
Discovering Web Services and JXTA Peer-to-Peer

Services in a Unified Manner

Michael Pantazoglou, Aphrodite Tsalgatidou, George Athanasopoulos

Department of Informatics & Telecommunications,

National & Kapodistrian University of Athens, 15784, Greece
{michaelp,atsalga,gathanas}@di.uoa.gr

Abstract. Web services constitute the most prevailing instantiation of the

service-oriented computing paradigm. Recently however, representatives of

other computing technologies, such as peer-to-peer (p2p), have also adopted the

service-oriented approach and expose functionality as services. Thus the

service-oriented community could be greatly assisted, if these heterogeneous

services were integrated and composed. A key towards achieving this

integration is the establishment of a unified approach in service discovery. In

this paper, we describe some features of a unified service query language and

focus on its associated engine, which is used to discover web and p2p services

in a unified manner. We exemplify how our unified approach is applied in the

case of web and p2p service discovery in UDDI and JXTA, respectively.

Additionally, we demonstrate how our service search engine is able to process

heterogeneous service advertisements and thus to exploit the advertised

syntactic, semantic, and quality-of-service properties during matchmaking.

1 Introduction

The service-oriented computing (SOC) paradigm has been successfully instantiated

by the technology of web services. To date, most of the core aspects of web services

have been standardized and, specifically with regard to their discovery, the Universal

Description, Discovery and Integration (UDDI) [1] specification has been established

as the preferred model of choice. Recently however, other types of services have also

emerged such as peer-to-peer (p2p) services [2], fostering a new model for service

sharing, discovery and reuse. Among the most well known p2p technologies currently

supporting the notion of service is JXTA [3], an open peer-to-peer infrastructure

which enables any connected device on the network to act as a peer and interact with

other peers. Peers in a JXTA network are expected to interact through the services

they offer/consume. Peers are organized in peer groups, where each peer group

establishes its own policies and a set of services that all peer members should

implement. Usually, peer groups are used to organize peers offering services in a

specific application domain.

The established p2p infrastructure and core services of JXTA have been used in a

number of cases to deploy, publish and compose p2p services. In [4], a distributed and

decentralized market of p2p services was proposed, also facilitating their automatic

composition. In [5], an approach was proposed for the semantic annotation of p2p

services that could assist their automatic discovery and selection. Utilized from a

different point of view, the p2p architecture was also used as the underlying

infrastructure for grouping service registries into domain-specific federations [6].

Such organization provided a significant enhancement to the course of service

discovery.

Even though many well known p2p technologies (e.g. [19] [20]) have not yet

embraced the service-oriented architecture, the results of the aforementioned efforts

could provide a strong motivation for doing so in the near future. Hence, there is an

emerging need for the integration and interoperability of web and p2p services

technologies. A significant step towards achieving such integration involves the

establishment of a unified approach in service discovery. Currently, the existing web

or p2p services can be discovered only through the underlying discovery mechanisms

of the registry or the p2p network where they have been published. Thus, developers

are either confined to search in a specific type of registry / network, or they are forced

to employ separately the different approaches and mechanisms in order to locate

services which are appropriate for their application.

In this paper, we propose a solution for discovering web and p2p services in a

unified way. Our solution comprises a query language which supports the creation of

queries for discovering heterogeneous services in a unified manner and its associated

search engine, which tackles the heterogeneity among the existing web and p2p

service discovery mechanisms and description protocols. Among the key

contributions of the search engine, which is the main focus of this paper, are: (1) the

provision of a unified search interface, which alleviates requesters from the burden of

conducting separate service lookups in the various heterogeneous registries and p2p

networks; (2) the established level of abstraction, which hides the underlying

complexity and heterogeneity from the users; (3) the ability to support existing and

emerging standards in service description and discovery.

Briefly, the rest of the paper is structured as follows: in Section 2, we describe a

motivating scenario which underlines the need for integration of web and p2p services

and also highlights the heterogeneity that hinders their unified discovery; in Section 3,

we briefly describe the Unified Service Query Language (USQL), which is used by

our search engine for the formulation of the queries and their corresponding

responses; Section 4 describes the architecture and some of the main components of

the search engine; in Section 5, we demonstrate how the engine is used to discover

web and p2p services in UDDI registries and JXTA networks, respectively; Section 6

compares our approach to related work and, finally, we conclude in Section 7 with a

discussion on future work.

2 Motivating Scenario

In order to reveal the need for integration of web and p2p services, let us consider the

following scenario from the domain of Healthcare.

The IT department of a private clinic has decided to develop a service-oriented

application to enable direct interactions between doctors, patients, as well as other

partners. The clinic has already established partnerships with external doctors and the

IT departments of other hospitals. Specifically, a p2p network has been established to

support communication and exchange of data between the clinic and external doctors,

while the partner hospitals offer a number of specialized web services to the clinic.

Fig. 1 depicts an excerpt of this application, where a second opinion is requested for a

specific medical episode.

Retrieve Patient File Get Second Opinion
«Sub-process»

Process Data

Medical Episode

Second Opinion

Fig. 1. A service composition requiring the integration of web and p2p services.

In the above example, the patient file retrieval functionality could be offered by a

web service, while doctors could communicate and exchange second opinions on

specific medical incidents with the use of specialized p2p services running on their

PDAs. Alternatively, partner hospitals could provide web services which offer

diagnoses for specific medical episodes.

In order to implement the above service composition, the developers of the clinic’s

IT department have to first discover the required services from the established

registries and the p2p network. Alas, the current state of the art produces a number of

implications: (1) the IT department has to use separate discovery tools, which increase

the development cost; (2) the developers need to acquire thorough knowledge on the

technical details of the underlying discovery mechanisms and protocols, and thus fail

to focus on the business part of the application.

The scenario reveals the need for integration of web and p2p services and,

moreover, shows that a unified approach towards the discovery of such services

would very much simplify and facilitate the work of developers. In the following

sections, we describe how our search engine addresses these issues. First, we provide

a very brief description of the language used by the search engine for the formulation

of the queries and their respective responses.

3 The Unified Service Query Language (USQL)

The Unified Service Query Language (USQL) is an XML-based language enabling

requesters to create meaningful queries for heterogeneous services in a unified

manner, while at the same time it keeps technical details transparent. The USQL

specification defines two types of messages, namely the USQLRequest and

USQLResponse. To better capture real-world requirements, the language blends the

flavors of syntactic, semantic and quality-of-service (QoS) search criteria. Moreover,

it defines a set of operators, which can be explicitly applied to the search criteria and

determine the matchmaking process. This departure is particularly useful when

applying service discovery at design time, where requirements should be expressed in

a more relaxed fashion.

The snippet below illustrates a USQL request in accordance to the motivating

scenario discussed in Section 2.

<USQL version="1.0" xmlns="urn:sodium:USQL">

 <USQLRequest>

 <ViewAdditionalProperties>

 <property>Availability</property>

 </ViewAdditionalProperties>

 <Where>

 <Service>

 <ServiceDescription valueIs="contain"> medical diagnosis</ServiceDescription>

 <ServiceDomain ontologyURI="http://onthealth#">Healthcare</ServiceDomain>

 <Operation>

 <Inputs><input>

 <type>http://www.w3.org/2001/XMLSchema#string</type>

 <semantics ontologyURI="http://onthealth#">MedicalEpisode</semantics>

 </input>

 </Inputs>

 <Outputs><output>

 <type>http://www.w3.org/2001/XMLSchema#string</type>

 <semantics ontologyURI="http://onthealth#">Diagnosis</semantics>

 </output>

 </Outputs>

 <QoS><Availability valueIs="equalOrGreater">0.9999</Availability></QoS>

 </Operation>

 </Service>

 </Where>

 <OrderBy direction="descending">Availability</OrderBy>

 </USQLRequest>

</USQL>

Fig. 2. A USQL request for "get second opinion" services.

The query contains a number of syntactic, semantic and QoS requirements at

various levels. Specifically, the requester is looking for “medical diagnosis” services

in the domain of Healthcare. The desired operation should accept a string as input

(the medical episode) and return a string as output (the diagnosis). Due to its very

nature, the service should be at least 99.99% available. The requester has specified

that the availability property should be included in the matching services (with the use

of the <ViewAdditionalProperties> element), and moreover its value should be used

for sorting the results (via the <OrderBy> element).

A closer look to the USQL request example reveals that all requirements were

specified in a service type-agnostic manner. Indeed, the message contains no

indication or requirement regarding the type of the candidate service(s). Moreover,

requirements were expressed at a relatively high level, based on the intuitive

knowledge of what is required for the specific task. No technical details were required

or imposed by the USQL language in formulating the request, besides the need for a

basic knowledge of XML.

For the sake of brevity, we refer to [7] for a detailed description of the various

structures and elements of the USQL language. Nevertheless, the provided

information is considered adequate for the purposes of this paper, allowing us to

proceed with the description of our service search engine.

4 The Unified Service Search Engine

The Unified Service Search Engine is an extensible framework used for applying

service discovery in heterogeneous registries and networks. It is characterized by an

open architecture enabling the smooth accommodation of various registry and service

description standards, for the purposes of service discovery and matchmaking. More

specifically, plug-ins are used for supporting access to the various service registries

and networks, while appropriate document handlers are introduced to deal with the

various syntactic, semantic and QoS service advertisements. The engine was briefly

discussed in [8] and [10]; here, we will elaborate on the functionality of its various

components and provide technical details regarding its implementation.

Unified Service Search Engine

Registry/

Network
Selector

Plug-in A

Plug-in B

USQLRequest USQLResponse

Registries

P2P Networks

USQLRequest

USQLRequest

Search Criteria
Syntactic, semantic, QoS

service descriptions

matching services

matching services

Search Criteria Syntactic, semantic, QoS

service descriptions

USQL Handler

Validator

Request

Processor

Response

Processor

USQL Handler

Validator

Request

Processor

Response

Processor

Fig. 3. Basic components of the service search engine.

Fig. 3 depicts the internal structure of the search engine. Upon receiving a USQL

request, the engine employs the USQL Handler to validate it against the USQL

schema. The USQL Handler is divided into three logical parts: the Validator,

responsible for the validation of USQL messages; the Request Processor, responsible

for processing the content of USQL request messages; and the Response Processor,

responsible for constructing and properly formatting the USQL response messages.

The USQL Handler component contributes significantly to the overall flexibility and

maintainability of the search engine; it abstracts the rest of the components from

language-specific details, thus making them resilient to potential changes in the

USQL specification.

After the USQL request has been found to be valid, the request processor is

activated to extract the specified service domain value from the message. The

specified domain is then used by the Registry Selector component in identifying the

target registries and/or networks for the query. As it was described in [10], the engine

makes use of an upper ontology –implemented with the use of OWL (see

http://www.w3.org/2004/OWL/)– which associates registries with application

domains. The ontology is instantiated by a forest of domains (there is a tree for each

addressed domain); also, there are registry and p2p network instances (both

instantiating the Registry class in the upper ontology), each one of which is associated

with one or more domains, and a set of related properties that are stored by the

engine. These properties include the id of the plug-in to be used, along with other

parameters necessary for successfully accessing the respective registry or network

(e.g. JXTA peer groups might require authentication for a peer to be able to join).

Note that, maintaining the ontology's instances and associating registries with

domains are human-triggered tasks and form part of the search engine’s configuration

process.

Having identified the target registries and/or networks, the search engine

configures and instantiates the respective Plug-ins which accept the USQL request as

input and run in separate threads, thus allowing for a form of parallelism during the

execution of the query. This multi-thread implementation inside the engine

contributes to the improvement of its overall performance. To better explain how each

registry plug-in works, we illustrate its internal structure in Fig. 4:

Registry Plug-in

Registry Handler

Syntactic Handler

Semantic Handler

QoS Handler

USQLRequest

External Service
Registries/Networks

M
a

tc
h
m

a
k
e

r

matching
services

Fig. 4. Internal structure of the search engine’s registry plug-ins.

The Registry Handler component is responsible for extracting the registry-

supported search criteria from the original USQL request and utilizes the specific

registry type-supported discovery mechanisms and APIs to find the requested

services. The process of querying the registry results in a set of service advertisements

which are processed by the appropriate Syntactic, Semantic, and QoS Handlers to

extract the values of the properties that were constrained in the USQL request. Thanks

to the decoupling of syntactic, semantic and QoS service description handling from

the rest of the plug-in, the latter can be seamlessly extended and use different

document handlers in many combinations. In this way, the search engine is capable of

dealing with the various heterogeneous service description protocols.

Next, the registry plug-in employs the USQL Matchmaker in order to apply

extended, semantically enhanced and QoS-based matchmaking to each service. The

matchmaker implements a sophisticated matchmaking algorithm [9] which however

goes beyond the scope of this paper. Briefly described, the algorithm calculates the

overall degree of match for a given service and its operations, based on the individual

degrees of match of each specified requirement. The degree of match value is a

normalized float number ranging between 0 and 1. Going back to Fig. 3, the outcome

of the matchmaking process, i.e. the matching services, is forwarded to the USQL

Handler component, which employs the response processor to consolidate the output

from all registry plug-ins into a single USQL response message.

5 Example: Unified Service Discovery in UDDI & JXTA

In accordance to the use case described in Section 2, in the following paragraphs we

will demonstrate how our service search engine applies service discovery in UDDI

and JXTA for “get second opinion” services, with the use of a single USQL request

(the one that was described in Section 3). In this example, we assume that the

established p2p network between the clinic and the external doctors is based on

JXTA, while the web services being offered by the clinic’s partners have been

published to a UDDI registry. Moreover, all web and p2p services have been

described with the use of WSDL-S (see http://www.w3.org/Submission/WSDL-S/)

and WS-QoS [18], whilst the UDDI registry and the JXTA network have been

associated with the Healthcare domain by the search engine’s administrator.

5.1 Web Service Discovery in UDDI

The UDDI specifications define a set of protocols and APIs for publishing

information regarding businesses and the services they offer, as well as for querying

such data. The default UDDI query mechanism supports primarily keywords-based

queries where only syntactic requirements can be processed. Furthermore, search

criteria can be applied only at the service level and thus operation and input/output

related requirements cannot be processed. The UDDI specifications partially cater for

these defects, by defining an extension point, the tModel structure, which can be used

to reference external information (e.g. WSDL or WSDL-S service descriptions). The

use of the tModel facility in service discovery with UDDI is described in [11]. Our

approach also exploits tModels, as we will see next.

The search engine gains access and queries the UDDI registry that has been

associated with the Healthcare domain, by employing the respective UDDI plug-in. If

the USQL request contains criteria which are supported by the primitive discovery

mechanism of UDDI, such as the service name/description or the service provider,

these are used accordingly to narrow the lookup range. The query yields a number of

tModels containing references to the WSDL-S descriptions of the published web

services, as shown in the example below:

<tModel ...>

 <overviewDoc>

 <overviewURL>WSDL-S document URL here</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference tModelKey="..." keyName="uddi-org:types" keyValue="wsdlSpec"/>

 </categoryBag>

</tModel>

Fig. 5. An example tModel structure with reference to an external WSDL-S document.

These descriptions are retrieved and parsed with the use of the appropriate WSDL-

S document handler, employed by the UDDI plug-in of the search engine. In a similar

way, the WS-QoS document handler provided by the search engine is used to parse

the referenced WS-QoS offers included in the WSDL-S documents. The extracted

information is mapped to a unified, USQL-like service advertisement according to the

rules given in Table 1, which is then dispatched to the USQL matchmaker component

along with the USQL request for matchmaking.

Table 1. Rules for mapping WSDL-S & WS-QoS to USQL.

WSDL, WSDL-S & WS-QoS USQL
wsdl:service

 @name

Service

 /ServiceName

wsdl:operation

 /wsdl:input

 /wsdl:output

 @name

Service/Operation

 /Inputs

 /Outputs

 /name

wsdl:message/wsdl:part

 @name

 @type

 @wssem:modelReference

Service/Operation/Inputs/input

Service/Operation/Outputs/output

 /name

 /type

 /semantics

wsqos:qosOffer

 /defaultQoSInfo/serverQoSMetrics/availability

 /defaultQoSInfo/serverQoSMetrics/reliability

 /defaultQoSInfo/serverQoSMetrics/processingTime

Service/Operation/QoS

 /Availability

 /Reliability

 /ProcessingTime

5.2 P2P Service Discovery in JXTA

Services in a JXTA network are advertised through a specific type of XML-based

advertisement, namely the ModuleSpecAdvertisement (MSA), which provides limited

information regarding the service, the service provider, etc. Nevertheless, as it has

already been proposed in [5], JXTA service advertisements can be extended to

support rich-content service descriptions, and thus substantially facilitate the task of

service discovery. Our approach takes advantage of this extensibility in order to

perform advanced service discovery in JXTA networks.

Upon its instantiation, the JXTA plug-in provided by our search engine – acting as

a minimal edge peer – joins the peer group specified by configuration and submits a

“getRemoteAdvertisements” query to the peer group’s rendezvous peer(s), by using

the peer group’s established discovery service. These special types of super peers

maintain indices of peers and advertisements in the peer group, which they use in

order to propagate the query to the appropriate peer(s). Like in the case of UDDI,

criteria such as service name / description or provider can be used to narrow the

lookup range. The rendezvous peers respond by sending to the plug-in the MSAs

which were found to meet the query. Similar to the tModels, the MSAs contain links

to WSDL-S documents, as the following snippet illustrates.

<jxta:MSA xmlns:jxta="http://jxta.org">

 <MSID>...</MSID>

 <Name>GetDiagnosisService</Name>

 <SURI>WSDL-S document URL here</SURI>

</jxta:MSA>

Fig. 6. An example JXTA ModuleSpecAdvertisement (MSA).

At this point, the JXTA plug-in needs not be part of the p2p network any more and

therefore disconnects. By accessing the referenced WSDL-S descriptions and

applying the mapping rules described in Table 1, a USQL-like advertisement is

generated for each service and is consequently checked against the USQL request by

the USQL matchmaker.

5.3 Shaping the Service Discovery Results

As it was described in Section 4, the response processor consolidated the results (i.e.

the matching services) from the UDDI and JXTA plug-ins and generated the USQL

response shown in Fig. 7. Apparently two services were found to meet the search

criteria: a JXTA p2p service and a web service. The service entries in the response

appear sorted in descending order according to the value of their availability. The web

service availability advertised in the respective WS-QoS offer was less than what was

originally requested, resulting in a smaller degree of match. Note that, both service

entities contain all the necessary information for their immediate invocation. The

referenced WSDL documents provide the details and bindings of the services’

operations. The binding information depends on the specific service type. For

instance, the WSDL document of the JXTA service includes information regarding

the JXTA pipes used for communicating with the service, while the WSDL document

of the web service provides the service endpoint address, encoding style,

communication protocol, etc.

<USQL version="1.0" xmlns="urn:sodium:USQL" xmlns:srv="urn:sodium:USQL:services">

 <USQLResponse>

 <srv:Services>

 <srv:Service type="P2PService" degreeOfMatch="1.0" networkType="JXTA">

 <srv:name>GetDiagnosis</srv:name>

 <srv:descriptionDocUrl>

 http://jemini.di.uoa.gr:8080/sodium/wsdl/SecondOpinion.wsdl

 </srv:descriptionDocUrl>

 <srv:interface name="GetDiagnosisInterface">

 <srv:Operation degreeOfMatch="1.0">

 <srv:name>getDiagnosis</srv:name>

 <Availability>0.9999</Availability>

 </srv:Operation>

 </srv:interface>

 </srv:Service>

 <srv:Service type="WebService" degreeOfMatch="0.9999">

 <srv:name>GetDiagnosisWS</srv:name>

 <srv:descriptionDocUrl>

 http://jemini.di.uoa.gr:8080/sodium/wsdl/GetDiagnosis.wsdl

 </srv:descriptionDocUrl>

 <srv:interface name="GetDiagnosisIF">

 <srv:Operation degreeOfMatch="0.9999">

 <srv:name>getMedicalDiagnosis</srv:name>

 <Availability>0.9998</Availability>

 </srv:Operation>

 </srv:interface>

 </srv:Service>

 </srv:Services>

 </USQLResponse>

</USQL>

Fig. 7. The USQL response containing alternative "get second opinion" services.

This concludes our example.

6 Related Work

A lot of research has revolved around service discovery over the last years and a

number of service search engines and matchmakers have been proposed. In [12], a

novel search engine is described which enables searching for web service operations

that are similar to a given one. The underlying idea of this approach is the grouping of

inputs and outputs into semantically meaningful concepts. Thus, syntactic information

in service advertisements attains semantics and can be exploited in a more fruitful

manner. Yet, the approach does not consider existing semantic service descriptions

and thus, as opposed to our search engine, it does not exploit their rich content. In

[11], Paolucci et al. describe how the UDDI infrastructure can be extended to support

OWL-S based semantic annotations for services. The main drawback of this approach

lies in that a significant update to the UDDI specifications is required. Moreover,

discovery is confined to web services only. Another framework that makes use of

OWL-S for automating the matchmaking process during web service discovery is the

WSML middleware, as described in [13]. However, the proposed matchmaking

algorithm seems to be bound with that specific semantic description protocol and thus

is not able to apply semantic matchmaking to services described with other protocols,

e.g. WSDL-S. The same shortcoming also characterizes similar efforts in JXTA

service discovery, such as the Oden framework [5]. As opposed to those approaches,

our service search engine remains independent from the various service description

protocols. Thanks to its flexible design, it can leverage existing or emerging

standards, such as OWL-S and WSDL-S, and thus it can operate in a wide range of

service-oriented settings.

Integration of web services with p2p networks has been extensively examined in

the sense of using a p2p infrastructure to enhance the various web service activities.

In METEOR-S [6], a JXTA-based p2p network is utilized to organize web service

registries, in order to facilitate the tasks of service publication and discovery. Yet, to

the best of our knowledge, there is no approach other than the one presented in this

paper, which attempts to integrate the web service and p2p worlds in terms of unified

service discovery.

7 Concluding Summary

In this paper, we briefly described the Unified Service Query Language (USQL) and

some of the functional details of our service search engine supporting the unified

discovery of web and p2p services. The engine is characterized by its flexible and

extensible design, which renders it capable of accommodating different discovery

mechanisms and service description protocols. At the same time, the technical details

are kept transparent to the user, thus simplifying the task of service discovery.

Experience has revealed a number of challenges that need to be addressed by our

search engine prototype. The restriction imposed by the matchmaker as regards the

use of the same ontology to semantically annotate service queries and service

advertisements is planned to be overcome with the utilization of a semi-automatic

ontology mapping mechanism, like the one presented in [14]. Further, we are leaning

towards ultimately replacing our custom upper ontology with more standardized

efforts, such as the Suggested Upper Merged Ontology (SUMO) [15].

The matchmaker component of our search engine employs a set of distance

measure functions for the calculation of the degree of match. Similarity distance

measure is a very popular technique in matchmaking and has been successfully

applied to similar technological areas, such as data mining and web information

retrieval [16] [17]. In the future, we plan to utilize some of the already established

efforts in syntactic, semantic, and QoS matchmaking, in order to enhance the

precision of our search engine. Finally, to enhance the engine’s performance, we are

in the process of developing a caching mechanism, which will also allow us to

experiment on the engine’s recall.

Acknowledgement. This work is partially supported by the Special Account of

Research Funds of the National and Kapodistrian University of Athens under contract

70/4/5829 and by the European Commission under contract IST-FP6-004559 for the

SODIUM project (website: http://www.atc.gr/sodium).

References

1. Organization for the Advancement of Structured Information Standards (OASIS), Universal

Description, Discovery and Integration, UDDI. http://www.uddi.org/

2. Broekstra, J., Ehrig, M. et al. (2004) Bibster - A Semantics-Based Bibliographic Peer-to-Peer

System. WWW’04 Workshop on Semantics in Peer-to-Peer and Grid Computing

3. Traversat, B., Arora, A. et al. (2003) Project JXTA 2.0 Super-Peer Virtual Network, Sun

Microsystems, Inc., Palo Alta, California

4. Gerke, J., Reichl, P., Stiller, B. (2005) Strategies for Service Composition in P2P Networks.

In Proceedings of ICETE 2005, Reading, UK

5. Elenius, D., Ingmarsson, M. (2004) Ontology-based Service Discovery in P2P Networks.

International Workshop on Peer-to-Peer Knowledge Management, P2PKM 2004

6. Verma, K., Sivashanmugam, et al (2005) METEOR-S WSDI: A Scalable Infrastructure of

Registries for Semantic Publication and Discovery of Web Services. Journal of Information

Technology and Management, Vol. 6 (1), pp. 17-39

7. Tsalgatidou, A. et al. (2006) Specification of the Unified Service Query Language (USQL).

Technical Report, available online at http://cgi.di.uoa.gr/~michaelp/TR/usql-1.0-spec.pdf

8. Tsalgatidou, A. et al. (2005) Semantically Enhanced Unified Service Discovery. W3C

Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria

9. Pantazoglou, M., Tsalgatidou, A., Athanasopoulos, G. (2006) Quantified Matchmaking of

Heterogeneous Services. In Proceedings of the 7th International Conference on Web

Information Systems Engineering, WISE 2006

10. Tsalgatidou, A. et al. (2005) Semantically Enhanced Discovery of Heterogeneous Services.

1st International IFIP/WG12.5 Working Conference on Industrial Applications of Semantic

Web, IASW2005, Jyväskylä, Finland

11. Paolucci, M. et al. (2002) Importing the Semantic Web in UDDI. In Proceedings of Web

Services, E-business and Semantic Web Workshop

12. Dong, X., Halevy, A. et al. (2004) Similarity Search for Web Services. In Proc. of VLDB

13. Cibran, M. A. et al (2004) Automatic Service Discovery and Integration using Semantic

Descriptions in the Web Services Management Layer. Proc. of 3rd Nordic Conf. on Web

Services, Vaxjo, Sweden

14. Li, J. (2004) LOM: A Lexicon-based Ontology Mapping Tool. Performance Metrics for

Intelligent Systems Workshop, PerMIS 2004, Gaithersburg, MD

15. Niles, I., Pease, A. (2001) Towards a Standard Upper Ontology. In Proceedings of the

International Conference on Formal Ontology in Information Systems

16. Sahami, M. Mittal, V. et al. (2004) The Happy Searcher: Challenges in Web Information

Retrieval. Trends in Artificial Intelligence, 8th Pacific Rim International Conference on

Artificial Intelligence, PRICAI 2004

17. D. Lin (1998) An Information-Theoretic Definition of Similarity. In International Conference

on Machine Learning

18. Tian, M., Gramm, A. et al. (2004) Efficient Selection and Monitoring of QoS-Aware Web

Services with the WS-QoS Framework. IEEE/WIC/ACM International Conference on Web

Intelligence, WI 2004

19. Ion Stoica, Robert Morris et al (2001) Chord: Scalable Peer-to-peer Lookup Service for

Internet Applications. In Proceedings of ACM SIGCOMM, San Diego, CA

20. Ben Y. Zhao, Ling Huang et al. (2003) Tapestry: A resilient global-scale overlay for service

deployment. IEEE Journal on Selected Areas in Communications

