
Unified Discovery and Composition of Heterogeneous 
Services 

A. Tsalgatidou 1, G. Athanasopoulos1, M. Pantazoglou1, H. Hoff2, D. Skogan2, A.-
J. Berre2 

1 National & Kapodistrian University of Athens (NKUA), 
Department of Informatics & Telecommunications, Athens 15784, Greece 

{atsalga, gathanas, michaelp}@di.uoa.gr 
2 SINTEF Information and Communication Technology  

P.O.Box 124 Blindern, N-0314 Oslo, Norway 
{hjordis.hoff, david.skogan, arne.j.berre}@sintef.no 

Abstract. Service-Oriented Development (SOD) is currently gaining 
momentum and has been marked as the future trend in software development. 
The building blocks of a service-oriented system are services which may be 
instantiated by web, grid and p2p services. For SOD to prevail there is a need to 
support the discovery and composition of services. However, this is not an easy 
task, due to the heterogeneity and incompatibility between the architectural 
models, protocols, and standards employed by web, grid and p2p services for 
their description, discovery and composition. In this paper, we present a unified 
approach for discovering heterogeneous services and composing them in a 
visual manner. The approach comprises a set of complying languages and their 
enacting tools.  

1 Introduction 

Current trends in software engineering signify a shift from component-based to 
service-oriented development (SOD). SOD envisages the rapid and cost-effective 
development of interoperable, loosely-coupled, distributed applications over-the-
internet. Services are the building blocks of such applications and are mainly 
instantiated by web, grid and p2p services. Service-oriented applications -rather than 
being built from scratch- are being developed as service compositions by exploiting 
the ever growing number of available services. However, the discovery and 
composition of appropriate services becomes a tedious task, due to the heterogeneity 
and incompatibility among the architectural models, protocols, and standards 
employed by web, grid and p2p services for their description, discovery and 
composition. To our best of knowledge, there is no infrastructure or tools available for 
facilitating the integration and interoperability of such services. This paper presents 
an approach which attempts to bridge this gap by offering appropriate languages and 
corresponding tools to support the discovery and composition of heterogeneous (web, 
p2p, grid) services, in an open and unified manner. This approach leverages the 
development process by alleviating the developer from the specific details of each 



2      A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, H. Hoff, D. Skogan, A.-J. Berre 

type of service. The provided languages and tools may be easily extended so as to 
accommodate additional protocols and standards, or even other types of services that 
were not originally addressed.  

The merits of the proposed approach may be exploited when following either a 
top-down or a bottom-up development approach. For example, in a top-down service 
composition approach a developer needs to specify the comprising tasks as well as the 
control and data flow between them. These tasks can be executed by various types of 
services (rather than being programmed from scratch) which may not be known 
initially. Hence, apart from the composition flow a developer needs to model the 
requirements for appropriate services, which can satisfy specific composition tasks. 
To support this  modeling task, we provide a Visual Composition Language (VSCL) 
and its associated tool (described in section 2). The next step in top-down service 
composition is the search of appropriate services, which can satisfy the requirements 
of each task in the service composition. The ever growing number of web, p2p and 
grid services, which abide by incompatible protocols and standards, renders discovery 
a daunting task. To address this, we provide a Unified Service Query Language 
(USQL) and its associated query engine (described in section 3), that support the 
discovery of heterogeneous services in a unified way. Both semantic and Quality-of-
Service (QoS) information are utilized to improve the discovery process and results. 
Selected services substitute the requirements in each composition task resulting in a 
concrete service composition model.   

In the next sections (2 and 3), we present our proposed approach, describing the 
languages and tools that enable the composition and discovery of heterogeneous 
services, respectively. Section 4 compares our work with existing related approaches 
and finally section 5 illustrates our concluding remarks.  

2 Visual Service Composition 

There exist some graphical tools for composing homogeneous value-added services, 
but none for composing new services from a number of heterogeneous services. To 
bridge this gap, we have developed a graphical language called VSCL (Visual Service 
Composition Language) and an associated software tool which are described next.  

2.1 The Visual Service Composition Language  

The Visual Service Composition Language (VSCL) was developed in order to support 
the unified, visual composition of heterogeneous services (web, p2p and grid 
services). The language provides various elements which are used for specifying: 
• composition tasks,  
• service operation(s) which can satisfy composition tasks,  
• queries (expressed in the USQL language which is described in section 3) 

associated with composition tasks which can be used for service discovery at 
execution time,  

• the order of execution of the various tasks (control flow, decision/merge, fork/join),  



Unified Discovery and Composition of Heterogeneous Services      3 

• data and data flows between the different tasks (data flow),  
• how output data from preceding task(s) are transformed into expected input data 

for the succeeding task (transformation nodes),  
• semantic and QoS  annotations on tasks/services and their input and output 

parameters, and finally  
• the interface of the new composite service (composition).   

From the user perspective, the different service types are handled in the same 
manner through a common service operation abstraction. The actual service type is 
denoted as metadata on each service operation associated with a given task. 

 

 

Abstract part
-Name
-in/out parameters
-Semantic annotations
-QoS requirement annotations
-Sub task
-Active concrete part

Concrete part
-Service operation abstractions
-QoS offerd values
-in/out parameters
-Execution strategy
-Query
-Data transformations

Abstract part
-Name
-in/out parameters
-Semantic annotations
-QoS requirement annotations
-Sub task
-Active concrete part

Concrete part
-Service operation abstractions
-QoS offerd values
-in/out parameters
-Execution strategy
-Query
-Data transformations

 
Fig. 1. The task concept 

The core concept in the composition model is the Task. Each task has an abstract 
part and a concrete part (see Fig. 1). The abstract part defines the task to be performed 
in an implementation independent manner, whereas the concrete part specifies service 
operations that can realize the task or a query to find existing service operations at 
execution time. A service operation contains enough information to invoke the 
particular operation, but hides the complexity of the underlying heterogeneous service 
for the user. It is a great advantage to have both the abstract and the concrete aspects 
in the same model. The abstract part is used when searching for appropriate candidate 
services to realize each of the abstract tasks. The concrete part is being specified after 
having discovered and selected the appropriate service operations (or after having 
decided to assign a query at a task) to be executed at run time. Having the abstract and 
concrete aspects in the same model is also beneficial with respect to composition 
maintenance.  

We have chosen to base the VSCL on the activity diagram part of OMG’s UML 
2.0 specification [19]. The extensions to UML are mainly introduced to handle:  

• the service heterogeneity,  
• the task concept with its abstract and concrete parts,  
• the semantic and QoS annotations  
• the data transformations of in/out parameters between tasks and between a task 

and its associated service operations. 
UML was selected instead of BPMN [21] due to its extendibility, XMI-format and 
because it is a standard for software development. 



4      A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, H. Hoff, D. Skogan, A.-J. Berre 

2.2 The Visual Service Composition Suite 

To support the language we have built a modelling tool called the Visual Service 
Composition Suite. This is a plug-in to the Eclipse development platform, which is a 
comprehensive, powerful and extensible development environment. We have utilized 
a number of the available Eclipse plug-ins in our development, e.g. UML2[18] and 
EMF[16] for representation and code generation and GEF[17] for building the 
graphical editor. Important design criteria have been taken into account in order to 
produce a flexible and extensible tool that may be integrated with other tools (e.g. 
query, execution and repository tools).  

More specifically, the Visual Composition Suite consists of the following 
subcomponents:  

• a visual editor for editing compositions,  
• a language translator for translating the graphical notation to a lexical XML-

based notation, and  
• an analyzer for validating the composition against a set of rules (see Fig. 2).  
The Visual Composition Suite supports the following three approaches that may be 

applied when defining heterogeneous service compositions: 
• top-down approach when the developer identifies abstract sub-tasks1 without 

knowing which service operations can satisfy them, 
• bottom-up approach when the developer imports descriptions of pre-known 

services and uses service-operations to specify concrete tasks2 in the compositions 
• dynamic approach when queries are associated with the task(s) and are used for 

service discovery at execution time.   
The compositions can be annotated with QoS and semantic information which 

serves as input for service discovery and service selection/matchmaking. 
Transformation of messages between the different tasks, and between each task and 
its selected service operations, can be defined when the message format does not 
match. The language translator takes a graphical composition as input and generates a 
lexical representation that serves as input to a composition execution engine. In a pure 
web service context this execution language could probably have been BPEL, 
although this has not yet been investigated.  The other language translator that has 
been investigated is a translator that takes the abstract part of the tasks as input and 
generates service queries based on that. These queries may either be passed to the 
Query engine (see next section on USQL Engine) or be included in the lexical 
language. More details about the Visual Composition Suite and its integration with 
other tools may be found at [28]. 

                                                           
1 An abstract task contains only a requirements specification with parameters and semantic 

and/or QoS annotations, without having any specific service operations associated to it. 
2 A concrete task is a task with associated service operations 



Unified Discovery and Composition of Heterogeneous Services      5 

 
Fig. 2. Example screenshot of the Visual Composition Suite 

3 Unified Service Discovery  

Service discovery takes a significant role in SOD; it enables developers to find and re-
use existing services that meet their application requirements, and thus greatly 
leverages the overall development process. In our approach, the discovery of services 
is conducted through the use of the Unified Service Query Language (USQL) and its 
enacting query engine, namely the USQL Engine. Both the language and the engine 
are described in the next paragraphs. 

3.1 The Unified Service Query Language (USQL) 

The Unified Service Query Language (USQL) is an XML-based language that 
facilitates service requesters in expressing service requirements in a consistent and 
unified manner. The language is distinguished by the following qualities: 
• Simplicity: USQL remains simple enough to be understandable and usable by a 

wide range of users, from novice ones to IT professionals. Although described by 
an XML grammar, the USQL documents are comprehensible by humans. 

• Expressiveness: The language enables its users to express their service 
requirements in a consistent and rich way, by employing the necessary elements 
for representing syntactic, semantic, as well as Quality-of-Service (QoS) search 
criteria. 



6      A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, H. Hoff, D. Skogan, A.-J. Berre 

• Abstractiveness: The USQL specification has taken into consideration and 
exploited the various existing registry and service description standards and 
protocols, without requiring from its users to have knowledge of their underlying 
structure. Thus, users of the USQL are able to construct their query documents 
without having to worry about technical aspects and details of the candidate 
services. 

• Extensibility: The language is rendered open and extensible, so as to allow the 
definition of extra features deriving from other kinds of services that need to be 
supported, without affecting the already defined elements and supported types of 
services. 
USQL defines two types of messages, namely the request and response. USQL 

requests can be formulated in a unified way, regardless of the actual type of the 
candidate services. Abiding by the Generic Service Model (GeSMO), which is briefly 
described in [1], the language allows the assessment of requirements at the service 
level, the operation level, and the message (i.e. input/output) level. Moreover, a well 
defined set of operators can be used to bring the various syntactic, semantic, and QoS 
criteria as close as possible to the actual real-world requirements.  

A USQL request is structured in a way that resembles traditional data query 
languages (e.g. SQL). More specifically, it comprises the following parts: 
• ViewAdditionalProperties that allow requesters to explicitly specify information 

to be contained in the response message for each returned matching service and/or 
operation, apart from some basic properties that are always returned to requester. 

• From that enables the explicit identification of the registries and networks that will 
be queried. Each registry or network is identified by a unique URI, and the 
ontology where it comes from. 

• Where which is the most important part of the request, as it contains the actual 
service requirements; syntactic, semantic, as well as QoS search criteria can be 
expressed in a rich manner. 

• OrderBy which is used to sort the matching services in the response, according to 
specific properties (e.g. price, degree of match, etc.). 
From the above parts, only the Where is required, whilst the others are optional and 

can be omitted from a USQL request. As it is explained in paragraph 3.2, our 
infrastructure is capable of implicitly identifying the appropriate registries and 
networks for querying, based on the service requirements. 

Although USQL requests are independent of the type of services they target for, 
the corresponding USQL responses must be concrete and must convey adequate 
information that will enable the immediate invocation of the matching services. 
Therefore, each service entity in a response is strongly bound to the type of service it 
conveys and provides specific information for this type of service. Additionally, it 
may convey syntactic, semantic, and QoS information that was originally asked for in 
the respective USQL request. This additional information is usually human-intended 
and plays a key role in service selection. 

In order to clarify the above features of USQL, the following figure illustrates a 
USQL request along with its resulting response. 

 



Unified Discovery and Composition of Heterogeneous Services      7 

 
Fig.3 A USQL request and its respective USQL response 

The depicted USQL request expresses the requirements for the first task displayed 
in the Visual Editor screenshot (Fig. 2). A closer look at the request reveals that it is 
service type-agnostic: indeed, there is no indication regarding the type of the 
candidate service. The task requires an operation that takes as input the id of the 
patient and returns his/her insurance status. Besides that, the patient’s Social Security 
Number (SSN) is required, in the case where he/she is insured. The requester specifies 
that this operation should not exceed 100 milliseconds of processing time and thus 
includes this QoS requirement in the USQL request3. Moreover, he/she needs to see 
the price for each matching operation, so as to make a final decision upon which to 
use in the service composition. This need is captured with the use of the 
OperationPrice property specified in the ViewAdditionalProperties element. As it can 
be seen in the USQL request, the matching entities will be sorted in ascending order, 
according to their price. Finally, the requester has decided to relax the minimum 
degree of match requirement both for the service and the requested operation, while 
he/she also stated that the operation name syntactic requirement is not important. 
These relaxations will be taken into consideration by the matchmaking algorithm, 
which determines the degree of match for each service entity and its operations in the 
USQL response. 

Upon the successful execution of the USQL request, a USQL response is returned, 
as it is shown in Fig. 3. The response contains two web services, ordered according to 
their price in ascending order. Each service entity conveys adequate information that 
can be used for its immediate invocation. 

3.2 The USQL Engine 

The USQL Engine supports heterogeneous service discovery over heterogeneous 
registries and networks. It is responsible for processing and forwarding a USQL 

                                                           
3 Although our approach enables the expression of QoS requirements in service discovery 

requests, neither the USQL language nor the USQL Engine are responsible for maintaining 
the QoS properties of services, or for confirming their reliability. 



8      A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, H. Hoff, D. Skogan, A.-J. Berre 

request to the appropriate service registries and networks, applying advanced 
matchmaking activities and, finally, formulating the corresponding USQL response. 
The key feature of the engine that makes it a departure from other existing service 
query engines, is its ability to accommodate virtually any type of registry and 
network, and to process any type of service description, thus remaining independent 
of the various service description protocols and standards. This flexibility is achieved 
by its open architecture, which is primarily based on the use of plug-ins.  

Thus, the USQL Engine functionality and the range of registries it explores is 
augmented with the use of appropriate registry plug-ins which enable the access and 
querying of registries of specific types, such as UDDI, ebXML, etc [6]. In turn, each 
registry plug-in can be configured so as to process specific service description 
protocols, such as WSDL [6], OWL-S [2], WSML [12], WS-QoS [3], etc. 

As it can be seen in the figure below (Fig. 4), both the USQL Engine and its 
registry plug-ins are flexible and re-configurable; the appropriate registry plug-in is 
plugged to the engine whenever a query to a specific type of registry is required. Each 
plug-in implements a registry-specific handler in order to encapsulate the registry-
specific discovery API, while it uses appropriate syntactic, semantic, and QoS handler 
components, in order to “understand” and process the advertisements hosted by its 
affiliated registry. In addition, a form of parallelism is achieved in the execution of 
queries through the use of a multi-thread mechanism. This mechanism simultaneously 
activates a set of registry plug-ins, which are responsible for dispatching a USQL 
request to a set of diverse registries and networks and processing the returned results. 
For instance, with the use of the USQL Engine, it becomes feasible to forward a 
USQL request to a UDDI registry which contains WSDL, WSML, and WS-QoS 
service descriptions and, at the same time, to a JXTA [4] network where JXTA 
service advertisements have been augmented with the use of OWL-S [5]. 

 

 
Fig. 4. High-level structure of a USQL Engine registry plug-in 

We would like to note that, the USQL Engine is capable of implicitly identifying 
the target registries and networks, in order to access and query against them. The 
USQL Engine attains this substantial feature by maintaining and using a domain-
specific upper ontology. Briefly described, the ontology enables the categorization of 
registries and networks, according to the application domain of the services which 
they advertise. Registry entries are manually inserted and maintained in the ontology. 
The ontology also associates domains with domain-specific concepts which are used 
for populating USQL semantic requirements as well as during the application of 



Unified Discovery and Composition of Heterogeneous Services      9 

semantic matchmaking4. More details regarding the structure and usage of the 
ontology are provided in [1]. Hence, the selection of the appropriate registries for a 
query is performed implicitly, according to the service domain that has been explicitly 
specified in the USQL request. Alternatively, the requester may specify the registries 
he/she wants to query against, by making use of the From element in the USQL 
request, as explained in 3.1.  Either way, service requesters are alleviated from the 
burden of acquiring knowledge related to the various registries and their underlying 
technologies and can focus their efforts in describing their requirements accurately 
using the USQL language. 

The USQL Engine exposes its functionality through a web service interface, and 
thus can be seamlessly integrated in a service-oriented development environment. In 
addition, a USQL editor is currently being developed as a plug-in to Eclipse [12], in 
order to ease the task of constructing and submitting USQL requests to the engine. 
The editor provides a user-friendly form-based interface for the creation of USQL 
request documents. A screenshot of the editor interface is depicted in the following 
figure (Fig. 5), which displays the form used for describing the operation-level search 
criteria of the first task that is depicted in the Visual Editor (Fig. 2). On the right hand 
of the screenshot, a tree view is used to handle the USQL request structure; requested 
services comprise operations, which in turn may contain a set of inputs and outputs. 

 

 
Fig. 5. Screenshot of the USQL Editor 

In this paragraph, we focused on how the USQL Engine manages to access and 
query against various heterogeneous registries and networks in a unified manner, and 

                                                           
4 It should be noted that the USQL Engine provides minimal ontological support. Ontology 

mapping is not currently supported, although a semi-automated approach for achieving this is 
under investigation. 



10      A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, H. Hoff, D. Skogan, A.-J. Berre 

we briefly described the supported plug-in mechanism. For more details on the 
architecture and internal structure of the USQL Engine, we refer to [20]. 

4 Related Work 

The proposed languages and corresponding tools cater for the development of 
applications following a service-oriented development approach. Specifically, their 
contribution lies in the areas of service composition modeling (VSCL with associated 
tool) and in service discovery (USQL with query engine). In the following we 
compare these two results with existing work in each of these areas.  

Similar to BPMN [21] the VSCL language provides graphical notations for 
modeling service compositions. However, BPMN’s current version lacks in precise 
modeling of data objects and data flows. Furthermore, BPMN currently may be 
mapped to compositions of web services only [25], whereas VSCL can be used for the 
composition of Web, Grid, as well as P2P services, providing support for semantics 
and QoS metadata which can be used for optimized service selection [15]. WS-BPEL 
[26] on the other hand, is the prevailing, XML based language used for the 
specification of executable web service compositions. However, WS-BPEL has 
received criticism for its lack in supporting semantics [27]. Triana [22] is a 
framework for composing service-oriented applications. Unlike VSCL, the supported 
workflow language does not provide explicit support for control constructs, while its 
visual representation is not standard-based with respect to VSCL. For more 
information on other research projects (e.g., Askalon, Unicore, Karajan) related to 
workflow specification and management, we refer the reader to [23, 24]. 

As far as service discovery is concerned one of the most prevailing issues seems to 
be the incorporation of semantics in service descriptions as well as their exploitation 
during the discovery process. Woogle [10] has developed a set of algorithms that 
enable searching for web service operations that are similar to a given one. The 
underlying idea of the search engine is the grouping of inputs and outputs into 
semantically meaningful concepts. Thus, syntactic information in service 
advertisements attains semantics and can be exploited in a more fruitful manner. The 
USQL with its associated engine enable the search of similar operations through the 
establishment of detailed USQL requests with rich and strict criteria at the operation 
level. As opposed to Woogle, our approach exploits the emerging semantic standards 
for service description, which are expected to greatly enhance and automate the 
course of service discovery. Various search engines are currently available on the 
Internet which group services according to their category [9], [11]. However, they are 
confined to web services only, while the USQL Engine allows for the categorization 
of not only web services but also of p2p, and grid services, with the use of the 
domain-specific ontologies, Other approaches [12] have also established a 
methodology for effectively discovering services. However, the overall process 
consists of a set of activities (depending in when does the service discovery actually 
apply), which render it rather complicated; on the contrary, the combination of the 
USQL language, the USQL Editor and the USQL Engine provides with a uniform, 



Unified Discovery and Composition of Heterogeneous Services      11 

user-friendly, high-level and straightforward way for discovering heterogeneous 
services, regardless of the time the discovery process takes place. 

5 Discussions and Conclusions 

Service oriented development (SOD) is a new trend in software engineering. SOD is 
already affecting the development of business oriented systems turning them into 
service compositions. However, the heterogeneity in protocols and standards of 
existing service types is a major obstacle for the discovery of services and their 
integration in service compositions.  

Within this paper we have presented a set of languages and their corresponding 
tools which facilitate the discovery and composition of heterogeneous services in an 
open and unified manner. Specifically VSCL along with the Visual Composition 
Suite enable the visual composition of heterogeneous services, whilst USQL along 
with the USQL Engine facilitate the discovery of heterogeneous services over 
heterogeneous registries and networks. 

The provided languages and tools enable the unified discovery and composition of 
web, grid and p2p services. Nevertheless, both the languages and the corresponding 
tools are open and extendable so as to accommodate additional protocols and 
standards as well as other types of services.  

Furthermore, the ensued approach for composing heterogeneous services doesn’t 
inflict any modifications on the underlying middleware and protocols that are used by 
the various services, but rather hides the specific details from the composition 
developers. Thus, it abstracts developers from the specific details of each type of 
service and boosts the development process. 

Concluding we should note that the aforementioned languages and tools are still 
under development, thus our future plans include their finalization and testing. 
Specifically all languages and tools will be evaluated against two pilot case scenarios; 
one from the healthcare management and the other from the crisis management 
application domains. Our testing results will be used for measuring the effects of our 
approach in the development of applications composed of heterogeneous services. 
Last but not least, we plan to further extend our work by addressing other types of 
services apart from the web, grid and p2p services that are originally addressed. 

 
Acknowledgement. This work has been partially supported by the European 
Commission under the contract IST-FP6-004559 (project SODIUM: Service Oriented 
Development in a Unified fraMework). 

6 References 

1. A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, “Semantically Enhanced 
Discovery of Heterogeneous Services”, 1st International IFIP/WG12.5 Working 
Conference on Industrial Applications of Semantic Web (IASW2005), 25-27 Aug. 
2005, Jyväskylä, Finland  



12      A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, H. Hoff, D. Skogan, A.-J. Berre 

2. OWL-S, http://www.w3.org/Submission/OWL-S/  
3. WS-QoS, http://www.wsqos.net/  
4. JXTA, http://www.jxta.org/  
5. D. Elenius, M. Ingmarsson, “Ontology-based Service Discovery in P2P Networks”, 

International Workshop on Peer-to-Peer Knowledge Management (P2PKM), 22 
Aug. 2004, Boston, Massachusetts, USA 

6. A. Tsalgatidou, T. Pilioura, “An Overview of Standards and Related Technology in 
Web Services”, International Journal of Distributed and Parallel Databases, Special 
Issue on E-Services, 12(2): 135-162, Sep. 2002  

7. WSML, http://www.wsmo.org/wsml/  
8. SeCSE, http://secse.eng.it/pls/secse/ecolnet.home  
9. Binding point, http://www.bindingpoint.com/  
10.X. Dong, A. Halevy, J. Madhavan, E. Nemes, J. Zhang, “Similarity Search for 

Web Services”, Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004  
11.Salcentral, http://www.salcentral.com  
12.Eclipse, http://www.eclipse.org  
13.R. Grønmo, M. C. Jaeger, “Model-Driven Semantic Web Service Composition”, 

Asia-pacific Software Engineering Conference (APSEC 2005), Taipei, Taiwan, 
December 2005 

14.R. Grønmo, M. C. Jaeger, H. Hoff, “Transformations between UML and OWL-S”. 
In European Conference on Model Driven Architecture – Foundations and 
Applications (ECMDA’05), Nurnberg, Germany, Nov. 2005. 

15.R. Grønmo, M. C. Jaeger, “Model-Driven Methodology for Building QoS-
Optimised Web Service Compositions”. In the 5th IFIP Intl Conference on 
Distributed Applications and Interoperable Systems (DAIS 2005), Athens, Greece, 
Jun. 2005 

16.EMF project, “Eclipse Modeling Framework”, v.2.2.0, Dec. 2005, 
http://www.eclipse.org/uml2/ 

17.GEF project, “Graphical Editing Framework”, Oct. 2005, 
http://www.eclipse.org/gef/ 

18.UML2 project, ”EMF-based UML 2.0 Metamodel Implementation”, Dec. 2005, v. 
2.0.0, http://www.eclipse.org/uml2/ 

19.OMG, “Unified Modelling Language (UML), Superstructure”, ver. 2.0, Jul. 2005. 
20.A. Tsalgatidou, M. Pantazoglou, G. Athanasopoulos, “Semantically Enhanced 

Unified Service Discovery”, W3C Workshop on Frameworks for Semantics in 
Web Services, Digital Enterprise Research Institute (DERI), Innsbruck, Austria, 9-
10 Jun. 2005 

21.BPMN, Business Process Modeling Notation (BPMN). 2003, Business Process 
Management Initiative (BPMI),http://www.bpmi.org/ 

22.M. Shields, I. Taylor, “Programming Scientific and Distributed Workflow with 
Triana Services”, In Proceedings of Workflow in Grid Systems Workshop in 
GGF10, at Berlin, Germany, Mar. 2004 

23.B. Ludäscher and Carole Goble, Special Section on Scientific Workflows, 
SIGMOD Record, 34(3), Sep. 2005 

24.J. Yu, R. Buyya, “A Taxonomy of Workflow Management Systems for Grid 
Computing”, Technical Report, GRIDS-TR-2005-1, Grid Computing and 

http://www.w3.org/Submission/OWL-S/
http://www.wsqos.net/
http://www.jxta.org/
http://www.wsmo.org/wsml/
http://secse.eng.it/pls/secse/ecolnet.home
http://www.bindingpoint.com/
http://www.salcentral.com/
http://www.eclipse.org/
http://www.sigmod.org/sigmod/record/issues/0509/index.html


Unified Discovery and Composition of Heterogeneous Services      13 

Distributed Systems Laboratory, University of Melbourne, Australia, Mar. 10, 
2005 

25.S. White, “Using BPMN to Model a BPEL Process”, white paper, 
http://www.bpmn.org/Documents/Mapping BPMN to BPEL Example.pdf 

26.OASIS , Web Service Business Process Execution Language (WS-BPEL), 2004, 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel 

27.Woodman, S.J., et al. “Notations for the Specification and Verification of 
Composite Web Services”, In The 8th International IEEE Enterprise Distributed 
Object Computing, Conference. 2004. Monterey, California, USA 

28.D. Skogan, H. Hoff, R. Grønmo, T. Neple, “D9-Detailed Specification of the 
SODIUM Service Composition Suite”, SODIUM (IST-FP6-004559) project’s 
deliverable, Jun. 2005 

 

http://www.bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

