

SEMANTICALLY ENHANCED DISCOVERY OF
HETEROGENEOUS SERVICES

A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou
University of Athens, Department of Informatics and Telecommunications

Abstract: Industrial application development approaches are striving for solutions that
promote the rapid development of flexible and adaptable systems and the
exploitation of legacy systems and resources. The Service-oriented
Development (SOD) paradigm, a current trend in software development, could
be beneficial to industrial application development approaches. However, the
heterogeneity in existing standards and protocols for the discovery of the
various service types is an obstacle for the use of SOD in industry. This paper
addresses this issue by providing a solution that supports the unified discovery
of heterogeneous services and thus supporting the use of SOD in industry. The
proposed solution comprises a generic service model (GeSMO), which
facilitates the specification of heterogeneous services, a query language called
Unified Service Query Language (USQL), based on GeSMO, which facilitates
the unified discovery of heterogeneous services within heterogeneous service
registries and a query engine called USQL Engine, that enables the execution
of queries described in terms of the USQL, upon heterogeneous service
registries.

Key words: Service-oriented Development, Heterogeneous Services, Web Services, P2P
Services, Grid Services, Generic Service Model, Semantically-enhanced
Service Discovery.

1. INTRODUCTION

Software engineering is gradually shifting to Service-Oriented
Architecture (SOA) [SOA] and related technologies, in order to address
critical contemporary issues imposed by the emergence of the Web, such as
low cost application development and application interoperability. Industry’s

2 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

competitive environment needs technology solutions that will facilitate
Rapid Application Development (RAD) and ensure application features such
as flexibility and adaptability. Moreover, the exploitation and reuse of legacy
systems constitutes a critical factor for the adoption and viability of these
solutions. To satisfy the aforementioned requirements, industry seems to be
embracing current trends of Service-Oriented Development, and it is
expected that the emerging Semantic Web [SemWeb] will further accelerate
the coalescence of the two worlds.

Nowadays, the Web bustles with services that are characterized by a high
degree of diversity and heterogeneity. Web, Grid, and P2P services are
continuously gaining momentum, yet, these are ruled by different and
heterogeneous protocols and standards, making it difficult for them to
interoperate. As a result, industry is intimidated in integrating and
composing such diverse components for the utilization of service-oriented
applications. Clearly, the full dynamics of these service technologies will be
exposed and exploited by the industry, only when appropriate languages and
tools emerge, which will render integration and interoperability among these
technology areas feasible. Therewithal, services need to be discovered in
order to be integrated in the context of an industrial application and, besides
that, semantic annotations in service descriptions are required, in order to
facilitate and automate the process of service discovery.

The provision of a framework that will encompass all previously
mentioned requirements is expected to become the stepping stone to a new,
service-oriented era in the world of industrial applications. SODIUM
[SODIUM] forms an integrated solution for supporting and facilitating the
comprehensive and unified visual composition, discovery, execution and
monitoring of heterogeneous services. SODIUM platform comprises a set of
languages as well as a set of individual, distributed and loosely-coupled
components, which collaborate in order to support the aforementioned
functionality.

In this paper, we focus on the service query language and its enacting
search engine provided by SODIUM, which, combined, enable the unified
and semantically enhanced discovery of diverse types of services over
heterogeneous registries and/or networks. The results of such discovery can
then be used for the development of service compositions in industrial
environments.

The rest of this paper is structured as follows: A motivating scenario is
presented to demonstrate how a real industrial application can be developed
according to a Service-Oriented Architecture, by utilizing various
heterogeneous services, as well as how it benefits from such an approach.
Next, a Generic Service Model is described, offering a common point of
reference for the various types of services. Following that, we introduce a

Semantically enhanced discovery of heterogeneous services 17

Unified Service Query Language catering for the discovery of heterogeneous
services that are compliant with the model previously discussed, as well as
its enacting engine. Based on the motivating scenario, examples on using the
language and the engine are provided, in order to showcase the various
assets of our framework. Consequently, we include a brief section with
related work in service definition and discovery and finally the paper is
closed with our conclusion statements.

2. MOTIVATING SCENARIO

An appropriate domain for the application of service-oriented computing
is the automobile industry. Car manufacturers and their suppliers face many
significant challenges, including pressure to reduce cost and time to delivery
in the supply chain. The dynamic nature of such supply chains and the
heterogeneity among the systems of the respective stakeholders are some of
the obstacles that a system developer has to face.

Figure 1. Order processing flow example

A crucial task that is usually met in an order processing workflow is the
estimation of the processing time for a given order. In a car manufacturing
industry there could be a plethora of requests for such calculations, which
have to be answered promptly. However, the calculation of the order
processing time is a computation intensive task that is depending on many
factors such as the existence of all necessary components, the delivery time
of non-existing components, the current factory production plans, order
priority, etc.

4 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

A simplified workflow, which calculates the processing time of an order,
is presented in Figure 1. According to this scenario, the workflow takes as
input a list with the order’s components that need to be provided. The
workflow begins with the execution of two parallel tasks; one task provides
the current production plans of the factory and the other checks whether the
factory’s warehouses have all the necessary materials. If some necessary
materials are missing, the workflow continues with the preparation of an
order for supplies and the submission of that order to a supplier which
returns the necessary order details such as cost, delivery time and shipment
method. Upon the completion of the aforementioned tasks, the workflow
goes on with the execution of two parallel tasks, which estimate the order
processing time and reschedule the production plan respectively. The outputs
of the workflow are the estimation of the order completion time and the
reformed production plan which takes into account the new order.

The tasks modeled in this scenario do not have to be developed from
scratch. They could be performed by already existing services that may be
available over the Internet. For example, the functionality required by the
tasks “Get Current Production Plan”, “Create Supplies Order” and
“Order Parts” may be provided by respective web services which are
registered in a web service registry (e.g. UDDI) and are offered by various
providers. . The “Inventory Check” task could be performed by a p2p
service that is provided by a p2p network that exists between the
manufacturer’s warehouses. Last but not least, the functionality required by
the “Estimate Order Processing Time” and “Schedule Production Plan”
tasks could be provided by grid services which are utilizing the resources of
a grid network where the car manufacturing organization is participating.

In order to be integrated in the aforementioned workflow, services have
to be firstly discovered. However, service discovery is not an easy task, due
to the heterogeneity and incompatibility between the existing description and
discovery protocols and standards for web services, grid services and p2p
services. In the following, we describe our solution to this problem that
comprises a Generic Service Model, a Unified Query Language and a
respective enacting engine.

3. GENERIC SERVICE MODEL

Although, service-oriented technologies (e.g. web, grid and p2p services)
comply with the same paradigm, they adhere to different models, having
different characteristics and different properties. Moreover, their
heterogeneity spawns across other aspects such as architecture, supported
protocols and standards, infrastructure, semantics and quality of service

Semantically enhanced discovery of heterogeneous services 17

(QoS). This diversity makes the integration of different services a strenuous
task.

Therefore, in order to remove this burden from a system developer a
generic service model (GeSMO) incorporating features and properties of all
service-oriented technologies needs to be provided. This model will facilitate
the specification of any type of service and the mapping and/or association
of service features of one technology to the other.

3.1 Service Model Structure

An assessment of the service models of the addressed service-oriented
technologies brings up a set of common features and properties that may be
regarded as the common denominator of the web, grid and p2p services,
which are the service types being addressed in this paper. Nevertheless,
apart from this set of common features there are a lot of discrepancies among
the various types of services.

Thus, a layered structure seems to be appropriate for the specification of
GeSMO comprising a core layer with common features of all service-
oriented technologies and with appropriate extensions providing for the
specific features and properties of each of the addressed service types.
Figure 2 illustrates the structure of GeSMO. Furthermore, crosscutting
issues such as Semantics, Quality of Service, Trust, Security and
Management are pertinent to all types of services and may be related to any
element of the service model.

Figure 2. Generic Service Model Structure

In the following we present each of the identified layers and the
interrelationships among their elements.

3.2 Core Service Model Concepts

After a thorough investigation of the current state of the art in service
technology, we came up with a set of features that seem to be pertinent to all

6 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

types of services. As it is illustrated in Figure 3 a service is regarded as a
software system that exchanges messages, which are usually XML-
formatted, it resides at a specific network address and it has a description
that may be an XML- formatted document.

Figure 3. Service model

 Service descriptions, which may be semantically and/or quality of
service enhanced are published in service registries which are used by
requestors for the discovery of appropriate services. A service description
contains information that can be used for the identification and invocation of
a service (Figure 4).

Figure 4. Service description structure

A service description conveys information, such as the specific endpoint
that a service resides, the protocol that can be used for the message exchange
and text descriptions providing human readable information about the
service. In some cases, the specification of the message exchange
mechanism may not be explicitly described, e.g. in P2P services an implied
scheme is used. In these cases information related to the service endpoint or
the protocol used is inferred by the underlying platform.

Figure 5. Message Structure

Semantically enhanced discovery of heterogeneous services 17

Exchanged messages are composed of two parts: header and payload
information (Figure 5). The header part normally conveys information that is
manipulated by the intermediate nodes/middleware transporting the
messages. Such information may be routing information, security or
transaction context information, etc. The payload part of a message conveys
information that is consumed by the service or its client. This information is
application specific and it normally abides by data types that are specified by
the platform (e.g. Strings, Integers, etc) or the service provider (e.g.
Addresses, Contacts, etc).

Service description documents contain additional information that
facilitates the invocation of services. Services implement specific interfaces
which describe the operations that are offered by a service (see Figure 6).
These operations exchange messages, which convey information that abides
by specific data types, with the service clients. These messages could be
either incoming or outgoing with respect to the service. This information is
also included in a service description document as it is necessary for the
invocation of a service.

Figure 6. Service description elements

We have to note here that, service invocation information is not provided
by all service type descriptions, e.g. by p2p service descriptions, as it can be
either inferred by the underlying infrastructure or by the service
implementation.

4. UNIFIED SERVICE QUERY LANGUAGE (USQL)

The Unified Service Query Language (USQL) is an XML-based [XML]
language enabling requestors to formulate queries asking for available
services. The language specification describes both requests and
corresponding responses. The main contribution of USQL lies in that it
follows a unified approach to expressing queries as regards the
heterogeneous types of services. This is achieved with the language abiding
by the core concepts introduced by GeSMO, as far as the abstract definition
of a service is concerned. On the other hand, USQL responses may be easily
extended so as to provide the concrete information for invoking the service,
with respect to its type. Thanks to its flexible and extensible design, USQL

8 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

can consolidate virtually any GeSMO-compliant type of service, thus
providing service-oriented industrial applications with a wide lookup range
regarding candidate services that could be integrated and used for fulfilling a
specific task.

Figure 7. Orthogonal position of USQL with respect to services and semantic frameworks

USQL currently addresses - but is not limited to - Web, Grid, and P2P
services, aiming at applying semantically enhanced queries for discovering
them. As depicted in Figure 7, USQL is orthogonal with respect to these
diverse service types and their description protocols; moreover, semantic
concepts supported by the language are generic enough so as to map to most
well known emerging semantic frameworks, such as OWL-S [OWL-S] and
WSMO [WSMO], thus enabling the exploitation of their capabilities.

4.1 Semantics in USQL

Although syntactic information suffices for the invocation of a service,
experience has shown that confining a service query to syntactic matching
yields in most cases to scrappy results; the response to a query based on
syntactic information either misses services, or contains services which are
actually irrelevant to the initial request. Furthermore, the limited
expressiveness of syntactic information is an obstacle when applying service
discovery at runtime. To tackle such cut-backs, USQL enhances service
requests with semantic information, in order to provide users with more
expressive means. The supported semantics consist of domain-specific
annotations which are bound to service operations and their respective
input/output. In addition, USQL provides a set of elements and structures to
allow for the application of QoS requirements in the search criteria, in order
to refine service discovery and selection.

Briefly, USQL provides the following features for semantically
annotating service requests:
• Domain – implemented by an element called ServiceDomain, this feature

enables requestors to specify an application domain for the requested
services and thus to semantically enhance the query and to confine the

Semantically enhanced discovery of heterogeneous services 17

search range. This is the first step towards overcoming scrappy and
irrelevant results.

• Input/Output – the Input/Output elements enable requestors to apply
semantic criteria regarding the expected input/output of an operation
offered by a service.

• Capability – the Capability element enables requestors to apply semantic
criteria regarding the expected capability (i.e. the abstract functionality)
of an operation offered by a service.
USQL introduces a set of operators that can be applied to semantic

elements during service discovery, determining the type of inference rules
that should be employed for reasoning purposes. More specifically, the
following types of inference are supported by the language:
• exact – indicates that the element's value must be an exact match of the

value of the corresponding element in the service advertisement.
• abstraction – indicates that the element's value must be subsumed by that

of the corresponding element in a service advertisement.
• extension – indicates that the element's value must subsume that of the

corresponding element in a service advertisement, besides exact
matching.
USQL defines a generic type for all supported semantic elements, which

contains the following attributes:
• typeOfMatch – applies any combination of the aforementioned operators

to the semantic element, indicating the type of inference that must be
employed during the discovery process, in order to determine if a service
satisfies the specific semantic requirement.

• nullAccepted – specifies whether services not including the
corresponding element in their description should be further processed,
and potentially included in the results, or not.

• ontologyURI – associates the value of the semantic element with an
existing ontology, identified by a URI.
By employing these relatively simple artefacts, USQL enriches service

queries semantically, allowing requestors to express their requirements in a
more explicit way, thus yielding to concrete and consistent results.
Nevertheless, by keeping semantics support to this level of simplicity, the
language retains its openness and orthogonal position as regards existing and
emerging types of services and semantic frameworks. In the following
paragraph, we demonstrate how USQL can be used to formulate
semantically enhanced queries looking for appropriate services that would
satisfy the requirements imposed by the previously presented motivating
scenario.

10 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

4.2 Using USQL

As shown in the motivating scenario, the first step in order to calculate
the processing time for an order in the domain of automobile is to retrieve
the current production plan. Thus, a Web service with the specific output is
needed to fulfil the task. The following USQL request (Figure 8)
encompasses these details with the use of semantic annotations, in order to
find the most appropriate service for the job:

Figure 8. Example USQL request for Web services

Figure 9. Example USQL request for P2P services

Given a set of required components for the production of a car, the
workflow needs to access the established P2P network and look for a service
that will enable checking against warehouses for missing components. The
USQL message expressing a request for such a service is depicted in Figure
9.

The estimation of the time that is required for processing an order is a
demanding operation in terms of processing power, due to its complex

Semantically enhanced discovery of heterogeneous services 17

calculations. Hence, a Grid service would be the perfect candidate for
carrying out this task. Figure 10 depicts the respective USQL request.

Figure 10. Example USQL request for Grid services

5. USQL ENGINE

 The USQL Engine is a service search engine, based on the USQL
language, which provides the means for accessing and querying
heterogeneous service registries and/or networks in a unified and standards-
based manner. The functionality offered by the engine is exposed as a Web
service; thus, abiding by the SOA principles, the USQL Engine itself may be
integrated in the context of a service-oriented industrial application allowing
for automated service discovery.

The main concept underlying the USQL Engine framework is the
abstraction regarding registry details, from the requestor’s perspective. This
is achieved with the adoption of a domain-centric categorization of the
various supported registries, depending on the service advertisements they
host. Domain information provided by the requestor is exploited by the
engine so as to identify, access and query the appropriate registries in a
transparent manner.

The USQL Engine follows an architecture distinguished by its high
degree of openness and extensibility, which is achieved by applying plug-in
mechanisms in order to accommodate virtually any type of service, registry,
as well as their governing protocols and standards. The plug-ins used for this
purpose can be integrated in a flexible manner, so as to enable different
configurations and to broaden the range of supported registries.

12 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

Many of the tasks accomplished by the engine during service discovery
are facilitated by an Upper Ontology, which forms a constituent part of the
overall framework and reflects the domain-driven aspect of our approach.
The ontology classes and properties mirror the semantic concepts supported
by USQL and thus, the ontology is directly used for the population of
semantic elements within USQL requests. Upon submission of a USQL
request to the engine, the implicit identification of the registries and/or
networks where the query will be forwarded is carried out by navigating in
the ontology, making use of the domains specified by the requestor, and
finding the registries that have been registered therein as belonging to these
domains. Finally, reasoning during the matchmaking process is performed
based on the structure and rules imposed by the upper ontology. Figure 11
depicts the structure of the USQL Engine Upper Ontology:

Figure 11. The USQL Engine Upper Ontology

The upper ontology consists of the following classes:
• Domain: represents the domain where a service belongs to.
• Registry: represents a registry/repository/network holding service

advertisements.
• Concept: represents Domain-specific concepts that may be used for

describing services. A concept may be either an Operation or a Data
description, related to a specific domain. Therefore, two subclasses of the
Concept class are defined:

o Operation: represents an abstract functionality that is specific to a
domain.

o Data: represents a piece of information that is specific to a domain.
It is worth noting that the Concept class is never instantiated. Instead, it

serves as an abstraction to hold properties that are common to both
operations and data.

The Domain class has the following properties:
• hasRegistry: Takes as value a Registry instance. A domain may have

zero or more associated registries.

Semantically enhanced discovery of heterogeneous services 17

• hasConcept: Takes as value either a Data or an Operation instance.
• subDomainOf: Takes as value a Domain instance. A domain may be the

sub-domain of at most one parent domain.
• hasSubDomain: Takes as value a Domain instance. A domain may have

zero or more sub-domains.
Hence, with the use of the subDomainOf and hasSubDomain properties

we can build a bi-directional tree, i.e. a domain hierarchy, which is easy to
navigate.

The Registry class has the following property:
• belongsToDomain: Takes as value a domain instance. A registry may

belong to one or more domains, depending on the kind of service
advertisements it holds.
The Concept class has the following properties:

• hasDomain: Takes as value a Domain instance. A concept must belong
to at least one domain.

• abstractionOf: Takes as value either a Data or an Operation instance. A
concept may be the abstraction of zero or more others concepts. More
specifically:
Concept A is an abstraction of concept B, if A subsumes B

• extensionOf: Takes as value either a Data or an Operation instance
concept. A concept may be an extension of at most one other concept.
More specifically:
Concept A is an extension of concept B, if A is subsumed by B.
The abstractionOf and extensionOf properties allow for the construction

of data and operation concept hierarchies. Hence, the upper ontology
provides a tree structure for both domains and their concepts, which is useful
when applying reasoning and inference during service discovery.

6. RELATED WORK

Related work with respect to this paper can be classified into work
related to the provision of a service model and work related to service
discovery.

As far as work related to service models is concerned, one major
approach is that of W3C. W3C’s Architecture Working group in [w3c2004]
has established a model for the specification of web services. The core
concepts of the generic service model presented in this paper have a lot of
similarities with the concepts of the W3C model. However, our model
remains abstract enough allowing thus for extensions that are able to support
p2p and grid services, whereas the W3C’s model is confined to web services
and lately to grid services complying with the WSRF specification [WSRF].

14 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

OASIS has recently announced the formation of a task group working on
the specification of a service-oriented architecture reference model. This
group has produced a working draft version of the reference model
[SOARfMo]. However, the provided document is in draft version and no
useful results can come out of it.

Service discovery on the other hand, is currently performed in the areas
of Web, Grid, and P2P services with the use of custom APIs and discovery
mechanisms offered by registries and networks.

UDDI [UDDI] has become the registry model of choice for publishing
and discovering Web services. The framework provides for keyword-based
search, allowing requestors to look for services according to their provider,
classification, name, description etc. UDDI does not take into consideration
semantic, as well as QoS descriptions and properties of services, although it
provides a structure allowing the incorporation of arbitrary service
descriptions within the registry. To exploit this feature, many efforts have
been made towards integrating semantic annotations in UDDI; Paolucci et al.
have proposed a way to map the OWL-S profile and process model in UDDI
[Paolucci].

JXTA [JXTA] comprises a set of open, generic and implementation-
independent p2p protocols allowing any device to communicate and
collaborate as a peer over a network. One of the most important
contributions of the JXTA framework is the explicit definition of p2p
services, with the use of XML-based JXTA advertisements. This
enhancement allows for the application of service discovery within JXTA
networks, with the use of the standard discovery service provided by the
platform. Still, JXTA protocols and advertisements are generic and very
limited with respect to syntactic information, and moreover they do not
detail crucial aspects of a p2p service like semantics and QoS, which could
be exploited during service discovery.

JAXR [JAXR] provides a uniform and standard API for accessing
different kinds of XML registries. On the other hand, the evolution of
frameworks such as OWL-S and WSMO enables formulation of
semantically-enhanced service requirements that can be checked against
service offerings also described with the use of these frameworks.

Currently, a number of search engines have been proposed and/or
implemented, all of which are activated in the area of Web services, without
taking into account other existing types of services.

Woogle [Woogle], a search engine for Web services, enables similarity
search by employing a set of matching and clustering algorithms with
promising experimental measures and results. However, Woogle does not
cater for the discovery of other types of services, while, in the context of
Web services, matchmaking relies on the information provided in the WSDL

Semantically enhanced discovery of heterogeneous services 17

[WSDL] file and the UDDI entry only, without taking into account and
exploiting semantics.

Like Woogle, other existing Web service search engines also focus on
UDDI and WSDL descriptions of Web services, thus confining their queries
to syntactic-based matchmaking only. SalCentral [SalCentral], a WSDL
aggregator and analysis engine, allows for WSDL and XSD [XSD] based
service lookups, while BindingPoint [BindingPoint] categorizes and
provides access to a large number of Web services.

Nevertheless, it is clear that service-oriented development lacks a query
language that would enable accessing and querying heterogeneous registries
in a unified, standards-based manner. Moreover, exploitation of semantics
and QoS within service descriptions proves to be a crucial part of service
discovery. USQL and its enacting engine address these issues and constitute
a stepping stone to the unification of the various heterogeneous service
areas.

7. SUMMARY AND CONCLUSIONS

Industrial applications impose many requirements that can be met by
following the SOA paradigm. Moreover, as shown in the scenario presented
in this paper, a service-oriented industrial application will most probably
consist of various heterogeneous services, which in turn may be described
with the use of different semantic frameworks. Currently, most of the
emerging semantic frameworks apply to the Web Service paradigm, without
supporting directly other types of services. Yet, discovery of P2P as well as
Grid services could be greatly facilitated by the accommodation of
semantics, as it has been argued in this paper. This heterogeneity in existing
service-oriented frameworks, protocols and standards, particularly in the
area of service discovery constitutes a major obstacle towards the use of
SOA paradigm in the development of industrial applications.

The solution presented in this paper, comprising a generic service model
(GeSMO), a compliant query language (USQL) and its supporting engine
provides for a unified way of discovering such diverse kinds of services,
facilitating their interoperability and enabling their integration in industrial
environments. More specifically, GeSMO facilitates the specification of
heterogeneous services, while the USQL and its supporting engine enable
the unified service discovery over heterogeneous registries and/or networks.
The language inherits from the service model features such as abstraction,
generality, openness, and extensibility, so as to allow for the seamless
unification of the various types of services with respect to discovery.
Moreover, we showed how the application of a generic set of domain-centric

16 A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou

semantics enhances service requests and flavors the task of service discovery
with transparency, regarding the nature of the registries and networks that
are being looked up.

8. ACKNOWLEDGEMENT

This work is partially supported by the European Commission under contract
IST-FP6-004559 [SODIUM].

9. REFERENCES

[w3c2004] D. Booth, et al. Web Services Architecture, W3C Working Group Note, Feb 2004,
http://www.w3c.org/ws-arch/

[AlCa2004] G. Alonso, et al, Web Service: Concepts, Architectures and Applications,
Springer-Verlag, 2004

[SOA] SOA, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
[SemWeb] T. Berners-Lee et al,“The Semantic Web”, Scientific American, May 2001.
[SODIUM] SODIUM http://www.atc.gr/sodium
[XML] XML, Extensible Markup Language, http://www.w3.org/XML/
[OWL-S] OWL-S http://www.w3.org/Submission/OWL-S/
[WSMO] WSMO, Web Service Modeling Ontology, http://www.wsmo.org/
[WSRF] K. Czajkowski, et al, The WS-Resource Framework, ver 1.0,

http://www.globus.org/wsrf/specs/ws-wsrf.pdf
[SOARfMo] C. M. MacKenzie, et al Service-oriented Architecture Reference Model, working

draft 07, OASIS, May 2005
[UDDI] UDDI, Universal Description, Discovery and Integration, http://www.uddi.org
[Paolucci] Massimo Paolucci, et al, "Importing the Semantic Web in UDDI", Proceedings of

Web Services, E-business and Semantic Web Workshop, 2002
[JXTA] JXTA, Juxtapose Technology, http://www.jxta.org
[JAXR] JAXR, Java API for XML Registries, http://java.sun.com/xml/jaxr/index.jsp
[Woogle] Xin Dong et al, Similarity Search for Web Services, Procs of VLDB 2004, Canada
[WSDL] WSDL 1.1, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl
[SalCentral] Salcentral, http://www.salcentral.com
[XSD] XSD, XML Schema Definition, http://www.w3.org/XML/Schema
[BindingPoint] Binding point, http://www.bindingpoint.com/

http://www.w3c.org/ws-arch/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.atc.gr/sodium
http://www.w3.org/XML/
http://www.w3.org/Submission/OWL-S/
http://www.wsmo.org/
http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://www.uddi.org/
http://www.jxta.org/
http://java.sun.com/xml/jaxr/index.jsp
http://www.w3.org/TR/wsdl
http://www.salcentral.com/
http://www.w3.org/XML/Schema
http://www.bindingpoint.com/

	1. INTRODUCTION
	2. MOTIVATING SCENARIO
	3. GENERIC SERVICE MODEL
	3.1 Service Model Structure
	3.2 Core Service Model Concepts
	4. UNIFIED SERVICE QUERY LANGUAGE (USQL)
	4.1 Semantics in USQL
	4.2 Using USQL

	5. USQL ENGINE
	6. RELATED WORK
	7. SUMMARY AND CONCLUSIONS
	8. ACKNOWLEDGEMENT
	9. REFERENCES

