unified Discovery and Composition of Heterogeneous Services 77



diagram as a basis for the provision of appropriate stereotypes that define all the necessary

composition primitives. Nevertheless, the VSCL has a conceptual meta-model (see figure

4.7) that is independent of UML and other existing graphical modeling languages, how-

ever, it can be realized by a UML profile.

According to the VSCL meta-model, a service composition consists of nodes and flows/

edges. The nodes are task nodes, control nodes, object nodes, event nodes, and transforma-

tion nodes; the di¤erent kinds of flow are used to specify flow of control and data between

nodes. Hence, the main concepts of the VSCL are the tasks and the flow of data and con-

trol between tasks.

A task consists of both an abstract part and a concrete part. It may be coarse-grained,

which means that it can be detailed in a sub-composition of tasks. The abstract part is

service-independent and may be used as a starting point when querying for available and

relevant heterogeneous services. The concrete part of a task has information about which

service(s) to execute for this specific task. The strength of the task-based approach is that

there is one composition graph, rather than two, incorporating both concrete and abstract

parts. After services have been selected, the abstract part may still be used in order to

check if new available and better-suited services have emerged. The possibility for defining

Figure 4.7
The VSCL conceptual meta-model

78 Tsalgatidou and colleagues



transformations between the output(s) of a task and the input(s) of its successor task has

also been included (Grønmo, Jaeger, and Ho¤ 2005). A task may itself be a composition,

and thus it is decomposed into subtasks.

A heterogeneous composition in VSCL can consist of tasks executed by di¤erent kinds

of services. The types defined in the context of SODIUM are P2P Services, Web Services,

and Grid Services (see figure 4.8).

As shown in figure 4.8, one or more services may be selected to realize/execute a specific

task. When more than one service operation is selected, the developer may state how the

execution is to be done. There are three di¤erent possibilities. The service operations may

be executed in parallel, sequential or in random order, the last two being associated with a

response time limit. The service operations in the selectedServiceOperations list are consid-

ered ‘‘equal’’ with respect to the functionality they provide, but other aspects, such as QoS

characteristics, may vary between them.

The detailed specification of the VSCL has been released as a public deliverable of SO-

DIUM, and may be found in Ho¤ et al. (2005).

The SODIUM Composition Suite The SODIUM Composition Suite consists of the follow-

ing main subcomponents:

1. The composition visual editor, for editing and analyzing service compositions with the

use of the VSCL

Figure 4.8
Relationship between tasks and services in the VSCL meta-model

Unified Discovery and Composition of Heterogeneous Services 79



2. The VSCL2USCL translator, which translates a service composition from a graphical

notation (VSCL) to a lexical XML-based notation (USCL)

3. The USQL dialogue, for interacting with the USQL Engine in order to discover avail-

able Web, P2P, and Grid services.

The composition visual editor is the main component of the Composition Suite and has

been developed as an Eclipse (http://www.eclipse.org) plug-in (see figure 4.9). It cooperates

with the USQL Engine and the USCL Execution Engine in order to support the discovery

of services and the deployment of executable service compositions. Moreover, it supports

the following:

1. Specification of service compositions in multiple levels of abstraction

2. Static analysis of service compositions described in VSCL

3. Translation of VSCL graphs to USCL documents that can be executed by the Execu-

tion Engine.

The composition visual editor supports three approaches for defining heterogeneous ser-

vice compositions:

Figure 4.9
The SODIUM Composition Suite

80 Tsalgatidou and colleagues



1. Top-down approach for a task-oriented focus where tasks are identified, but no candi-

date service operations have yet been identified/selected

2. Bottom-up approach for a service-oriented focus when service operations to use are

preknown

3. Dynamic approach for service operations to be discovered at execution time.

A typical use of the composition visual editor for the specification of service composi-

tions based on the top-down approach is described as follows:

1. The first step in constructing VSCL graphs is to break down the composition into tasks,

which interoperate in order to achieve the overall goal. This initial composition model

of tasks is called an abstract model because no selected concrete services have yet been

identified.

2. The abstract model is used as a basis for searching for appropriate candidate services

which can realize each of the abstract tasks. When the appropriate services are discovered

and selected, they are associated with the respective tasks and the result is a concrete

model. Note that apart from selecting a specific service for the implementation of a task,

developers are also allowed to assign USQL queries that will be executed at runtime, thus

enabling the dynamic binding of services that are discovered, selected, and invoked at

runtime.

More details regarding the SODIUM Composition Suite are available in Ho¤ et al.

(2006).

4.4.3 Unified Service Discovery

Service discovery in SODIUM is supported by the Unified Service Query Language

(USQL) and its associated engine, called USQL Engine, which are briefly described below.

The Unified Service Query Language (USQL) The USQL is an XML-based language provid-

ing the necessary structures for the formulation of service-type independent query docu-

ments and their responses. A rich yet extensible set of syntactic, semantic, and QoS

search criteria enables service requesters to express their requirements in an accurate and

intuitive manner. Moreover, with USQL, requesters can express their requirements toward

a service and/or its operations, as well as the messages (i.e., input/output) exchanged by

them. Hence, the USQL specification retains its consistency with GeSMO, specifically

with respect to the structure view of a service (see figure 4.6).

Abiding by the principles of GeSMO, the USQL has established a certain level of ab-

straction so as to support mappings from/to a wide range of service description formats

(e.g., WSDL, OWL-S, SAWSDL, etc.) and discovery protocols (e.g., UDDI, ebXML,

JXTA, etc.). Thus, it can be used to discover services in a unified manner, regardless of

how the latter have been described or where they have been published. The USQL specifi-

cation defines two types of documents, the USQLrequest and USQLresponse. The former

Unified Discovery and Composition of Heterogeneous Services 81



is used to express service type-independent queries, whereas the latter is used to convey the

results of the query execution.

The snippet in figure 4.10 is an example USQL request document, in accordance with

the motivating scenario presented earlier in the chapter.

The query is intended to search for services which retrieve the location of a caller based

on its phone number. A closer look at the requirements included in the query reveals that

there is nothing implying or bound to a specific service type; indeed, the USQL request is

service type-agnostic. The requested service belongs to the domain of crisis management, as

this is expressed by the Domain element. The desired functionality, as well as the input and

output requirements, have been captured with the use of the Semantics elements specified

into the Operation, and the requested Input and Output parts. The concepts used to popu-

Figure 4.10
Example of a USQL request document

82 Tsalgatidou and colleagues



late the Semantics elements have been taken from a custom domain ontology that was

developed for the purposes of SODIUM. However, the USQL is independent of the ontol-

ogy being used to populate its semantic elements, and to this end, any ontology and/or

semantic dictionary could be employed. To further constrain the query, and because of

existing service level agreements and partnerships, the service requester has also specified

the provider of the requested service.

An example USQL response document to the above USQL request is depicted in figure

4.11.

Apparently, the service discovery process yielded two matches, a standard Web Service

and a JXTA P2P service, both delivering the desired functionality. The results have been

prioritized according to their rank value, which quantifies their degree of match with re-

spect to the search criteria of the USQL request. Note that although the USQL request

was constructed in a service type-independent manner, the information conveyed by each

of the corresponding entries in the USQL response is strongly associated with the type of

the referred services and is adequate to enable their invocation.

Figure 4.11
Example of a USQL response document

Unified Discovery and Composition of Heterogeneous Services 83



The USQL Engine The USQL Engine is a powerful search tool enabling the discovery of

heterogeneous services in various types of registries, repositories, and networks. As the

name implies, the USQL Engine fully supports the USQL specification and acts as a black

box from the user perspective: it accepts USQL request documents as input, and returns

corresponding USQL response documents as output.

The architecture of the USQL Engine is depicted in figure 4.12.

The USQL Engine is characterized by a high degree of openness and extensibility, which

is achieved by using plug-in mechanisms to accommodate the di¤erent types of services

and registries. Specifically, the engine was extended in the context of SODIUM, and

plug-ins were provided to support the discovery of services in UDDI and ebXML registries

and JXTA networks. Moreover, appropriate extensions were developed to support the

processing of WSDL, SAWSDL, OWL-S, and WS-QoS service descriptions.

Let us now briefly describe a typical service discovery process. Upon receiving a USQL

request document, the USQL Engine engages the USQL handler to validate and forward it

to appropriate registry plug-in components, which are coordinated by the registry selector

and run in parallel. The service descriptions retrieved by the various registries are matched

against the search criteria of the USQL request, and the ones that meet them are passed to

Figure 4.12
Architecture of the USQL Engine

84 Tsalgatidou and colleagues



the USQL handler. The latter consolidates the results from all registry plug-in components

and prioritizes them, according to their degree of match, into a single USQL response doc-

ument, which is returned to the service requester.

The USQL Engine provides both a graphical user interface (GUI) and a Web Service

interface. The GUI, namely USQL Dialog, has been integrated with the SODIUM com-

position suite and is used by developers to formulate USQL queries, access the USQL En-

gine, and discover services at design time. At runtime, the USCL Execution Engine may

invoke the USQL Engine Web Service and submit a predefined QoS-enhanced USQL

query, in order to select and late-bind a service in a task from a set of alternative services

having the same interface, yet characterized by di¤erent quality properties.

The architecture and functionality of the USQL Engine have been described in Pantazo-

glou, Tsalgatidou, and Athanasopoulos (2006b, 104). The definition of the matchmaking

algorithm that has been implemented by the engine can be found in Pantazoglou, Tsalga-

tidou, and Athanasopoulos (2006a, 144).

4.4.4 Execution of Heterogeneous Service Compositions

In SODIUM, the execution of compositions consisting of Web, P2P, and Grid services is

accomplished through the Unified Service Composition Language (USCL) and the related

USCL Execution Engine.

The Unified Service Composition Language (USCL) The USCL is an XML-based language

intended to be processed by machines, rather than humans. The main feature of the lan-

guage consists of providing support for composing an open set of services, including

Web, Grid, and P2P services. The description of the compositions is kept separate from

the description of the software components, that are responsible for executing each compo-

sition task, in order to enhance the reusability of both. Compositions are modeled as pro-

cesses whose structure defines the data and control flow dependencies between the service

invocations, as well as the required exception handling behavior. Components are modeled

as services, an abstraction that makes the mechanism used to access the corresponding im-

plementation transparent.

Figure 4.13 depicts the structure of a USCL document.

The root element (USCL) of a USCL document can contain a set of process, service,

and service type definitions. In practice, the service definitions and the required service

type declarations are defined once and included from separate USCL documents. The ex-

ternal operation signature of a process is defined by a set of input and output parameters.

Internally, a process contains the list of its component tasks and the data flow (parameters

and edges). The service elements store the set of available service types that can be

invoked. Similar to Processes, the operation signature of services is composed of a set of

input and output parameters. Furthermore, a service can contain multiple access methods

which define alternative ways to invoke the functionality provided by the service. Access

Unified Discovery and Composition of Heterogeneous Services 85



methods also have input and output parameters conforming to the template defined in the

service type. By definition, the input and output parameters of an access method, and the

ones belonging to the corresponding service type, are considered system parameters (Pau-

tasso and Alonso 2004a).

Control flow is specified declaratively as a set of event-condition-action (ECA) rules,

which are associated with each service invocation. The actions represent the actual invoca-

tion of the service, which is carried out only when the associated event fires and the condi-

tion evaluates to true. An event is defined as a predicate over the global state of the

workflow (e.g., a rule should fire if a specific service has just successfully completed its in-

vocation; another rule should fire if any one of a set of services has failed). A firing event

will trigger the evaluation of the corresponding condition, which is a Boolean expression,

over the values of data flow parameters. Nontrivial conditions are used to model alterna-

tive paths in the execution of the workflow. Moreover, they can also represent loop entry/

exit conditions, since the rules associated with the service invocations can fire more than

once during the lifetime of the workflow.

The data flow is also modeled declaratively as a graph of edges linking pairs of parame-

ters. This fits quite well with the approach taken by VSCL, where such edges are visual-

ized. Thus, it is intended to simplify the mapping between the two languages.

Figure 4.13
Overview of the structure of a USCL document

86 Tsalgatidou and colleagues



In addition to control and data flow, USCL also features nesting, iteration, recursion,

reflection, dynamic binding, and several other constructs specifically targeting the compo-

sition of heterogeneous kinds of services. The detailed specification of the USCL language

is available in Pautasso, Heinis, and Alonso (2005).

The USCL Execution Engine The USCL Execution Engine provides a reliable and scalable

platform for executing processes given in the USCL format, which are composed of heter-

ogeneous services (Pautasso and Alonso 2004b). To do so, the architecture of the USCL

Execution Engine employs plug-in components which enable it to support an open set of

heterogeneous service invocation mechanisms.

The USCL Execution Engine provides a number of application programming interfaces

(APIs) (see figure 4.14), which are used for communication with the rest of the SODIUM

tools, as well as for the invocation of Web, P2P, and Grid services.

The functionality provided by the Deployment API is used to let the engine know that

the processes and services declared in a USCL document are available, thus making the

engine forget about the previously deployed items of the same USCL document. In this

Figure 4.14
APIs provided by the USCL Execution Engine

Unified Discovery and Composition of Heterogeneous Services 87



way, the USCL documents can be deployed to the USCL engine so the compositions

stored in them can be prepared for execution. By means of this API, the VSCL2USCL

translator component of the SODIUM Composition Suite is able to load USCL composi-

tions to the USCL Execution Engine.

The Startup API is mainly used to initiate the execution of a new composition instance.

In addition to starting an instance, this API allows clients to assign values to the input

parameters of the newly created instance and to control how the state of the instance is

managed by the engine (monitoring and logging). Once a process has been instantiated, it

should be possible to identify it among others concurrently running inside the engine.

Thus, after a process instance has been started, it is associated with a unique ID and then

it is returned to the client that started its execution. No assumptions should be made about

the format of such an ID, as this is left unspecified.

The Monitoring API allows accessing the execution logs of a given instance of a compo-

sition, identified by its ID. These logs provide information about the state of the execution

of a composition and can be retrieved at any time during the execution of a composition.

In general, the logs contain information about the data of a composition (current values

of input/output parameters) as well as metadata (current execution state of a task, perfor-

mance profiling information, error messages, and so on). Logs can be presented in a vari-

ety of formats (e.g., text, CSV, XML), depending on the intended usage.

The Invocation Plug-ins API addresses the requirement of dealing with heterogeneous

services by providing a platform which can be extended to support the invocation of di¤er-

ent kinds of services. This amounts to opening up the engine to use di¤erent mechanisms

for invoking services of di¤erent kinds. The same API is also used by the engine for the

execution of USQL queries at runtime, by submitting them to the USQL Engine through

its Web Service interface.

The USCL Execution Engine supports both synchronous and asynchronous service in-

vocation. For each service invocation to be performed, the engine instantiates a new object

of the given service invocation plug-in class. Furthermore, the plug-in is executed in a dedi-

cated thread. In this way, the USCL Execution Engine handles the multithreaded issues

for the concurrent invocation of multiple services.

The USCL Engine provides for the persistence of the state information of the process

instances. The design of this mechanism has been influenced by many requirements, such

as performance, reliability, and portability across di¤erent data repositories. Access to the

state information of the composition instances is provided in terms of a key-value pair

which uniquely identifies a certain data (or metadata) value associated with a process

(and task) instance. The state information data model is independent of the physical loca-

tion of the data, so that it is possible to use caching to exploit locality and—for increased

availability—replicate some of the values. Along these lines, in order to provide a level of

scalability, state management can be optimized to keep only a subset of all of the compo-

sition instances in memory and, for instance, swap compositions whose execution has been

88 Tsalgatidou and colleagues



completed to secondary storage, in a so-called process history space. In this way, the

USCL Engine gives access to the state of past executions to enable composition profiling

and optimization, caching of already computed results, and lineage tracking analysis.

Finally, in addition to the APIs previously described, the functionality of the USCL Ex-

ecution Engine is also accessible through a WSRF Web services API (Heinis et al. 2005).

This feature makes feasible the utilization of the USCL Execution Engine as a distinct

component outside the SODIUM platform.

Thanks to its multithread support and e‰cient resource management, the USCL Execu-

tion Engine achieves considerable performance and scalability. A detailed description of

these features, along with experiment measures, can be found in Pautasso, Heinis, and

Alonso (2007, 65) and in Pautasso et al. (2006).

4.4.5 The SODIUM Service Composition Methodology

The SODIUM Service Composition Methodology provides a way of composing existing

yet heterogeneous services, in an iterative, incremental four-phase evolving manner. (See

figure 4.15.)

Let us proceed with a description of the four development phases defined by the SO-

DIUM methodology. Along these lines, we exemplify the use of the various SODIUM

tools in order to demonstrate how they should be used according to the principles of the

methodology.

Phase 1: Modeling The first phase of the methodology consists of a number of activities.

The first activity is to identify the task to be solved by a new service composition. The

coarse-grained task is then refined into more detailed tasks. The relationships between

tasks are modeled as flow of control and data, and may be characterized as a graph con-

sisting of nodes (tasks) and directed edges (flows). To create complex control flow graphs,

parallelism and choices may be introduced. Each of the tasks is given a unique name. In

addition, expected input and output parameters may be specified. Expected service type(s)

(Web Service, P2P Service, and Grid Service) can also be specified.

The next two activities may be done in parallel:

1. Semantics By associating the task name and its input/output parameters to a domain,

the chance of discovering appropriate service(s) for the task increases. Therefore the user

(1) identifies available ontologies in order to import a relevant subset of its concept defini-

tions into the editor and then (2) uses these concepts to annotate the service category and

input/output parameters of each of the tasks.

2. QoS For each of the tasks, the user may specify the QoS that must be o¤ered by ser-

vices executing the given task.

The final product of this phase is an abstract composition that serves as input to the next

phase of the methodology.

Unified Discovery and Composition of Heterogeneous Services 89



Fi
g
u
re

4
.1
5

T
h
e
S
O
D
IU

M
H
et
er
o
g
en
eo
u
s
S
er
v
ic
e
C
o
m
p
o
si
ti
o
n
m
et
h
o
d
o
lo
g
y

90 Tsalgatidou and colleagues



In SODIUM, the first phase of the methodology is supported by the Composition Suite.

The screenshot in figure 4.16 illustrates an abstract composition that reflects the motivating

scenario described in section 4.2.

Actually, the figure 4.16 depicts what happens when an emergency unit receives an

emergency telephone call: it has to identify the location of an accident based on a caller’s

position, to find an ambulance which is closest to that location, and to dispatch it to that

location. The outcome of the composition is a map with a route from the ambulance’s

current position to the accident location and a set of necessary command messages that

are transmitted to the ambulance’s personnel. Note that the Get Caller Info, Get Caller

Position, Get Best Suited Ambulance, and Get Map tasks in the abstract graph are com-

posite; thus they are decomposed into subtasks, as the little mark at the bottom right edge

of each task denotes.

Phase 2: Discovery The second phase handles discovery of services that can satisfy the

requirements of each task. The user may either go back and forth between phases 1 and 2

Figure 4.16
Abstract service composition created with the SODIUM Composition Suite

Unified Discovery and Composition of Heterogeneous Services 91



of the process, or create the whole abstract composition at once and then move on to

phase 2 to populate the abstract composition with services, thereby transforming it into a

concrete composition ready for execution. Since SODIUM aims at supporting dynamic

service discovery at runtime, some tasks may be left without an associated service prior to

runtime. Instead, these tasks are given a predefined service query, which will be executed at

runtime.

Phase 2 is defined as a set of activities performed in sequence. The first activity is to

make a semantic description (a query document) by using the query dialogue for each of

the selected tasks. The query documents are passed directly to the query engine that sup-

ports the discovery process, based on matchmaking of semantic descriptions. It is assumed

that a service registry is available with the following information provided for each service:

1. A service interface description

2. A semantic description that can be used for the matchmaking process

3. QoS o¤ered that can be exploited for the selection in the next phase.

The final product of phase 2 is a list of candidate services per task.

The service discovery phase of the methodology is handled by the USQL Engine. More

specifically, for each task that requires a service, the developer opens the USQL Dialogue

(see figure 4.17) from the composition visual editor, creates a USQL query by setting a

number of syntactic, semantic, and/or QoS search criteria, and executes the query by sub-

mitting it to the USQL Engine. The latter returns a list of matching services, which are

appropriately displayed in the USQL Dialogue (see figure 4.17).

Phase 3: Selection In phase 3, the goal is to narrow down and rank the services based on

the QoS requirements. The QoS requirements contain two parts (see Grønmo and Jaeger

2005 for further details). The first part contains the absolute QoS constraints that are used

to exclude services. The second part contains the optimization criteria that are used to

rank the services. Instead of applying a ‘‘greedy-based’’ approach (i.e., ensuring QoS opti-

mization of each task in isolation), another approach could be used, as the one proposed

in Grønmo and Jaeger (2005), which considers the composition as a whole or in subparts.

However, the SODIUM platform supports only QoS optimization of single tasks in

isolation.

The QoS-based prioritization and selection will return an assignment of a ranked list of

candidate services for each task. Then, the composition designer chooses one or more con-

crete services for each task in the abstract composition model. In this way, the developer

finalizes the concrete composition model, which is the outcome of phase 3. Often it can be

wise to choose more than one service for a task. This is the case if during runtime a service

becomes temporarily or permanently unavailable. Then, an alternative service, performing

the same task, may compensate for the unavailable one.

92 Tsalgatidou and colleagues



Fi
g
u
re

4
.1
7

T
h
e
U
S
Q
L
D
ia
lo
g
is
u
se
d
b
o
th

fo
r
ed
it
in
g
U
S
Q
L
q
u
er
ie
s
a
n
d
d
is
p
la
y
in
g
se
a
rc
h
re
su
lt
s

Unified Discovery and Composition of Heterogeneous Services 93



The outcome of phase 3 is a concrete service composition model with selected services.

The SODIUM platform supports this phase via the use of the Composition Suite and the

USQL dialogue. Having executed a USQL query, the developer needs to go through the

list of matching services and manually select the one(s) that seem(s) to be most appropriate

for the specific task.

Phase 4: Publishing In the fourth and final phase, the concrete composition model is used

to generate di¤erent descriptions about the composed service:

1. A WSDL document describing the syntactic interface and its technical bindings

2. An executable flow document

3. Semantic Web Service documents (e.g., OWL-S, WSML etc.) and documents describing

the o¤ered QoS.

The WSDL file can be automatically generated as shown in Grønmo et al. (2004, 1), and

the executable flow document can be generated as shown in Kath et al. (2004). The Seman-

tic Web Service documents can be automatically generated by the transformation tool

described in Grønmo, Jaeger, and Ho¤ (2005). All the generated information may be sub-

mitted to a Web Service registry where, third parties can discover and use the composed

service. The transformation rules from the concrete composition model to QoS documents

have not been specified within the context of SODIUM.

Publishing composite Web Service and registering service descriptions to a Web Service

registry is not supported by the SODIUM platform, as it was considered outside the scope

of the project. Thus, within the context of the SODIUM platform, only the generation of

the executable USCL documents is supported, by means of the VSCL2USCL translator,

which compiles and converts VSCL service compositions into USCL processes.

Figure 4.18 summarizes the involvement of the SODIUM tools in each phase prescribed

by the methodology. In addition to the four phases of the methodology, a final step regard-

ing the execution of the service composition has been included to show the involvement of

the SODIUM execution engine.

A detailed view and description of the SODIUM Service Composition Methodology is

given in Grønmo and Ho¤ (2007). Before concluding this section, we would like to note

that although the intended users of the SODIUM Methodology are primarily the users of

the SODIUM platform, the principles of this methodology can be applied to service com-

position in general, as a way of working.

4.5 Related Work

SODIUM provides for the development of service-oriented applications by supporting the

unified discovery and composition of heterogeneous services. Its contribution lies in the

areas of visual service composition (VSCL language and editor), execution of service com-

94 Tsalgatidou and colleagues



positions (USCL language and execution engine), and service discovery (USQL language

and engine). In the following we compare the SODIUM results with existing work in these

areas.

The two SODIUM composition modeling languages (i.e., the VSCL and the USCL) ac-

commodate the visual as well as the textual representation of service compositions. Similar

to VSCL, the BPMN (BPMI 2004) notation supports the description of the control and

data flow for a business process. BPMN is based on the UML activity diagram and facili-

tates the visual representation of business processes in a methodology-independent man-

ner. The VSCL has been influenced by BPMN and, in addition, it provides constructs

which facilitate the description of Web, Grid, and P2P services. Moreover, VSCL provides

concepts which support the description of the non-functional aspects of a service, such as

quality-of-service properties or associated semantics.

The USCL, on the other hand, is an XML-based service composition language which,

like WS-BPEL (Alves et al. 2007), accommodates the description of the composition con-

trol and data flows. In contrast to WS-BPEL, USCL is independent of a specific service

technology, and thus it may support the composition of services regardless of their type

and underlying service provision platforms. Furthermore, the USCL, along with the

Figure 4.18
SODIUM methodology and SODIUM tools

Unified Discovery and Composition of Heterogeneous Services 95



USCL Engine, accommodates the description of data transformations in a rich set of

transformation techniques which include XSLT (Clark 1999), XQuery (Boag et al. 2007),

and QVT (QVT-Merge Group 2004), so that the optimal one in terms of runtime perfor-

mance and development e¤ort can be applied.

The use of a service-oriented approach to software development introduces the need for

service discovery, which is only partially addressed by other approaches to service compo-

sition development (Altintas et al. 2004). In the areas of Web, Grid, and P2P services, ser-

vice discovery is performed with the use of custom and incompatible APIs and discovery

mechanisms o¤ered by registries and networks (Clement et al. 2004; Li 2001, 88). Over the

last years, research in the area of service discovery was oriented toward improving and/or

extending the existing discovery mechanisms (Paolucci et al. 2002; Li et al. 2004). More-

over, many approaches were proposed to enhance the overall discovery process and preci-

sion (Klein and Bernstein 2004, 30; Kozlenkov et al. 2006). Still, to the best of our

knowledge, the SOC community lacks the means that would enable accessing and query-

ing heterogeneous registries in a unified and standards-based manner. Moreover, exploita-

tion of semantics and QoS within service descriptions proves to be a crucial part of service

discovery. USQL and its enacting engine address these issues and constitute a stepping-

stone to the unification of the various heterogeneous service areas.

4.6 Conclusions

Service-oriented computing is an emerging trend that promises to reform current software

engineering approaches. Even though SOC aims at facilitating interoperability between the

components required for building an application, it still has not come up to this expecta-

tion. The proliferation of various service-oriented technologies (e.g., Web, Grid and P2P

services), which employ incompatible properties and characteristics, hinders the wide-

spread utilization of those services. With the emerging need to compose such incompatible

types of services, the support for their interoperation becomes an issue of high importance.

The SODIUM contribution in service interoperability and integration, presented in this

chapter, provides an approach to unified discovery and composition of heterogeneous ser-

vices. SODIUM provides a generic service model, a set of languages supporting the visual

specification of service compositions, the unified querying for services, and the execution of

heterogeneous service compositions, along with a set of tools that provide for the design,

discovery, and execution of service compositions. Although the SODIUM platform was

originally implemented to support the unified discovery and composition of Web, Grid,

and P2P services, its extensibility and modularity features that are exhibited by the whole

set of its components facilitate the accommodation of other types of services as well.

Other projects of the Information Society Technologies (IST) Priority of the 6th Frame-

work Program (FP6) of the European Union which tackle issues similar to the ones

tackled by SODIUM are SeCSE (http://secse.eng.it), ATHENA (http://www.athena-ip

96 Tsalgatidou and colleagues



.org/), PLASTIC (http://www-c.inria.fr/plastic/), and AMIGO (http://www.hitech-projects

.com/euprojects/amigo/). The SeCSE project provides innovative technologies, methods,

and tools for supporting service-oriented computing, but it does not explicitly tackle heter-

ogeneity in service discovery and composition, which is the main focus of SODIUM. The

ATHENA project addresses system and application interoperability and focuses mainly on

bridging the gap between business and IT, whereas SODIUM concentrates on the intero-

perability between Web, P2P, and Grid services in the development of service-oriented

applications. The PLASTIC and AMIGO projects tackle service interoperability in perva-

sive computing environments by taking advantage of context information to provide

e‰cient service discovery in multi-network environments (the PLASTIC approach) and

by establishing interoperability at a semantic level (the AMIGO approach), whereas

SODIUM addresses service interoperability by o¤ering a unified approach to the discovery

and composition of existing heterogeneous services through the SODIUM languages and

tools described in the previous sections.

The need to address heterogeneous types of services in a unified manner has also been

identified by other organizations such as OMG, which released a request for proposal

(UPMS RFP (UPMS 2006)) for the provision of a service meta-model that will leverage

the description of services. Two SODIUM results, the VSCL language and the GeSMO

model, have been submitted to OMG in order to address the needs of the UPMS RFP.

Further to addressing the needs of standardization bodies, the SODIUM results have also

been exploited through other venues. Thus, we would like to note that GeSMO has been

used as input in the ATHENA project, whilst the USQL and the USQL engine have been

extended and further utilized in the SeCSE project.

The SODIUM solution has been e¤ectively applied to the construction of two pilot

applications which integrate functionality from heterogeneous services in the crisis man-

agement and the health care domains. It is worth mentioning that the development of these

two applications was greatly facilitated and improved by the SODIUM platform, despite

the prototype phase of the provided tools. Furthermore, the independence of the SO-

DIUM platform components facilitated the customization of the application development

environment, since developers were given the liberty to tailor the deployment according to

their needs.

All SODIUM tools are open source, provided under the LGPL license (http://www.gnu

.org/licenses/lgpl.html) with the potential for integration in any commercial environment.

Acknowledgments

The work published in this chapter was partly funded by the European Community under

the Sixth Framework Program, contract FP6–04559 SODIUM. The work reflects only the

authors’ views. The Community is not liable for any use that may be made of the informa-

tion contained therein. The authors would like to thank the rest of the SODIUM project

Unified Discovery and Composition of Heterogeneous Services 97



partners, namely: ATC, S.A., for the project management, Locus and MEDISYSTEM

for contributing to the development of the pilots and the rest members of the NKUA,

SINTEF, and ETHZ teams for their invaluable contribution to this work.

References

Al-Ali, R. J., Rana, O. F., Walker, D. W., Jha, S., and Sohail, S. 2002. G-QoSM: Grid Service discovery using
QoS properties. Computing and Informatics 21: 363–382.

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., and Mock, S. 2004. Kepler: An extensible system
for design and execution of scientific workflows. In 16th International Conference on Scientific and Statistical
Database Management, pp. 423–424. Santorini, Greece.

Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C., König, D., Mehta, V.,
Thatte, S., Rijn, D., Yendluri, P., and Yiu, A. eds. 2007. Web Services Business Process Execution Language
Version 2.0. OASIS Standard, April 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0–OS.html.

Athanasopoulos, G., Tsalgatidou, A., and Pantazoglou, M. 2006. Unified description and discovery of P2P ser-
vices. 2006. In First International Conference on Software and Data Technologies. Setubal, Portugal. INSTICC
Press.

Babik, M., Gatial, E., Habala, O., Hluchy, L., Laclavik, M., and Maliska, M. 2006. Semantic Grid services in
K-Wf Grid. In Second International Conference on Semantics, Knowledge, and Grid. Guilin, China.

Ballinger, K., Ehnebuske, D., Ferris, C., Gudgin, M., Nottingham, M., and Yendluri, P., eds. 2006. Basic Profile
Version 1.1, Web Services Interoperability Organization. http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-
10.html.

Banks, T. 2006. Web Services Resource Framework (WSRF)—Primer v1.2. OASIS, May. http://docs.oasis-open
.org/wsrf/wsrf-primer-1.2–primer-cd-02.pdf.

Boag, S., Chamberlin, D., Fernández, M., Florescu, D., Robie, J., and Siméon, J., eds. 2007. XQuery 1.0: An
XML Query Language. W3C, January. http://www.w3.org/TR/xquery/.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D., eds. 2004. Web
Services Architecture. W3C Working Group Note, February. http://www.w3.org/TR/ws-arch/.

BPMI. 2004. Business Process Modeling Notation (BPMN) Version 1.0. OMG, May. http://www.omg.org/docs/
bei/05-08-07.pdf.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., eds. 2001. Web Services Description Language
(WSDL) 1.1. W3C note, March. http://www.w3.org/TR/wsdl.

Clark, J. 1999. XSL Transformation (XSLT) Version 1.0. W3C Recommendation, November. http://
www.w3.org/TR/xslt.

Clement, L., Hately, A., von Riegen, C., and Rogers, T., eds. 2004. UDDI Version 3.0.2. OASIS, October. http://
uddi.org/pubs/uddi_v3.htm.

Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., and Zuccalà, M. 2005. Speaking a common language: A
conceptual model for describing service-oriented systems. In Service Oriented Computing, Computing ICSOC
2005: 3rd International Conference. Amsterdam, Netherlands.

Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Maguire, T., Snelling, D., and Tuecke, S. 2004.
From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring & Evolution, Version 1.0. The
Globus Alliance. http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf.

EBXML 2002, OASIS/ebXML Registry Services Specification v2.0. http://www.oasis-open.org/committees/
regrep/documents/2.0/specs/ebrs.pdf.

Farrell, J., and Lausen, H., eds. 2007. Semantic Annotations for WSDL and XML Schema. W3C Recommenda-
tion, August. http://www.w3.org/TR/2007/REC-sawsdl-20070828.

Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrstedt, K., and Roy, A. 1999. A Distributed Resource manage-
ment architecture that supports advance reservations and co-allocation. In Proceedings of the International Work-
shop on Quality of Service. London, England.

98 Tsalgatidou and colleagues



Gerke, J., Reichl, P., and Stiller, B. 2005. Strategies for service composition in P2P networks. In Proceedings of
the Second International Conference on E-Business and Telecommunication Networks. Reading, U.K. INSTICC
Press.

Gibbons, P., Karp, B., Ke, Y., Nath, S., and Seshan, S. 2003. IrisNet: An architecture for a world-wide sensor
web. IEEE Pervasive Computing 2, no. 4: 22–33.

Grønmo, R., and Ho¤, H. 2007. D19: SODIUM Service Composition Methodology. SODIUM, January. http://
www.atc.gr/sodium.

Grønmo, R., and Jaeger, M. 2005. Model-driven methodology for building QoS optimised Web Service composi-
tions. In 5th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS 2005).
Athens, Greece. LNCS 3543. Springer.

Grønmo, R., Jaeger, M., and Ho¤, H. 2005. Transformations between UML and OWL-S. In Foundations and
Applications: Proceedings of the First European Conference on Model Driven Architecture (ECMDA-FA), pp.
269–283. Nuremberg, Germany.

Grønmo, R., Skogan, D., Solheim, I., and Oldevik, J. 2004. Model-driven Web Service development. Interna-
tional Journal of Web Services Research 1, no. 4 (October–December): 1–13.

Heinis, T., Pautasso, C., Alonso, G., and Deak, O. 2005. Publishing persistent Grid computations as WS resour-
ces. In Proceedings of the 1st IEEE International Conference on E-Science and Grid Computing (e-Science 2005),
pp. 328–335. Melbourne, Australia.

Ho¤, H., Grønmo, R., Skogan, D., and Strand, A. 2005. D7: Specification of the Visual Service Composition
Language (VSCL). SODIUM, June. http://www.atc.gr/sodium.

Ho¤, H., Hansen, T., and Skogan, D. 2006. D5: Specification of Requirements for User Applications Part I:
Requirements Specification for the Locus Pilot. SODIUM, February 2006. http://www.atc.gr/sodium.

Ho¤, H., Skogan, D., Grønmo, R., Limyr, A., and Neple, T. 2006. D9: Detailed Specification of the SODIUM
Composition Suite. SODIUM, February. http://www.atc.gr/sodium.

Kath, O., Blazarenas, A., Born, M., Eckert, K.-P., Funabashi, M., and Hirai, C. 2004. Towards executable mod-
els: Transforming EDOC behaviour models to CORBA and BPEL. In 8th International Enterprise Distributed
Object Computing Conference (EDOC 2004). Monterey, Calif.

Keller, A., and Ludwig, H. 2003. The WSLA framework: Specifying and monitoring service level agreements for
Web Services. Journal of Network and Systems Management 11, no. 1 (March): 57–81.

Klein, M., and Bernstein, A. 2004. Toward high-precision service retrieval. IEEE Internet Computing 8, no. 1:
(January–February): 30–36.

Koutsonikola, V., and Vakali, A. 2004. LDAP: Framework, practices, and trends. IEEE Internet Computing 8,
no. 5 (September–October): 66–72.

Kozlenkov, A., Fasoulas, F., Sanchez, F., Spanoudakis, G., and Zisman, A. 2006. A framework for architecture-
driven service discovery. In 2006 International Workshop on Service-Oriented Software Engineering. Shanghai,
China.

Li, G. 2001. JXTA: A network programming environment. IEEE Internet Computing 5, no. 3 (May–June): 88–
95.

Li, Y., Zou, F., Wu, Z., and Ma, F. 2004. PWSD: A scalable Web Service discovery architecture based on peer-
to-peer overlay network. In 6th Asia–Pacific Web Conference on Advanced Web Technologies and Applications.
Hangzhou, China. LNCS 3007.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIllraith, S., Narayanan, S., Paolucci, M.,
Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. 2004. OWL-S: Semantic Markup for Web Services.
W3C, November. http://www.w3.org/Submission/OWL-S/.

Mitra, N., ed. 2003. SOAP Version 1.2 Part 0: Primer. W3C, June. http://www.w3.org/TR/soap12–part0/.

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M., and Risch, T. 2002.
EDUTELLA: A P2P networking infrastructure based on RDF. In 11th international Conference on World Wide
Web (WWW ’02). Honolulu.

NESSI, Networked European Software & Services Initiative. http://www.nessi.com/Nessi/.

Newmarch, J. 2005. UPnP services and Jini clients. In Proceedings of the 2005 Conference on Information Sys-
tems: Next Generations (ICIS 2005). Las Vegas, Nev.

Unified Discovery and Composition of Heterogeneous Services 99



Pantazoglou, M., Tsalagatidou, A., and Athanasopoulos, G. 2006a. Quantified matchmaking of heterogeneous
services. In Proceedings of the 7th International Conference on Web Information Systems Engineering (WISE
2006). Wuhan, China. LNCS 2455, pp. 144–155.

Pantazoglou, M., Tsalgatidou, A., and Athanasopoulos, G. 2006b. Discovering Web Services and JXTA peer-to-
peer services in a unified manner. In Proceedings of the 4th International Conference on Service-Oriented Comput-
ing (ICSOC 2006). Chicago. LNCS 4294, pp. 104–115.

Paolucci, M., Kawamura, T., Payne, T., and Sycara, K., 2002. Importing the Semantic Web in UDDI. In
Proceedings of E-Services and the Semantic Web Workshop (WES 2002), CAiSE 2002 International Workshop.
Toronto.

Papazoglou, M., and Georgakopoulos, D. 2003. Service-oriented computing. Communications of the ACM 46, no.
10 (October): 24–28.

Pautasso, C., and Alonso, G. 2004a. From Web Service composition to megaprogramming. In Proceedings of the
5th VLDB Workshop on Technologies for E-Services (TES-04). Toronto.

Pautasso, C., and Alonso, G. 2004b. JOpera: A toolkit for e‰cient visual composition of Web Services. Interna-
tional Journal of Electronic Commerce 9, no. 2: 107–141.

Pautasso, C., Heinis, T., and Alonso, G. 2005. D6: Specification of the Unified Service Composition Language
(USCL). SODIUM, June. http://www.atc.gr/sodium.

Pautasso, C., Heinis, T., and Alonso, G. 2007. Autonomic resource provisioning for software business processes.
Information and Software Technology 49, no. 1: 65–80.

Pautasso, C., Heinis, T., Alonso, G., Pantazoglou, M., Athanasopoulos, G., and Tsalgatidou, A. 2006. D10:
Detailed Specification of SODIUM Runtime Environment. SODIUM. http://www.atc.gr/sodium.

QVT-Merge Group. 2004. Revised Submission for MOF 2.0 Query/Views/Transformations RFP. QVT-Merge
Group. http://www.omg.org/cgi-bin/apps/doc?ad/04-04-01.pdf.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C., Bussler, C., and
Fensel, P. 2005. Web Service modeling ontology. Applied Ontology 1, no. 1: 77–106.

Sahin, O. D., Gerede, C. E., Agrawal, D., El Abbadi, A., Ibarra, O., and Su, J. 2005. SPiDeR: P2P-based Web
Service discovery. In 3rd International Conference on Service-Oriented Computing (ICSOC 2005). Amsterdam.

Tian, M., Gramm, A., Ritter, H., and Schiller, J. 2004. E‰cient selection and monitoring of QoS-aware Web
Services with the WS-QoS framework. In 2004 IEEE/WIC/ACM International Conference on Web Intelligence,
pp. 152–158. Beijing.

Tosic, D. V., Pagurek, B., Patel, K., Esfandiari, B., and Ma, W. 2003. Management Applications of the Web Ser-
vice O¤erings Language (WSOL). In 15th Conference on Advanced Information Systems Engineering (CAiSE’03).
Velden, Austria. Published in Advanced Information Systems Engineering LNCS 2681 (2008), pp. 1029–1052.

Tsalgatidou, A., Athanasopoulos, G., Pantazoglou, M., Floros, V., Koutrouli, E., and Bouros, P. 2005. D4: Ge-
neric Service Model Specification. SODIUM, June. http://www.atc.gr/sodium.

UML. 2002. Unified Modeling Language: Superstructure, Version 2.0. OMG. http://www.omg.org/cgi-bin/
doc?formal/05–07–04.

UPMS. 2006. UML Profile and Meta-model for Services (UPMS) Request for Proposal. OMG. http://www.omg
.org/docs/soa/06–09–09.pdf.

Vogels, W. 2003. Web Services are not distributed objects. IEEE Internet Computing 7, no. 6 (November–
December): 59–66.

Vu, L.-H., Hauswirth, M., and Aberer, K. 2005. Towards P2P-based semantic Web Service discovery with QoS
support. Presented at Workshop on Business Processes and Services (BPS). Nancy, France. Published in BPM
Workshops, LNCS 3812 (2006), pp. 18–31.

100 Tsalgatidou and colleagues


