
Behavior-aware, Unified Service Discovery
Michael Pantazoglou, Aphrodite Tsalgatidou

National & Kapodistrian University of Athens
Department of Informatics & Telecommunications

Panepistimiopolis, 15784 Athens, Greece
Phone: +30 210 727 5206

{michaelp, atsalga}@di.uoa.gr

George Spanoudakis
City University

Department of Computing
Northampton Square, London EC1V 0HB, UK

Phone: +44 20 7040 8346

gespan@soi.city.ac.uk

ABSTRACT

Composite services commonly expose the choreography of

message exchanges realized by their constituent services through

appropriate descriptions and interfaces. Such information is very

useful in deciding whether a composite service fully meets the

behavioral requirements of a specific application or not. However,

expressing behavioral requirements towards a service is currently

a challenging task, often requiring the use of complex semantic

annotations and the employment of related supporting

technologies. Moreover, choreography descriptions and interfaces

may be expressed in various formats and they are published in

various types of registries, repositories, or networks. These issues

hinder the applicability and effectiveness of behavior-aware

service discovery. To overcome the aforementioned obstacles and

to promote interoperability at the service discovery level, we

propose in this paper a novel, unified solution towards expressing

and evaluating behavioral requirements towards services. In our

approach, queries are conveniently created in a visual manner

with the use of UML; they are translated into a generic XML-

based query language, namely USQL; they are uniformly executed

in a wide variety of target registries, repositories, and networks,

by means of a powerful service search engine; and they can be

matched against different types of service choreography

descriptions.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques;

D.2.12 [Software Engineering]: Interoperability

General Terms

Design, Human Factors, Languages.

Keywords

Service Discovery, Behavioral Constraints, Visual Modeling,

Service Choreography, Composite Services, Heterogeneous

Registries.

1. INTRODUCTION
Service-Oriented Computing (SOC) is currently the leading

paradigm in the development of distributed software applications.

According to its principles, existing services, i.e. autonomous

pieces of software which expose standards-based interfaces and

communicate through well established internet protocols, can be

discovered and composed to deliver a specific functionality. The

result of a service composition may be further exposed as

composite service, thereby rendering itself available for discovery

and reuse. In terms of their exposed interfaces, both atomic and

composite services describe their operations, input, output as well

as the required binding and invocation details. However, unlike

atomic services, composite services may also provide descriptions

of their behavior, i.e. the choreography of message exchanges

between the service itself and the constituent services.

To date, there are a number of languages which enable the

description of composite service behavior, such as WS-BPEL [1],

WS-CDL [5], WSMO [12], and OWL-S [8]. Once generated,

behavior descriptions may be published to a variety of registries,

such as UDDI (see http://www.uddi.org), uploaded to repositories

such as ebXML (see http://www.ebxml.org), or even distributed

within peer-to-peer networks [17]. Ideally, in order to search for

services based on their behavior, requesters should be able to: (i)

formulate behavioral queries in an easy and generic manner,

independently of the various languages that services may use to

describe their behavior; and (ii) uniformly execute their queries

against heterogeneous targets. Alas, the current state-of-the-art

makes behavior-aware service discovery a cumbersome task.

Queries are formulated by means of specific choreography

description protocols, which, despite their expressiveness, are not

user-friendly, and are executed in a limited set of targets, which

comply only with the language/protocol being used.

To address these limitations and facilitate the application of

behavioral constraints in service discovery, in this paper we

propose a novel framework for behavior-aware service discovery.

Our framework comprises a visual query modeler, a generic

XML-based query representation, and the corresponding

middleware for query processing and execution. Thus, the

contributions of the proposed framework are the following:

• User-friendly, intuitive formulation of behavior-based service

queries by means of a visual query modeler

• Efficient query processing and execution in a unified and

protocol-independent manner, by means of a powerful and

flexible service search engine

It should be noted that, the proposed framework is the result of

synergy and integration between two existing service discovery

tools, namely the ASD platform [7] and the USQL Engine [10],

which were developed in the contexts of two EU projects called

SeCSE [13] and SODIUM [15], respectively.

Briefly, the rest of this paper is structured as follows. In Section 2

we present the proposed approach, describe its overall

architecture and give details for the basic components; In Section

3 we discuss related work and compare our proposal to the

various existing approaches; Finally, Section 4 concludes with a

brief discussion on future work.

2. ΤHE PROPOSED APPROACH
As outlined in Section 1, our framework supports the discovery of

services from heterogeneous service registries based on behavioral

service queries which are expressed using an efficient,

choreography protocol-independent formulation. The overall

architecture of the proposed framework is displayed in Figure 1.

The proposed Behavioral Service Discovery Framework (BSDF)

comprises three main components: (i) a visual query modeler

which models behavioral service queries by means of UML

behavioral diagrams; (ii) a translator which transforms the raw

XMI output of the modeler to a generic XML-based query

language, namely USQL; and (iii) a query engine capable of

processing and executing USQL queries in various types of target

registries, repositories, networks, etc. In the following paragraphs,

we go through the details of each one of these components.

It should be noted that, although we have implemented a specific

visual query modeler in the BSDF, the latter is generic enough

and can also accommodate other front-ends, as long as the

appropriate translator is provided. In this regard, the following

paragraphs describe an instantiation of the BSDF front-end, which

has been based on previous work and uses UML sequence

diagrams to express behavior constraints towards services.

2.1 The Visual Query Modeler
The Visual Query Modeler (VQM) is the front end of our

framework that enables the specification of service discovery

queries. The VQM was originally developed to support

architecture-time service discovery in the context of the SeCSE

project. In our prototype implementation, we have used the UML-

based graphical service query language that was defined by

Kozlenkov et al. in [7]. This language enables the specification of

service discovery query using a UML profile that was defined for

this purpose. More specifically, the approach developed in [7]

enables the specification of service discovery queries in reference

to a UML model that includes interaction models specifying the

behavior of systems that use services and class models that specify

the classes and interfaces which are involved in this behavior. The

user can specify queries in reference to a sequence diagram by

identifying the messages that he/she expects to call operations

provided by services and stereotype them as

«asd_query_message». Following this annotation, the graphical

modeling tool extracts from the UML model the classes that

define the types of the parameters of the message and all the

classes that can be reached by them via different types of relations

and constructs the structural part of the query. It also extracts

from the sequence diagram all the other messages which have the

same receiver as the «asd_query_message» and uses them to

construct a partial behavioral model for the required service.

In Figure 2 below, we show an example of a query specified using

this approach. The UML sequence diagram shown in this figure

specifies an interaction of a stock brokering system that enables

its users to get daily market information including the rates of

services of different stock brokers (see message getRateInfo() in

the diagram), market headlines (see message

getMarketHeadlines() in the diagram), and more detailed market

news (see message getMarketNews() in the diagram), as well as

information related to puchases of specific stocks (see message

getPurchaseInfo() in the diagram). Assuming that a user wants to

locate service operations that can provide the functionality

expected by the messages getMarketHeadlines() and

Behavioral Service Discovery Framework

Visual
Query Modeler

XMI2USQL
Translator

Query Execution
Engine

XMI USQL

Query Execution Engine

Query Handler
Target
Plug-ins USQL Matcher

Parser
Plug-ins

Matcher
Plug-ins

Heterogeneous registries,
repositories, networks, etc.

Heterogeneous choreography descriptions

Figure 1. Overall architecture of the proposed Behavior-aware Service Discovery Framework.

getMarketNews(), all that he/she would need to do is to stereotype

these two messages as «asd_query_message» as shown in Figure

2.

Based on the attachment of this stereotype to the messages, the

graphical query modeling tool that has been developed in [7] can

generate a query in XMI that includes a structural model and a

behavioral model of the service that appears to provide the

relevant operations in the diagram, i.e. the service represented by

the interface MarketService in the model. The structural model in

this case would include the classes that define the types of the

parameters of the messages stereotyped as «asd_query_message»

in the query. The behavioral model of the service MarketService

in this case would represent the automaton shown in Figure 3.

Users may also declare constraints for the services that they want

to discover which are specified as OCL (Object Constraint

Language) expressions [9].

The current front end of the framework takes the query that is

specified graphically and represents it in XMI. This front end has

been implemented as a plug-in of IBM Rational Modeler.

2.2 USQL and the XMI2USQL Translator
The Unified Service Query Language (USQL) [16] is an XML-

based language enabling the construction of unified, meaningful

service discovery requests and responses. The primary goal of

USQL is to provide a unified interface for the discovery of

services, regardless of their type, description, and discovery

protocols. To accomplish this objective, USQL has been designed

to be as abstract and extensible as possible.

The specification of USQL provides the structures necessary to

express syntactic, semantic, and qualitative criteria towards

services, their operations, and the input/output messages. In order

to support the expression of behavioral constraints towards a

service operation, we extended the language by introducing an

operation-level extension element called Choreography. Figure 4

displays the conceptual meta-model of the Choreography element.

With the use of the Choreography element, requesters may

specify a desired sequence of service operations and, for each one

of them, they may assign requirements for service-level properties

(e.g. name, provider, and category of the service), operation-level

properties (e.g. name, signature, semantics, and QoS properties),

as well as input/output message-level properties (e.g. number of

parts, part name, semantics, type, etc.). In this way, in addition to

S0
receive(getMarketHeadlines())

respond(getMarketHeadlines())

S1

S2

S3

receive(getMarketNews())

S4
respond(getMarketNews())

Figure 3. Behavioral model of the market service.

BusinessMan Haptical Rate MarketService BusinessService

1:getDailyInfo

1.1:getRateInfo

«return»
1.2:getRateInfo

«asd_query_message»
1.3:getMarketHeadlines

«return, asd_query_message»
1.4:getMarketHeadlines

«asd_query_message»
1.5:getMarketNews

«return, asd_query_message»
1.6:getMarketNews

«return»
2:getDailyInfo

3:getPurchaseInfo

3.1:getBusinessInfo

«return»
3.2:getBusinessInfo«return»

4:getBusinessInfo

Figure 2. An example behavioral query expressed in a UML sequence diagram.

the behavior-based evaluation performed for the whole composite

service, it becomes possible to evaluate the constituent services

against a rich set of criteria.

Having explained the structure of the Choreography element in

USQL, let us now proceed with a short description of the

XMI2USQL translator component. The role of the translator is to

transform UML sequence diagrams which are generated by the

visual query modeler into USQL queries. In the case of sequential

flows, the transformation is performed directly by adding a new

Service sub-element to the Choreography element for each task,

and appropriately setting the operation and input/output properties

to reflect the desired data flows.

The XML snippet of Figure 5 illustrates the USQL request that

results from the translation of our example UML sequence

diagram (see Figure 2) discussed in Section 2.1. As it can be seen,

a Choreography element has been appended to the requested

service operation, in order to express requirements towards the

desired behavior. The requested choreography involves two

service operations, one for retrieving market headlines, and one

for retrieving market news. Based on the information included in

the XMI representation of the query, the XMI2USQL translator

has mapped the exchanged messages to appropriate Input and

Output parts in each service operation, and has also assigned their

types. In general, the translator can also map QoS requirements

expressed as OCL expressions in the UML query, to appropriate

extension elements in a QoS container sub-element of each

service operation. We have omitted the demonstration of such

facility in our example due to limited space.

Thus, after completion of the XMI-to-USQL translation, the

USQL-formatted query is ready to be processed and executed by

the query execution engine of our framework, which we describe

in the following.

2.3 The Query Execution Engine
The Query Execution Engine included in the BSDF is an

extensible service search engine supporting service discovery in

an open set of registry types, and is capable of processing and

matching various heterogeneous types of service advertisements.

This kind of flexibility is accomplished by the plug-in mechanism

that the engine implements. The query engine is an extended

version of the USQL Engine, a tool developed for the needs of the

SODIUM platform [15], and as such it is fully compatible with

the USQL specification, using USQL queries and responses to

communicate with its users. For the rest of this paper, we will

refer to the query execution engine as USQL Engine.

Figure 5. The USQL query that corresponds to our example

UML query.

Figure 1 displays the overall architecture of the USQL Engine,

and the main components involved in a service discovery process.

Upon receiving a USQL request, the engine employs a query

handler which will be responsible for its processing. The query

handler validates the USQL request against the USQL schema,

configures the target registries and invokes the appropriate target

plug-ins to execute the query. Search in each registry yields a

number of service choreography advertisements which may be

generally expressed in various different formats, such as WS-

BPEL, OWL-S, or WS-CDL. Before being passed to the USQL

matcher, the advertisements are processed by appropriate parser

plug-ins. There is one parser plug-in for each supported

choreography description language, which is responsible for

mapping the advertisement to a USQL format. Subsequently, all

<?xml version="1.0" encoding="UTF-8"?>

<USQL version="" xmlns="urn:usql">

 <USQLRequest id="1184582426765">

 <SearchCriteria>

 <Service>

 <Operation>

 <Choreography xmlns="urn:usql:ext">

 <Service>

 <Operation>

 <Name><Value>get market headlines</Value></Name>

 <Input>

 <Part>

 <Type namespace=”…”><Value>date</Value></Type>

 </Part>

 </Input>

 <Output>

 <Part>

 <Type namespace=”…”><Value>Headlines</Value></Type>

 </Part>

 </Output>

 </Operation>

 </Service>

 <Service>

 <Operation>

 <Name><Value>get market news</Value></Name>

 <Input>

 <Part>

 <Type namespace=”…”><Value>date</Value></Type>

 </Part>

 </Input>

 <Output>

 <Part>

 <Type namespace=”…”><Value>News</Value></Type>

 </Part>

 </Output>

 </Operation>

 </Service>

 </Choreography>

 </Operation>

 </Service>

 </SearchCriteria>

 </USQLRequest>

</USQL>

Choreography

Service Operation

Input Output

Part

1..*

0..10..1

0..* 0..*

Figure 4. Conceptual meta-model of the USQL

Choreography extension element.

USQL-formatted advertisements along with the USQL request are

submitted to the USQL matcher, which applies matching and

ranks the results according to their similarity.

The USQL matcher supports the matching of structural and

behavioral descriptions of services and any QoS constraints that

may have been defined for them in service discovery queries, with

models of services retrieved from service registries, repositories or

networks. Matcher plug-ins may be employed during the matching

process to cater for USQL extension elements, such as the

Choreography element which we introduced to express behavioral

constraints. The matching is based on the computation of a

structural, behavioral and QoS distance between the service

operations which are required by a query and service operations

which exist in service registries.

Figure 6. An example USQL response to our USQL request.

The structural distance between a service operation in a query and

a service operation in a registry is calculated by finding the best

possible morphism between two graphs that represent the data

types of these two operations, respectively. These graphs are

generated automatically from the description of service operations

in the query and the registries (the framework supports, for

example, the generation of such graphs from USQL and WSDL

descriptions of service operation signatures). The computation of

this morphism is formulated as an instance of the “assignment

problem” and is solved by an algorithm implementing the

Hungarian method as defined in [7].

The computation of the behavioral distance between a query and a

service operation is based on an algorithm that checks if an

automaton that is generated from the behavioral model of the

service of an operation in the query can be admitted to an

automaton that is generated to describe the behavior of a service

that provides an operation in a registry. The algorithm that is

deployed to check the admissibility computes a minimum distance

morphism between the transitions of the two automata and can be

configured to increase flexibility by leaving up to K adjacent

transitions without a match in the two automata during the search

process (see [7] for more details). The framework supports the

generation of service behavior automata from the choreography

model of USQL and standardized service behavior specification

languages such as WS-BPEL. Finally, in evaluating queries the

framework checks whether the QoS constraints that may have

been specified are satisfied by the descriptions of services in

registries. These constraints may be hard or soft – the former are

constraints that must be satisfied by all the service operations

which are discovered in a query whilst the latter contribute to the

overall distance between an operation in a query and an operation

in a service registry depending on whether they are satisfied or not

(unsatisfied constraints increase the distance between two

operations whilst satisfied constraints reduce it).

An example USQL response that corresponds to the USQL

request of Figure 5 is shown in Figure 6. The response contains

one service entry with two matching operation pairs, one for the

getMarketHeadlines message exchange, and one for the

getMarketNews message exchange. For each matching pair, their

overall, structural, and behavioral distances are displayed, as they

were calculated by the matcher component of our search engine.

Moreover, a rank has been assigned to the overall service entry,

based on the overall distances of the constituent operations.

Finally, for each matching operation, the URL of the

corresponding WSDL description document is provided.

3. RELATED WORK
The framework proposed in this paper is the first one which, to

the best of our knowledge, remains independent from the various

service description and discovery languages and protocols, and

combines structural, behavioral, QoS and semantic criteria in

service discovery. Other approaches which support only subsets

of such criteria are overviewed in the following.

The application of behavioral constraints in service discovery has

received a lot of attention over the last years, and is generally seen

as a means to automate the development lifecycle of service-

oriented applications. In [11], a framework called MoSCoE is

presented, which supports choreography-based service discovery

and composition, and further provides facilities for failure cause

detection. The main difference between MoSCoE and our

approach is the assumptions made on the description of

constituent services and service choreographies. In MoSCoE, it is

expected that constituent services provide semantic descriptions

using common semantic concepts, whereas service choreography

advertisements are modeled with the use of a notation called STS

(Symbolic Transition System). Instead, our approach retains a

high degree of flexibility and independency from choreography

description protocols, as different parser plug-ins can be

employed to process the various heterogeneous types of

advertisements. In [14], the authors propose a behavioral model

<?xml version="1.0" encoding="UTF-8"?>

<USQL version="" xmlns="urn:usql">

 <USQLResponse queryId="1184582426765">

 <Services>

 <Entry rank=”0.817”>

 <results xmlns=”urn:asd”>

 <pair>

 <query_operation>getMarketHeadlines</query_operation>

 <service_operation wsdl_idref="…" service="MarketService"

 provider="...">getMarketHeadlines</service_operation>

 <distance>

 <overall>0.194</overall>

 <structural>0.205</structural>

 <behavioral>0.00</behavioral>

 </distance>

 </pair>

 <pair>

 <query_operation>getMarketNews</query_operation>

 <service_operation wsdl_idref="…" service="MarketService"

 provider="...">getMarketNews</service_operation>

 <distance>

 <overall>0.183</overall>

 <structural>0.192</structural>

 <behavioral>0.00</behavioral>

 </distance>

 </pair>

 </results>

 <wsdls>

 <wsdl wsdl_id="…" service="MarketService">http://...</wsdl>

 <wsdl wsdl_id="…" service="MarketService">http://...</wsdl>

 </wsdls>

 </Entry>

 </Services>

 </USQLResponse>

</USQL>

for web services using automata and logic formalisms. They also

propose a query language which is based on first-order logic and

is used to express requirements towards the behavior of service

operations. In general, the proposed model and query language

adopt the Input-Output-Precondition-Effect (IOPE) model

supported by OWL-S. Although expressive, the proposed query

language is not very user-friendly, and relies on the use of

semantics to capture the requested operation behavior. On the

other hand, our proposed framework provides a convenient visual

query modeler which allows for easy formulation of behavioral

queries, which are not necessarily bound to the use of semantics.

The METEOR-S [2] system adopts a constraint driven service

discovery approach in which queries are integrated into the

composition process of a Service-Centric System (SCS) and

represented as collections of tuples of features, weight, and

constraints. In our approach, the queries contain information

about features, weights, constraints, and parts of the design

models of the SCS being developed. Klein and Bernstein [6]

support service discovery queries based on matching operation

signatures using string matching. Their approach is limited as it

does not support behavioral constraints and cannot account for

changes in the order or names of operation parameters. Horrocks

et al. [3] have developed an approach in which the discovery of

services is addressed as a problem of matching queries specified

as a variant of Description Logic (DL) but do not support the

flexible matching of service behavioral models.

4. CONCLUSIONS
We presented a novel approach in service discovery which

considers the behavioral aspects of composite services. The

proposed framework enables modeling queries with behavioral

constraints in a visual manner, and supports their execution in an

open set of registries, repositories, and networks. In addition, the

framework is able to match the query against various types of

service choreography advertisements, independently from their

format and protocols. Thanks to its flexibility, the framework can

cooperate with various front-ends supporting the formulation of

behavioral service queries.

As it was previously mentioned, the proposed framework is the

result of integrating two existing service discovery tools, and it is

an ongoing effort. At a first stage, we intend to finalize the

XMI2USQL translator component, and develop the plug-ins

necessary for searching in UDDI and ebXML registries, as well as

for processing WS-BPEL choreography advertisements. At a later

stage, we aim at expanding the capabilities of our search engine

by adding plug-ins that will allow processing of other types of

advertisements, specifically targeting for WS-CDL and OWL-S

Process Model descriptions. Hence, we will be able to verify the

efficiency of our framework in addressing the heterogeneity of the

various service behavior description languages.

Finally, we would like to note that, we are evaluating the

expressiveness of our generated queries. Currently, our framework

supports behavior-based service discovery by taking into account

simple sequential behavior patterns during matchmaking. In the

future, we will investigate the option of expressing and evaluating

more complex behavioral patterns in queries, such as conditions,

loops, parallel flows, etc., which are supported by most

choreography protocols.

5. ACKNOWLEDGMENTS
This work has been partially funded by the European Commission

under contracts IST-FP6-004559 for the SODIUM project and

FP6-IST-511680 for the SeCSE project.

6. REFERENCES
[1] Alves, A., Arkin, A., et al. 2007. Web Services Business

Process Execution Language Version 2.0. OASIS Standard.

[2] Aggarwal R., Verma K., et al. Constraint Driven Web

Service Composition in METEOR-S, IEEE Int. Conf. on

Services Computing, 2004.

[3] Horrocks, I., Patel-Schneider, P.F., and van Harmelen, F.

From SHIQ and RDF to OWL: The making of a Web

ontology language. Journal of Web Semantics, 1(1), 7-26,

2003.

[4] Hoschek W 2002. The Web Service Discovery Architecture.

IEEE/ACM Supercomputing Conf., Baltimore, USA, 2002.

[5] Kavantzas, N., Burdett, et al. 2004. Web Services

Choreography Description Language Version 1.0. W3C

Working Draft, October 2004.

[6] Klein M., and Bernstein A. Toward High-Precision Service

Retrieval. IEEE Internet Computing, 30-36, January 2004.

[7] Kozlenkov, A., Spanoudakis, G., et al. 2007. Architecture-

driven Service Discovery for Service Centric Systems,

International Journal of Web Services Research, 4(2), 81-

112, 2007.

[8] Martin, D., Burstein, N., et al., 2004. OWL-S: Semantic

Markup for Web Services. W3C Member Submission, 22

November 2004.

[9] OCL, Object Constraint Language, OMG specification

available at http://www.omg.org/docs/ptc/03-10-14.pdf

(accessed July 2007).

[10] Pantazoglou, M., Tsalgatidou, A., and Athanasopoulos, G.

2006. Discovering web services and JXTA peer-to-peer

services in a unified manner. In Proc. of ICSOC‘06, 104-

115.

[11] Pathak, J., Basu, S., et al. 2006. Parallel Web Service

Composition in MoSCoE: A Choreography-Based Approach.

In Proceedings of ECOWS 2006, 2006, 3-12.

[12] Roman, D., Keller, U., et al. 2005. Web Service Modeling

Ontology. Applied Ontology, 1 (1), 2005, IOS Press, 77-106.

[13] SeCSE, Service-Centric System Engineering, FP6-IST-

511680, http://secse.eng.it/.

[14] Shen, Z., and Su, J. 2005. Web Service Discovery Based on

Behavior Signatures. In Proc. of SCC 2005, 279 - 286.

[15] SODIUM, Service-Oriented Development In a Unified

fraMework, IST-FP6-004559, http://www.atc.gr/sodium.

[16] Tsalgatidou, A., Pantazoglou, M., and Athanasopoulos, G.

2006. Specification of the Unified Service Query Language

(USQL). Technical Report, June 2006, available at

http://www.di.uoa.gr/~s3lab/TR/2006/usql-1.0-spec.pdf.

[17] Younas, M., Awan, I., et al. 2007. A P2P Network Protocol

for Efficient Choreography of Web Services. In Proc. of

AINA 2007, 839-846.

