
Interoperability among Heterogeneous Services

George Athanasopoulos, Aphrodite Tsalgatidou, Michael Pantazoglou
Dept. of Informatics and Telecommunications,

National and Kapodistrian University of Athens
{gathanas, atsalga,michaelp}@di.uoa.gr

Abstract

Service-Oriented Computing (SOC) has been marked as
the technology trend which caters for the interoperability
among the components of a distributed system. However,
the emergence of various incompatible instantiations of
the SOC paradigm e.g. web, grid and p2p services, as
well as the interoperability problems encountered within
each of these instantiations (e.g. web service
interoperability problems addressed by the WS-I Basic
Profile) state clearly that interoperability is still elusive.
In order to address this problem we first need to identify
all problem dimensions and consequently to provide
appropriate solutions. Within this paper we describe a set
of interoperability dimensions that need to be considered
and we present a generic service model which we view as
a first step in addressing some of the identified problem
dimensions.

1. Introduction

The development of open, large-scale, distributed

systems has been always confronted with the problem of
interoperability. Existing component-based technologies
have tried to address this issue, but they haven’t
managed to provide a widespread solution that would
enable the interoperation of diverse components
developed by different providers, in multi-vendor
platforms [1].

Service-Oriented Computing (SOC) has been
branded as the technology trend whose primal objective
is to facilitate interoperability between the components
of a distributed system. The most well-known
instantiations of the service-oriented computing
paradigm are web [7] and grid services [15], but there
are also other types such as p2p (Peer-to-Peer) services
[16], which are currently gaining momentum. All these
types of services are built on top of XML [20] and other
proven communication protocols such as HTTP [19] and
TCP/IP [21]. Researchers have been also articulating for
quite a long time on a set of common concepts that are
shared among all types of services. This set of common
characteristics includes properties such as self-
description, internet accessibility and message-oriented
communication [14]. These features along with the use

of XML [20] provide an infrastructure that leverages
interoperability among the components of a service-
oriented system.

Nevertheless, despite the original hype surrounding
the service-oriented technology, interoperability still
remains an open issue. Although existing service-
oriented computing instantiations provide a basic
infrastructure for tackling interoperability, they still do
not fully address it. This is mainly due to the
multidimensional nature of interoperability, as it has
been noted by other researchers, too [2], [13]. Thus,
although each of the service-oriented computing
paradigm instantiations - e.g. web, grid and p2p services
- provides a basic infrastructure for supporting
interoperability, they fail to address all dimensions of
the problem. Efforts such as those undertaken by WS-I
[17], which has provided a basic interoperability profile
for addressing some of the interoperability problems
among web services, foreground the need for addressing
the problem in various dimensions. Furthermore, this
multiplicity of existing service types has further
aggravated the problem, as, albeit these service types
share some common characteristics, they adhere to
incompatible models and standards and employ distinct
platforms and middleware to perform their basic
activities [8]. Therefore, the continuous proliferation of
such heterogeneous services renders the support for
their interoperation an important task.

The goal of this paper is twofold: on one hand it aims
to elaborate on the problem of interoperability among
heterogeneous types of services such as web, grid and
p2p services and to view it from different dimensions. In
this way, the issues that need to be addressed in order to
facilitate the integration of heterogeneous services can
be exemplified more clearly. On the other hand, the
paper aims to take into account these issues and develop
a generic service model that can leverage
interoperability among web, grid and p2p services.

The rest of the paper is structured as follows. Section
2 elaborates on the problem of service interoperability
and establishes a set of interoperability dimensions.
Section 3 presents the interoperability dimensions that
are involved when trying to integrate heterogeneous
services. Section 4 briefly presents a generic service
model which was established so as to address some of
the interoperability concerns identified in section 3.

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

Finally section 5 concludes with a short discussion on
the open issues and our future work plans.

2. Interoperability Dimensions

Research on service interoperability has received

considerable momentum within the last decade.
According to the majority of the proposed
interoperability models [2][5][6], service
interoperability has been sub-divided into the signature,
protocol and semantic levels1. An appropriate
classification scheme that considers the evolution of
distributed computing from the emergence of RPC or
component models such as DCOM [28] and EJBs [27]
to CORBA [26], has been proposed in [5] and is
presented in Figure 1.

Figure 1: Classic Interoperability dimensions

In [3], Strang proposed to extend the service

interoperability levels with the addition of the context
interoperability level, which is of high importance to
context-aware applications, whereas Ruiz in [4]
proposed to extend it with the addition of the quality
interoperability level (Figure 2).

Figure 2: Extended set of Service Interoperability
dimensions

Each of these levels describes specific

interoperability concerns which need to be tackled when
integrating two service-oriented systems. These
concerns are briefly presented below:
 Signature level: This level addresses the interface

definition conformance. This includes the operations,
types and order of parameters of a service interface as

1 In this paper, the terms interoperability dimension and interoperability
level have the same meaning and are used interchangeably.

well as standards such as the interface definition
languages (IDL).

 Protocol level: Interoperability on the protocol level
addresses the order in which the methods of a service
are invoked. The Web Service Choreography
Description Language (WS-CDL) [18] can be seen as
an effort to resolve this interoperability problem.

 Semantic level: Semantic interoperability addresses
the problem of common understanding between
service providers and service requestors. This
problem can be tackled through ontologies and
semantic service description frameworks such as
OWL-S [24], WSMO [25] or METEOR-S [23].

 Quality level: Quality of Service interoperability
(QoS) addresses the conformance of the quality
requirements of a service requestor and the quality
properties offered by the service provider.

 Context level: Context level interoperability refers to
the conformance between the context representations
used by service providers and the context
representations requested by the clients. Context level
interoperability is important when dealing with
service interoperability in ubiquitous computing
environments.
Although the aforementioned service interoperability

levels (or dimensions) are the most commonly used,
they are not the only ones. One can consider other
dimensions as the ones that we propose below (see
Figure 3):
 Business Domain: Business Domain interoperability

represents the ability of two business systems to
interoperate. This includes the sharing of common
domain concepts and processes.

 Application: Applications are instantiations of
specific business domains. Thus, application
interoperability represents the ability of two specific
business system instantiations as perceived by their
developers to interoperate. This includes the use of
compatible data structures, functionality and
orchestrations.

 Platform: Platform interoperability represents the
ability of the underlying middleware leveraged by
two applications to interoperate. This includes
features such as the use of compatible data type
representations (e.g. real numbers having the same
accuracy and same format), interface specification
mechanisms (e.g. Interface Definition Languages) or
architectural styles (e.g. use of Message-Oriented
communication styles). As it can be seen, this layer
differs from the one presented in Figure 1 in that it
addresses both programming language
interoperability and the platform interoperability
dimensions.

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

Figure 3: Additional Service Interoperability

dimensions

Both classification frameworks (depicted in Figures 1 and
2) provide appropriate concepts for modeling service
interoperability dimensions. Actually, these frameworks
are orthogonal to each other since they have been derived
from different points of view. Specifically, the first
classification framework takes an internal look on the
aspects that need to be considered when dealing with the
integration of two systems, whereas the second one uses a
system architect ‘coarse’ point of view for the
identification of the various levels which are affected by
the integration. Thus, these frameworks may be integrated
into a single one which facilitates the classification of
interoperability concerns from two distinct points of
view. Figure 4 illustrates this integrated view of service
interoperability dimensions along with the association
between the concepts of the two individual frameworks.

Figure 4: An integrated view of Service

Interoperability Dimensions

As it can be seen in Figure 4, except from the

semantic and signature interoperability levels (which are
mapped to business domain and platform levels
respectively), all the others don’t have a one-to-one
correspondence. Thus, interoperability issues referring
to the protocol and context levels are associated with
both the application and business levels; interoperability
issues referring to quality level on the other hand are
associated the application and platform levels. Let us
consider for example the interoperability problem that
may arise when integrating two systems that implement
two incompatible processes (i.e. processes with

incompatible choreographies), which is a protocol level
issue. This problem may exist either due to the fact that
the two systems support different business processes (in
which case we have an interoperability problem at a
business domain level) or because their developers have
selected different algorithms for their implementation
(in which case we have an interoperability problem at
the application level).

In the following we present how the integrated
framework depicted in Figure 4 can be used for the
identification of the interoperability problems which
arise when integrating heterogeneous services.

3. Interoperability Concerns for
Heterogeneous Services

As it has been stated in [8], contemporary

instantiations of the service-oriented computing
paradigm, i.e. web, grid and p2p services, are ruled by
different models, protocols and standards. The range of
discrepancies and diversities among web, grid and p2p
services spans across all service aspects such as
description and discovery mechanisms, quality
characteristics or service provision platforms. Based on
the results of a thorough investigation on web, grid and
p2p services that was undertaken for the purposes of the
SODIUM project [10] we came up with a set of
incompatibilities [9]. These incompatibilities are briefly
presented below:
 Supported Models: There are two different models,

namely the stateful service model and the stateless
service model supported by these types of services.
More specifically, web services are a proponent of
the stateless service model, whereas grid services
adhere to the stateful service model. P2P services on
the other hand are leaning towards the stateful service
model, though some stateless implementations also
exist.

 Intended Clients: Although there might be specific
security constraints dictating a different case, web
services in general may be invoked by any client with
internet access, provided that a client has the
necessary infrastructure (e.g. a SOAP engine) to
exchange messages (e.g. SOAP messages) with the
service provider. When it comes to p2p services, the
respective client should be either a member of the
p2p network or it should have access to the network
through another peer (proxy peer). As far as grid
services are concerned, the client of a service needs
to be provided with the necessary credentials so as to
utilize resources of a specific virtual organization.

 Syntactic Features: The different models supported
by the investigated types of services result in a set of
syntactic diversities as well. Briefly, while grid and

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

web services adhere to the WSDL [7] defined service
model (i.e. a service comprises a set of distinct
operations) and utilize the SOAP message format,
p2p services adhere to a suppressed service model
where each service comprises a single operation, and
employ proprietary message formats (see [16]).
Furthermore, grid services have introduced the notion
of resource along with other related concepts such as
resource lifetime so as to support the stateful service
model, whereas for the description of p2p services it
is necessary to use concepts denoting the p2p
network topology (e.g. peer, peer group, etc).

 QoS Properties: The origins of grid services are in
high-performance scientific computing, whereas of
web services in business-oriented systems. P2P
services on the other hand are derived from
collaborative information systems such as file sharing
and instant messaging. Albeit there are certain
implementations that do not adhere to the following
claim, we may argue that the origins of each of these
types of services have dictated specific quality
properties for each of them respectively. Thus, grid
services in general have to be reliable, secure and of
high performance, whereas p2p services need not
necessarily provide for all these properties.
All these differences among the investigated types of

services end up to interoperability concerns that can be
classified according to the previously identified
interoperability dimensions. These concerns are
summarized below:
 The difference on the supported models has an

impact on the signature, protocol and semantic levels
as well as on the platform, application and business
domain dimensions of service interoperability.
Specifically, as we have stated above, the use of the
stateful service model by grid services resulted in the
provision of additional concepts such as the resource
or the resource lifetime. In addition, processes need
to be provided so as to support the stateful service
model, e.g. lifetime management or discovering and
binding to specific resources. These modifications
have an impact on the platforms that are utilized for
the provision and invocation of services, on the steps
that need to be followed for the integration of such
services as well as on the semantics that are needed
for the description of the additional elements and
process steps.

 The difference on the intended clients has an impact
on the signature and protocol levels as well as on the
platform and application dimensions of service
interoperability. This because in order to support the
interoperability among services that are targeting
different clients, the details of each platform need to
be reconsidered. In addition, the different interaction
patterns used by the clients and providers of such

services have an impact on the process steps within
an application that are followed for their
interoperation.

 The difference on the syntactic features has an effect
on the signature and platform dimensions of service
interoperability. The use of incompatible structures
and elements for the description of service syntactic
characteristics has an effect on the languages used for
their descriptions as well as on the middleware used
for the provision and usage of such services.
Therefore, in order to facilitate the integration of
services with incompatible syntactic features, specific
middleware needs to be provided so as to
accommodate the mapping of the features of one
service type to the features of another service type.

 The difference on QoS properties has an effect on the
quality level as well as platform and application
dimensions of service interoperability. Considering
for example the issues of security, billing or
availability, appropriate middleware and processes
need to be used so as to cater for the provision,
monitoring or management of such quality properties.
Thus, the integration of services which are either
demanding or providing incompatible quality
characteristics has to be supported by appropriate
middleware as well as by the use of specific process
steps within an application.
As it can be easily seen, none of the identified

discrepancies among the investigated types of services
resulted in interoperability concerns for the context
dimension. This is due to the fact that our investigation
was focused on the interoperability problems that
emerge when integrating heterogeneous services in
general and not on services supporting context-aware
applications.

Based on the results of our analysis, the
interoperability dimensions that seem to be highly
affected by the integration of heterogeneous services are
the signature, protocol, platform and application ones.
Thus, in order to facilitate the integration of
heterogeneous services, special care should be given on
these levels.

Several approaches could be used to accommodate
the aforementioned interoperability problems. One is
through the establishment of standards catering for the
representation of aspects such as syntactic features,
semantics or QoS. Another one is through the provision
of appropriate middleware, languages and tools which
will facilitate the interoperation of heterogeneous
services. However, for such standards, middleware and
languages to be developed we first need to establish a
model with the concepts that each of the addressed types
of services uses; this is actually what we do in the
following section, where we present a generic model

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

that was developed by the authors in order to tackle this
need.

4. Generic Service Model

In this section, we briefly present the structure and

the concepts of a Generic Service MOdel, namely
GeSMO. This model can be used as a basis for the
development of appropriate languages and middleware
that can address service interoperability. As we have
mentioned before, GeSMO was based on a thorough
investigation of the current state of the art on web, grid
and p2p services. Specifically with respect to p2p
services, GeSMO has been primarily influenced by the
work in JXTA [16] as the latter is one of the very few
p2p networks supporting the notion of service.

GeSMO was constructed in such a way that it
efficiently models all common characteristics of web,
p2p and grid services, while at the same time it provides
for the modeling of the distinct characteristics per
service type. In addition, the model has the following
properties:
 Generality: The model is generic enough so as to

support the modeling of all types of services and not
just web, p2p and grid services.

 Abstraction: The model incorporates abstractions of
all common concepts of the addressed types of
services, which can be instantiated to the concepts
supported by each specific type of service.

 Extensibility: The model can be easily extended with
new features and properties, as well as with new
service types.

 Modularity: The model is constructed in a modular
manner, thus allowing the easy modification or
extension of specific information parts.

 Expressiveness: The model is expressive enough to
accommodate several service activities such as
discovery and composition.

 Simplicity: The generic service model is simple
enough to be easily used by a variety of users and
tools which can be built on top of it.
The architecture that was selected for the

development of the Generic Service Model (GeSMO) is
a layered one consisting of the following layers (Figure
5):
 a core layer which models the concepts which are

common to all investigated types of services;
 an extension layer, on top of the core layer, which

provides for the distinct features of each service type;
in the current version, this extension layer is divided
into three modules, which model the distinct
characteristics of each of the investigated types of
services;

 a number of layers orthogonal to the core layer and
its extensions, which model features related to
semantics, quality, trust, security and management, as
these features may be applied to all the concepts of
the core layer and of its extensions.

Figure 5: GeSMO's layered architecture

As expected, the fundamental element in GeSMO is

the notion of service. The combination of concepts met
in each of the aforementioned layers allows for
modeling a service from multiple points of view. Figure
6 depicts the service concept along with some of the
viewpoints that were used for its refinement.

Servi ce

Bas ic

Descri ption

Abstract

S tructure

Semantic &
QoS

Message
S tructure

<< refine>>

<<ref ine>>

<< refine>>

<< refine>>

<<refine>>

Communicati on
V iewpoint

Viewpoint V iewpoint

V iewpoint

V iewpointV iewpoint

Viewpoint

Figure 6: Generic Service Model Viewpoints

As we can see in Figure 6, among the viewpoints that

were used for refining the concept of service are:
i) an abstract point of view
ii) a basic point of view
iii) a description point of view
iv) a structural point of view and
v) a semantic and a QoS view point
These views are exemplified in the following figures.

Thus, from an abstract point of view (see Figure 7) a
service is a software system which has a set of
functional and non-functional characteristics and
exhibits a certain behavior. Its behavioral, functional
and non-functional properties can have a semantic
interpretation, whilst some of its non-functional
properties can be quantified as QoS properties.

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

Service

QoS

Functional
CharacteristicBehavior

Software System

**

has
has

Semantics

0..*0..*

interprets

0..*0..*
interprets

Non-Functional
Characteristic

**

has

0..*0..*

interprets

Figure 7: A Service from an abstract point of

view

Moreover, services are regarded as self-described

software systems, which interact with their clients over
the Internet through messages. As we can see in Figure
8, a service description facilitates service clients in
identifying the messages that can be exchanged as well
as where and how these messages should be send.

ProviderNet Address

Message

Service

1..*1..*

exchanges

1..*1..* resides at offered by

Description

1..*1..*

specifies

0..*0..*

defines

11describes

Software System

Figure 8: Basic Service Model

Specifically, the description of a service may convey

information such as the one presented in Figure 9. As
we see in this figure, a service description can convey
information regarding its behavioral, semantic and
quality features. In addition, a service description
normally provides information about the communication
mechanisms that may be used for accessing the service
as well as its comprising syntactic elements.

Free Text DescriptionCommunication
Mechanism

Semantics

QoS

Syntactic Element

Behavior
Service

Description

0..*0..*
1..*1..*

specifies

0..*0..*

describes

0..*0..*
describes

1..*1..*

describes

describes
11describes

Figure 9: A Service's description point of view

The syntactic elements of a service along with their

structure can be identified in a structural point of view

(Figure 10). In this view, a service is associated with
several elements organized in a certain way.
Specifically, a service provides one or more interfaces
which consist of the operations that this service offers to
its clients. An operation groups a set of messages that
are exchanged among a service and its respective
clients. Each message consists of a set of elements
which adhere to specific data types.

Service Service
Interface

1..*1..*

Data
Type

Operation

1..*1..*defines

Message
Element

abides by

Message

1..*

1..*

1..*

1..*

exchanges

1.. *1.. *

Syntactic
Element

Figure 10: Structural point of view of a Service

A semantic and Quality-of-Service (QoS) point of

view (Figure 11) illustrates which parts of a service can
be semantically annotated, as well as which of them can
be quantified and thus have specific QoS properties. As
it can be seen in Figure 11, a service, its operations and
the exchanged messages may have semantic
interpretation. In addition, a service and its operations
may also be associated with specific QoS properties.

Service Interface

QoS

Operation
1..*1..*

defines
0..*0..*

Message

1..*

1..*

1..*

1..*

exchanges

Service

1..*1..*

0..*0..*

Semantics 0..*0..*

0..*0..*

0..*0..*

Figure 11: Semantic and QoS point of view for a

service

The aforementioned concepts along with the additional
set of concepts that are defined in [9] establish a set of
elements that are shared by the investigated types of
services, i.e. web, grid and p2p services. As it can be
easily seen, most of these elements are primarily
concerned with the syntactic features and concepts of a
service. In other words, at its current state, the generic
service model primarily addresses interoperability

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

concerns related to the signature and platform levels.
However, work related to this model is still ongoing so as
to address the rest of the identified interoperability
dimensions.

We would like to note that the development priorities
of GeSMO were in alignment with our need to promptly
provide results that could be used in the SODIUM project
[10]. More specifically, GeSMO served as a multi-
purpose tool within SODIUM as follows. Firstly, it was
used as a basis for the provision of necessary tools and
languages that facilitate the unified discovery and
composition of heterogeneous services [12]. Specifically,
it was used as the basis for the development of:

 a visual service composition language that
facilitates the modeling of workflow graphs
comprising heterogeneous services [30],

 an XML-based service query language that
facilitates the discovery of services over
heterogeneous registries or networks [8] and

 an XML-based, service composition language that
facilitates the orchestration of services [29].

The openness and extensibility of GeSMO guided the
design and implementation of the above languages and
their respective tools. Thus, each of the provided
languages and tools leverages an extensible (pluggable)
architecture which provides for the accommodation of
additional properties that were not originally addressed.

Secondly, GeSMO facilitates the communication
within the SODIUM project, in the sense that it supports
the exchange of information not only among the tools of
the SODIUM platform but also among the various
project stakeholders.

Finally, GeSMO provided the basis for the
development of a middleware along with a description
language that facilitates the discovery and invocation of
JXTA p2p services [11].

5. Conclusions and Future Work

The Service-Oriented Computing (SOC) paradigm

has been advocated as the technology trend whose
primary objective is to leverage the interoperability
among the components of a service-oriented application.
Despite the hype surrounding SOC as well as its
contemporary instantiations – i.e. web, grid and p2p
services - the problem of interoperability is still open.
Web services, which are the most well known
instantiation of the SOC paradigm, are facing serious
interoperability problems, which have been partially
addressed by the WS-I Basic Interoperability profile
[17]. The proliferation of other instantiations of the SOC
paradigm such as grid services and p2p services has
further aggravated the problem. The high degree of
heterogeneity across all aspects of service-oriented
computing, e.g. description, discovery, composition,

invocation, etc, render the integration of such services
an arduous task. In order to provide for the
interoperability among such heterogeneous services we
need to establish the problem dimensions and provide
appropriate solutions to each of these dimensions.

Within this paper we presented an integrated
classification scheme that provides for the identification
and categorization of interoperability concerns. This
scheme was used for the identification of the service
aspects that are affected by the discrepancies among the
web, grid and p2p services. As it was expected, the
discrepancies among the investigated types of services
have an impact on several of the identified
interoperability dimensions. Among the highly affected
dimensions that have been identified by our analysis are
the signature, protocol and quality levels as well as the
levels of platform, application and business domain
which are orthogonal to the first ones.

In order to address the interoperability concerns at
each of the identified interoperability dimensions several
actions need to be undertaken. Such actions include the
development of standards tackling aspects such as
syntactic, semantics and quality of service descriptions
as well as the development of appropriate middleware
that facilitates the integration of heterogeneous services.
For such actions to be effective, conceptual models
describing the concepts of each type of service need to
be established.

Such a conceptual model was presented in this paper.
This model called GeSMO was the basis for the
provision of appropriate languages, tools and
middleware (developed within the SODIUM project)
which facilitate service interoperability. We would like
to note that, although the provided generic service
model served as a basis for handling interoperability at
the signature or platform level, it needs to be further
extended in order to fully address the interoperability
problem. Thus, issues regarding other interoperability
dimensions such as protocol, quality or application as
well as semantic or business domain are going to be
addressed in our future work. Further future plans for
the generic service model include the provision of
extensions to address other types of services such as
sensor services and the incorporation of additional p2p
networks and platforms that provide for other p2p
services besides the JXTA platform that is currently
addressed.

Acknowledgement: This work has been partially

supported by the Special Account of Research Funds of
the National and Kapodistrian University of Athens under
contract 70/4/5829 and by the European Commission
under contract IST-FP6-004559 for the SODIUM project
[10].

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

6. References

[1] N. Medvidovic, D. Rosenblum, and R. Gamble, “Bridging
Heterogeneous Software Interoperability Platforms”, Technical
Report, USC-CSE-99-529, Center for Software Engineering,
USC, November 1999
[2] J. Fang, S. Hu, Y. Han “A Service Interoperability
Assessment Model for Service Composition”, In Proceedings of
the 2004 IEEE International Conference on Services Computing
(SCC’04), Sept. 2004, Shanghai, China
[3] T. Strang, C. Linnhoff-Popien, “Service Interoperability in
Ubiquitous Computing Environments”, Proceedings of
International Conference on Advances in Infrastructure for
Electronic Business, Education, Science, Medicine, and Mobile
Technologies on the Internet (SSGRR2003w), L'Aquila, Italy,
January,2003
[4] A.Ruiz, et al, “Addressing Interoperability in Multi-
Organisational Web-Based Systems”, Proceedings of the 2nd
ECOOP Workshop on Object Interoperability (WOI’2000),
Sophia Antipolis, France, June 12, 2000
[5] A. Vallecillo, J. Hernandez, and J. M. Troya, “Woi’00:
New issues in object interoperability,” in LNCS 1964:
ECOOP’2000 Workshop Reader, pp. 256–269, Springer
[6] T. Murer, D. Scherer, and A. Wuertz, “Improving
component interoperability information,” in Proceedings of
Workshop on Component-Oriented Programming (WCOP’96)
at 10th European Conference on Object-Oriented Programming
(ECOOP’96), pp. 150–158, dpunkt, July 1996
[7] A. Tsalgatidou, T. Pilioura, “An Overview of Standards
and Related Technology in Web Services”, International Journal
of Distributed and Parallel Databases, Special Issue on E-
Services, 12(2): 135-162, Sep. 2002
[8] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou,
“Semantically Enhanced Discovery of Heterogeneous Services”,
1st International IFIP/WG12.5 Working Conference on
Industrial Applications of Semantic Web (IASW2005), 25-27
Aug. 2005, Jyväskylä, Finland
[9] A. Tsalgatidou, G. Athanasopoulos, M.Pantazoglou, et al.
Generic Service Model Specification, Technical Report,
available at: http://www.di.uoa.gr/~gathanas/TR/gesmo-1.0-
report.pdf
[10] SODIUM project (IST – FP6-004559),
www.atc.gr/sodium
[11] A. Tsalgatidou, G. Athanasopoulos, M.Pantazoglou, et. al
“D4: Generic Service Model Specification”, SODIUM (IST-
FP6-004559) Project’s Deliverable, Jun 2005
[12] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, et al.
“Developing Scientific Workflows from Heterogeneous
Services”, To appear in ACM SIGMOD-RECORD
[13] M. Burstein, et al. “A semantic web service architecture”,
In IEEE Internet Computing, Sept.-Oct. 05, pp 72-81
[14] W. Vogels, “Web Services Are Not Distributed Objects”,
IEEE Internet Computing, Nov.-Dec. 2003
[15] K. Czajkowski, et al. From Open Grid Services
Infrastructure to WSResource Framework: Refactoring &
Evolution, Version 1.0, Whitepaper, February 2004.
[16] JXTA Org, Project JXTA, http://www.jxta.org/
[17] WS-I, www.ws-i.org

[18] W3C, Web Service Choreography Description Language
(WS-CDL) ver 1.0, Nov 2005, http://www.w3.org/TR/ws-cdl-
10/
[19] R. Fielding, et al. Hypertext Transfer Protocol -- HTTP/1.1,
IETF, June 1999
[20] T. Bray, et al. Extensible Markup Language (XML) 1.0
(Third Edition), W3C Recommendation 04 February 2004,
http://www.w3.org/TR/2004/REC-xml-20040204/
[21] A. S. Tanenbaum, Computer Networks, Prentice Hall, ,
fourth edition, 2003, ISBN: 0-13-066102-3
[22] Keith Ballinger, et al. Basic Profile Version 1.1, WS-I
specification, 8 August 2004, http://www.ws-
i.org/Profiles/BasicProfile-1.1-2004-07-21.html
[23] Web Service Semantics, WSDL-S, W3C Member
Submission, http://www.w3.org/Submission/WSDL-S/
[24] W3C, OWL-S: Semantic Markup for Web Services, W3C
submission, Nov. 2004 http://www.w3.org/Submission/OWL-S/
[25] Web Service Modeling Ontology:
http://www.wsmo.org/TR/d2/v1.1/
[26] J. Siegel. CORBA Fundamentals and Programming. Wiley,
1996
[27] Sun Microsystems, Enterprise Java Beans 3.0 Early Draft
Review 2, 2005. http://java.sun.com/
[28] Microsoft Corporation. Distributed Component Object
Model Protocol-DCOM/1.0, draft, November 1996
http://www.microsoft.com/Com/resources/comdocs.asp
[29] C. Pautasso, G. Alonso, “From Web Service Composition
to Megaprogramming” In Proceedings of the 5th VLDB
Workshop on Technologies for E-Services (TES-04), Toronto,
Canada, August 29-30, 2004
[30] H. Hoff, et al., “D7 Specification of the Visual
Composition Language (VSCL)”, SODIUM (IST-FP6-004559)
Project’s Deliverable, Jun 2005

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

