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ABSTRACT

We study the optimal design of mobile crowdsensing cam-
paigns in terms of the aggregate quality of contributions
attracted for a set of tasks. The interaction of the campaign
with users is realized through a mobile app interface that
recommends tasks to users and offers them incentives. The
main contribution is a novel perspective on the payment
distribution problem faced by the crowdsensing campaign
organizer in light of originally unknown individual user pref-
erences. Contrary to common practice, we acknowledge that
users exhibit high diversity in decision making because they
assess differently attributes related to a task such as their
proximity to the place of interest (PoI), the payment made
for contributing data, or the task context/theme.

We draw on logistic-regression techniques from machine
learning to learn users’ individual preferences from past data
rather than hypothesizing about them. We then formulate
non-linear (sigmoid) optimization problems to determine the
tasks and incentives (payments) that should be optimally
offered to each user. Our mechanism is validated against
synthetic but also real data about the way users choose
tasks, collected through an online questionnaire. It achieves
very good approximations of the optimal solutions and sub-
stantially outperforms alternative preference-agnostic poli-
cies that do not exercise behavioral user profiling to target
the provision of incentives.

CCS Concepts

•Information systems → Incentive schemes; •Human-
centered computing → Ubiquitous and mobile computing
systems and tools; •Computing methodologies→ Super-
vised learning by classification;
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Mobile crowdsensing has emerged as a new sensing para-
digm over the recent years. The proliferation of smartphones
with a multitude of embedded sensors together with the rich
offer of mobile applications transform the mobile users from
passive consumers of information to producers and active
contributors of various kinds of data [9] [4].

Mobile devices and the humans behind them participate in
crowdsensing campaigns originated by corresponding service
providers (SPs). Such campaigns leverage the“wisdom of the
crowd”by collecting individual data from mobile devices and
turning it to collective knowledge that would otherwise be
very difficult or impossible to obtain. Example applications
span the areas of environmental monitoring and awareness
(e.g., [19] [15]) transportation (e.g., [12]), and even lifestyle
and healthcare management (e.g., [14]).

Central to the design and operation of an online crowd-
sensing platform is the recruitment of users. Their contri-
butions to tasks assigned to them are subject to various
types of costs they or their devices may experience includ-
ing the mobile device energy consumption, mobile operator
bill, location or other data privacy cost, and the devotion
of precious time and attention to perform the task. Hence,
the scientific literature is rich in studies that design incen-
tive mechanisms for motivating users to participate in the
campaign and optimizing the collection of data in terms of
their acquisition cost or quality.

However, most (if not all) of them rely on a fundamental
assumption: the devices are instances of intelligent software
agents that take fully rational decisions on behalf of users,
often by solving complex optimization problems. In these
problems, the user preferences are abstracted to analytical
utility functions and the aim becomes to design a mechanism
that optimizes a certain objective such as minimizing the
expenses or maximizing the quality of collected information.

The problem with this assumption is that the decisions
regarding the participation in crowdsensing tasks are more
often than not taken by the humans behind the mobile de-
vices, in ways that deviate considerably from the norms of
perfect rationality. Such decisions depend on the different
and highly personal ways individual users prioritize or weigh
various attributes of the tasks. Attempting to a priori model
the users’ decision-making process through (homogeneous)
analytical utility functions, e.g., concave function for relat-
ing their satisfaction to offered payments, is an oversimpli-
fication that renders the results of the model questionable.

In this work, we radically depart from the current com-
mon assumption that individual user preferences may be



modeled by utility functions in analytic form. Instead, we
use machine learning techniques to learn these preferences
through records of past crowdsensing task offers and user
choices. The derived behavioral user decision-making pro-
files capture the varying importance that each user places
on different task attributes. We then use these personalized
user preference models to predict the probability that a user
will carry out specific tasks. A key observation is the follow-
ing. Each task comprises attributes that are beyond the con-
trol of the campaign designer and attributes that are under
its control, such as the incentives to be designed. These at-
tributes are present in the user decision-making model. The
goal, then, is to compute appropriate values for controllable
attributes, i.e., the payments to be offered to users, so that
the probability that users carry out tasks is maximized and
the purpose of the campaign is best fulfilled.

1.1 Motivating example
Consider a mobile crowdsensing campaign offering some

payment to users who visit specific places and take a photo
with their mobile devices. The campaign interacts with users
through a mobile app that makes suggestions of the follow-
ing form to users: “Consider visiting place X at distance d
away for a payment $p”. Assume that the objective of the
campaign designer is to maximize the total expected num-
ber of photos from all places subject to a finite available
budget for paying users. Let us also assume that users de-
cide whether to visit the suggested place to take a photo
based on two parameters, their physical proximity to the
place, and the offered payment. The first challenge for the
campaign organizer would be to profile users, i.e., use his-
torical data to build a model that describes how probable it
is that a user accepts a task request depending on the pair
(d, p) of the offered task. Then, in a second step, it could
draw on these derived user profiles to issue targeted place
recommendations to users and tune the offered payments
so as to maximize the probability that users indeed visit
the recommended places and contribute photos. Our paper
demonstrates how these two component operations of the
crowdsensing campaign can be formulated and executed.

1.2 Our contribution
Input to our problem is a set of tasks that need to be ac-

complished and our objective is to maximize the aggregate
quality at which this happens. In this paper, the achieved
quality per task is an additive function of the qualities of
the contributions made by the users carrying out the task.
The expected quality contributed by a user to a task is the
product of a quality index that characterizes the appropri-
ateness of the specific user and task, and the probability that
a user will perform the task. Each task comprises a set of
attributes, and the profile of a user is a vector of attribute
weights that are obtained by training the model from past
data. The control actions of the campaign design are the
selection of the task(s) to be presented through the mobile
app interface to users, as well as the determination of the
incentive payment to them.

The main contributions of our work are as follows.

• We use a logistic-regression model and machine learn-
ing techniques to build personalized behavioral decision-
making profiles for users based on their responses to
past offers with different values of attribute vectors
(Section 3). The model allows to capture the uncer-

tainty on whether a user will ultimately perform a task
or not.

• We formulate the problem of maximizing the sum of
expected qualities of tasks through task and incentive
allocation to users as a sigmoid optimization one (Sec-
tion 3).

• We proceed to specific instances of the problem, cor-
responding to different policies the matching of users
with tasks, each time identifying the type of prob-
lem and proposing a solution for it (Sections 4.1 and
4.2.2). The solutions may be exact (special case of as-
signing at most one user per task, reducing to a max-
weight matching problem); approximately optimal(for
one task and multiple users); or call for some combina-
tion of heuristic rules with approximately optimal so-
lutions (when there are multiple tasks and more than
one users may be assigned to a task, yielding an in-
stance of the generalized assignment problem).

• We study the even more general scenario with two rec-
ommended tasks to a user, together with the option
to perform the one or the other, and we extend the
attribute models so as to capture the task selection
process involved in user decision-making (Section 4.3).

• We validate our approach through experimenting with
real data collected through an online questionnaire that
seeks to infer the user preferences in a virtual mo-
bile crowdsensing campaign. Our methods achieve very
good approximations of the optimal solutions and sub-
stantially outperform different benchmark policies that
lack the perspectives of behavioral user profiling and
incentive-targeting (Section 4).

In section 2, we present an overview of state-of-the-art work.
and in section 5 we conclude the paper iterating on directions
for future work.

2. BACKGROUND-RELATED WORK
There exists a large body of research work on incentives

for mobile crowdsensing. In [20] the objective is to select a
subset of data contributors for maximizing total utility mi-
nus sum of payments. The submodularity of the objective is
exploited to devise a truthful greedy algorithm and show its
effectiveness. In [7], the optimal auction framework is used
to design a data market that takes into account the strategic
behavior of data contributors, who may misreport the cost
of data contribution. An incentive-compatible mechanism is
designed to determine participation levels and payments to
users with the aim to minimize data acquisition cost and
ensure a certain quality of aggregate information.

The provision of incentives has been looked upon across a
longer-time scale as well. In [5], the authors use the frame-
work of Lyapunov optimization to design an online algo-
rithm for sensor selection at each time slot for maximizing
social welfare, which is defined as total sensing value minus
sensing cost. The long-term participation of users is achieved
by ensuring that the probability of selecting each of them is
no smaller than a threshold. On the other hand, in [8], user
payments are determined via auctions and the long-term
participation of end users is motivated by providing them
with virtual credit just for participating in a round. The par-
ticipants may then use this credit for reducing their offer in



subsequent rounds, so that the set of winning users changes
over different rounds. This technique proves to be effective
in discouraging frequent winners from constantly increasing
their offers, and it is shown to reduce compensation cost.

Another set of works has been concerned mainly with the
quality of contributed data [16], [13], [6]. In [16], a math-
ematical framework is devised that involves self-interested
data contributors, service consumers, and a service provider.
The quality and timeliness of contributed data is character-
ized through a novel metric that helps shape the market
in terms of compensation to contributors and service con-
sumption rate of service consumers. In [13], an expectation
maximization algorithm continuously estimates the quality
of gathered data, while the anticipated quality of contributed
information for each user is estimated based on mutual in-
formation. Both are taken into consideration in a payment
scheme that pays participants in accordance with their effec-
tive contribution. In [6], the aggregate quality of all tasks mi-
nus the set of costs that users undergo is maximized through
a truthful incentive mechanism based on reverse combinato-
rial auctions. Potential data contributors place bids on sub-
sets of tasks they may contribute data to. The mechanism
takes into account the envisioned qualities and outputs the
selected winners and their compensations for executing the
declared subsets of tasks.

Finally, a different perspective on incentives for mobile
crowdsourcing is exemplified in [18]. Therein, a gamifica-
tion mechanism seeks to boost the user engagement via user
ranking and status level schemes based on reward points.

3. MODEL AND PROBLEM STATEMENT

3.1 The Crowdsensing Application Model
Denote by U the set of potential crowdsensing data con-

tributors participating in the campaign. This set comprises
mobile users who own smart devices, have registered with
a crowdsensing platform, and run the related mobile appli-
cation on their device. The crowdsensing campaign designer
interacts with those users through the mobile app and sug-
gests specific tasks to each of them as they roam in the city,
on their way to work, back home or during their leisure time.
These suggestions change over time depending on the users’
current physical locations and possibly on other context in-
formation collected by the mobile application.

The campaign has a certain time horizon, typically sev-
eral days up to several months. During the campaign, the
mobile app interacts with users regularly and asks them to
perform certain tasks, say once in fifteen minutes or once
every hour or so. Whether the task amounts to data col-
lection and contribution, photo-shooting or another task, it
has to be performed within a certain time interval since it
is suggested to a user.

We restrict our attention to the task selection and alloca-
tion problem during such regular time intervals, over which
a set L of crowdsensing tasks have to be performed. The mo-
bile application issues task recommendations to a user, e.g.,
“You could get a reward p if you carry out task l at distance
d from your current location”. If the user responds to the rec-
ommendation and contributes data within the relevant time
interval for which the information is useful to the campaign,
(s)he gets a reward p, which could generally be monetary
or indirect (e.g., credit points that can be exchanged for
purchases or discounts).

Each task l ∈ L may be viewed as a set of attributes
l = {l1, l2, ..., ln} that may be numerical or categorical, in-
cluding the reward that a task may offer when performed,
the physical location where the task needs to be carried out,
the average time or effort it will take to perform the task,
the battery/computational requirements posed by the task,
and the context (e.g., commercial or non-profit) of the un-
derlying service that is facilitated with the requested task.

Users’ aptitude for specific tasks varies. For instance, an
amateur photographer is more appropriate for a task involv-
ing photo-shooting; but so maybe the case with someone who
owns a smart device with excellent camera resolution. For-
mally, to each user-task pair u, l with u ∈ U and l ∈ L we
assign a quality index qul ∈ [0, 1] that quantifies how good
a contribution user u can make to task l. This index may
also depend on various persistent user attributes e.g., their
interests and pro-social attitude.

There exist limitations on the compensation expenses for
the campaign. Here, we assume that each task l ∈ L comes
up with its own independent budget Bl, which sets an upper
bound to the total payments that can be made to potential
task contributors. An alternative, which we do not consider
here, would be that the budget for all tasks is globally man-
aged, including the possibility to move budget across tasks
as far as some performance objective is reached. Payments
are taken to be continuous variables.

Contrary to the dominant assumption in the literature
that tasks are assigned to users and users deterministically
carry them out, in our work tasks are offered to users and
they choose whether to carry them out or not. Namely, users
undertake a task, or select one task over another probabilis-
tically, depending on how well different tasks compare with
their own individual preferences. We explain how we let this
happen in the section that follows.

3.2 User Profiling and Incentive Allocation
We approach the user response to the requested tasks as

an instance of the two-class probabilistic classification prob-
lem. The two classes correspond to the possible outcomes
of the user decision process, which vary depending on the
actual decision setting. For instance, when a take-or-leave-it
request is made to the user for a single task, class 1 (C1)
corresponds to responding positively to it and carrying out
the task, while class 0 (C0) corresponds to ignoring it.

Likewise, when two tasks are presented to a user, we as-
sume that (s)he may choose one of the two to contribute to,
C1 may correspond to the choice of the one and C0 to the
selection of the other. Clearly, this model can be extended
to one comprising four classes to account also for the pos-
sibilities that a user may perform both suggested tasks, or
none of them. However, in this work we adhere to a two-
class model as a basic reference in order to demonstrate our
approach. The model essentially implies that the mobile ap-
plication suggests one or two tasks to the end users so that
their cognitive load remains manageable in light of the usu-
ally constrained time frame of their decisions. Nevertheless
application instances that propose to the end users more
than two tasks may arise; we have ourselves experimented
with such an instance in [10].

The way each user u weighs the two choices at hand to
reach a decision is modeled by a logistic regression model,
a popular machine-learning model for probabilistic classifi-
cation. Logistic regression makes the hypothesis that, given
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Figure 1: Sigmoid function σ(x). It takes values in
[0,1] as x varies in [−∞,+∞]

a vector of values x for the different attributes (features in
the machine learning terminology), the first alternative is
chosen with probability

Pu(C1|x) =
1

1 + e−wu·x
= σ(wu · x), (1)

where σ(a) = (1+ e−a)−1 denotes the logistic sigmoid func-
tion (ref. Fig. 1), while wu · x denotes vector dot product,
and wu is the vector of the feature weights for a user u.
These weights are learned from historical data and capture
the significance that user u places on different features and
their values in reaching a decision. Similarly, the alternative
choice is selected with probability Pu(C0|x) = 1−Pu(C1|x).

Logistic regression [2, 11] is the most celebrated instance
of generalized linear models, whereby the underlying deci-
sion boundary that separates the two classes is linear in the
feature vector x.

Pu(C1|x) = Pu(C2|x) ⇒ wu · x = 0

Furthermore, important properties of logistic regression are:
(i) the feature weights can be learned easily, as the single
global solution to a convex optimization problem (see sec-
tion 3.2.1), i.e., without complications related to local op-
tima, and (ii) the model is probabilistic, hence it comes with
well-calibrated estimates of uncertainty in the classification
decision [2,11]. Note that there are other classification algo-
rithms with convex objectives such as the well-known Sup-
port Vector Machines. However, they are not suitable in our
case since they do not provide probabilistic predictions.

The feature vector x can be broadly partitioned into two
subsets of features. First, it involves features that are in-
herent to the task and user and may not be controlled by
the service provider (SP). For example, the physical dis-
tance of the task from the current user location, the so-
cial/community vs. commercial orientation of the task, and
its context/theme. We denote this feature subset as xs. A
second subset, referred to as xc, consists of features that are
dynamic and could be manipulated by the SP in order to
shape the task acceptance probability P (C1|x). One such
feature is the payment that the SP may provide to the users
as an incentive to carry out a task.

To figure out how to tune these payments, the SP first
needs to learn how each user weighs the different features
upon making a choice, that is, it needs to learn the users’
weight vectors (or profiles) {wu}, u ∈ U in the logistic re-
gression models. This is realized through a supervised learn-
ing process, whereby data concerning past users’ choices in
similar settings are used to train the individual user models.

3.2.1 Training the logistic regression models

The training dataset Dtr(u) for each user u is made up of
the feature values of m past task suggestions and the user
responses to each,

Dtr(u) = (xu1, yu1), (xu2, yu2), ..., (xum, yum), (2)

where xuj are the feature values for the j-th task suggested
to u and yuj are the labels, 1 or 0, depending on u’s choice.

The likelihood function for the estimation of wu is written
as (see e.g., [2])

P (yu|wu) =

m
∏

k=1

Pu(C1|xuk)
yuk(1− Pu(C1|xuk))

1−yuk ,

with yu = (yu1, . . . , yum). One way to estimate the weights
is to follow the Maximum-Likelihood principle and maxi-
mize the logarithm of the above quantity (the so called log-
likelihood) with respect to wu. However, this could lead
to overfitting and over-confident predictions. Therefore, in
practice, the preferred estimation procedure is to add a reg-
ularization penalty on the weights, of the form λ

2
||wu||

2

(where || · || denotes the Euclidean norm), which places pref-
erence on smaller weight values and formally arises by intro-
ducing a Gaussian prior distribution on wu [2, 11]. Hence,
the aim of the per user training process is to find the weights
wu that minimize E(wu)

E(wu) = −lnP (y|wu) +
λ

2
||wu||

2

= −
m
∑

k=1

[

yuk · ln(Pu(C1|xuk))

+ (1− yuk) · ln(1− Pu(C1|xuk))
]

+
λ

2
||wu||

2, (3)

with P (C1|xuk) = σ(wu ·xuk). The gradient of this function
with respect to wu can be shown to be

∇E(wu) =

m
∑

k=1

(Pu(C1|xuk)− yuk)xuk + λwu (4)

and can be used by a gradient-descent algorithm to itera-
tively converge to the optimum vector wu through

w(τ+1)
u = w(τ)

u − η∇E(wu) , (5)

where η is the learning rate parameter that determines the
aggressiveness with which the algorithm will move towards
the minimum. Since the error function above is a convex
function [2, 11], the minimum is a global one, i.e., there is
no risk of stumbling over a local minimum.

In the numerical investigations presented in Section 4, the
regularization parameter λ is determined by cross-validation
[2,11], which selects λ so that the classification performance
in held-out (test) data is maximized.

3.2.2 Allocating incentives as a sigmoid optimiza-
tion problem

The model training process in section 3.2.1 is carried out
separately for each user u yielding its feature weight vector
wu. Then the probability Pu(C1|xul) that user u will accept
a request to contribute to task l, is a sigmoid function of
individual feature values xul, as shown in Eq. (1). If ws

u and
wc

u are the weight sub-vectors corresponding to the feature
sub-vectors xs and xc, respectively, this can be written as

Pu(C1|xul) = σ(wc
u · xc

ul +ws
u · xs

ul). (6)



The SP is faced with a set of tasks L and a set U of
possible task contributors. Depending on his/her location,
each user u is a candidate contributor only for a subset of
tasks Lu ⊆ L, e.g., those lying in u’s proximity, and the
quality of u’s contribution to each of them is determined
by the quality indices qul, l ∈ Lu. Then, in the general
case, the SP seeks to optimally control the subset of task
features xc to maximize the expected aggregate quality of
user contributions to tasks. We take the aggregate quality to
be an additive function of individual contributed qualities,
but this assumption could be relaxed. The problem faced by
the SP is

maximize
∑

u∈U

∑

l∈Lu

qulσ(w
s
u · xs

ul +wc
u · xc

ul)

subject to: xc
ul ∈ C,∀l ∈ L,∀u ∈ U , (7)

where C is a nonempty bounded closed convex set which
determines the constrained feasible solution space for the
subset of all controlled features {xc

ul}.
More often than not, each vector xc

ul may be reduced to
a scalar corresponding to the payment made to a user as
an incentive to contribute to some task, i.e., xc

ul ≡ pul and
wc

u ≡ wu,p. If we incorporate in the formulation the total
budget constraint per task, (7) reduces to

maximize
∑

u∈U

∑

l∈Lu

qulσ(w
s
u · xs

ul + wu,ppul)

subject to:
∑

u:l∈Lu

pul ≤ Bl ∀l ∈ L

0 ≤ pul ≤ pmax u ∈ U , l ∈ Lu, (8)

where pmax is the maximum allowed payment available for
a single user to carry out a task.

In what follows, we describe how this framework is tailored
to different crowdsensing service settings, starting from sim-
pler ones and moving towards more composite scenarios.

4. SPECIFIC INSTANCES OF TASK AND IN-

CENTIVE ALLOCATION
The payment allocation framework outlined above and the

optimization problem formulation in (8) are generic in at
least four main respects. Firstly, they accept different def-
initions of classes. The two classes may correspond to ac-
cepting or rejecting an offer for a single task, respectively;
or they may note which task is selected out of two task offers
made (e.g., the one that lies closer to the user vs. one that
is further away but pays more). Secondly, the feature set
may depend on one or both tasks (ref. Section 4.3), yielding
different types of training datasets. Thirdly, they do not ex-
plicate the subset of static features {xs

ul}. Finally, they do
not specify the subset of tasks Lu that becomes relevant for
each user. This subset may typically result from constraints
related to both the physical distance of task locations and
the task request policies on the side of the SP.

In what follows, we study specific instances of this frame-
work, where the subset of static features includes only the
physical distance(s) of task(s), {xs

ul} ≡ dul. This way, users
essentially view tasks as pairs of attributes (l1, l2), i.e. their
physical locations and the payments they offer. We consider
different cases of the problem that lead to different modes
of determining the classes, feature vectors and subsets Lu

across different users. These cases give rise to distinct in-
stances of what is originally a joint user-to-task assignment

p

f (d) =α⋅d+β

β

d

C1

C0

decision boundary

Figure 2: Generation of the synthetic training
dataset. The generated (d, p) samples are first clas-
sified according to a strict linear rule. Then, points
close to the decision boundary are probabilistically
relabeled (shaded points denote relabeled points).

and payment allocation problem in Eq. (8). In all numerical
investigations that follow, the locations of the crowdsensing
task(s) and users are randomly dispersed across a rectangu-
lar area of 1x1 km2, and the user quality indices {qul} are
randomly drawn from [0,1].

For the solution of the resulting sigmoid optimization prob-
lems, we draw on the method proposed in [17] by Udell and
Boyd for the general problem of maximizing sums of sig-
moids. Therein, the authors propose an approximation al-
gorithm that uses a branch-and-bound method to find glob-
ally optimal approximate solutions. Notably, they show that
their algorithm can find approximate solutions very quickly
on problems with small number of variables or constraints.
Finally, in the scenarios we consider, we compare the pay-
ments made by our framework against alternative schemes
that do not invest effort on profiling individual users.

4.1 Single task
To begin with, we consider that the SP seeks to select

the users and tune the offers it makes to users for a sin-
gle crowdsensing task. Thus, |Lu| = |L| = 1,∀u ∈ U , the
decision feature set is xul = (dul, pul), class C1(C0) denotes
acceptance (resp. rejection) of a task request and the respec-
tive payment offer, and (8) reduces to a continuous-valued
payment allocation problem.

4.1.1 Evaluation methodology

For this case, the training dataset, Dtr, is synthetic. For
each user, we assume that the minimum payment pmin

ul that
will convince her to accept the task offer varies linearly with
the task physical distance, i.e., pmin

ul = αu · dul + βu. The
terms αu > 0, and βu are randomly chosen to capture how
each user resolves the tradeoff distance vs. payment pre-
sented by each task. We generate random pairs of (dul, pul)
values and label them as C1 or C0 depending on how the
points (dul, pul) position with respect to the pmin

ul line in the
2D space (see Figure 2). To accommodate deviations from a
perfectly linear decision boundary, we probabilistically shift
the label of points that lie close to the boundary.

We then use these synthetic datasets to train the feature
weight vector wu = (wu,d, wu,p)

T for each user. As part of
this process, the original features (dul, pul) are normalized



to yield (dul,n, pul,n), where

d̃ul = (dul − µd)/σd)

p̃ul = (pul − µp)/σp) (9)

µd(µp) and σd(σp) being the mean and standard deviation of
the distance (resp. payment) values across each user training
dataset. The task of the SP is then to optimize the payments
made to each user for the single task. We drop the task index
and obtain

maximize
∑

u∈U

quσ(wu,d · d̃u +wu,pp̃u)

subject to:
∑

u∈U

pu ≤ B

0 ≤ pu ≤ pmax u ∈ U . (10)

The solution of the optimization problem implies that the
task will be recommended to those users for whom pu > 0.

4.1.2 Numerical results

In all cases, the solution of (10) with the branch-and-
bound method yields values that are exactly (the lower and
upper bounds coincide) or very close to (the gap of the two
bounds is minimal) optimal. Indicatively, in 30 out of 30
simulation runs with B=30 and 50 users and in 48 out of 50
runs with B=30 and 100 users, the difference between the
two bounds was smaller than 0.001, in most cases the two
bounds being practically identical.

We compare our solution against three alternative schemes
for payment allocation. Common to all of them is that they
do not invest effort to learn how the features affect users’
decisions (individual preferences), although they are aware
of user locations and their skills for individual tasks. Two
of them split the task budget equally among the top-k can-
didate contributors, differentiating in how they rank users.
The first one makes offers to the k users with the highest
quality indices qu (pay equally the k most skilled -pekms),
whereas the second one makes offers to the k users lying clos-
est to the task location (pay equally the k closest-pekc). In
either case, each of these k contributors is offered an amount
pu = p = B/k, whereas the remaining ones are not offered
any payment. Finally, the third scheme (pay proportionally
the k most skilled -ppkms) again distributes the budget to
the k most skilled users, but proportionally to their quality
indices, resulting in payments:

pu =







qu/
k
∑

j=1

qu if rank(u; qu) ≤ k

0 otherwise

where rank(u; qu) denotes the rank of user u across U ac-
cording to her quality index, qu.

The typical way that k, the number of offers made per
task, affects the performance of the three individual-preference-
agnostic payment allocation schemes is shown in Fig. 3. At
small k values, splitting the budget across more users in-
creases the expected number of contributors and results in
higher aggregate expected contribution quality. The pay-
ments are adequately high to increase substantially the prob-
abilities of accepting the task offer, driving the sigmoid curve
towards its rightmost values (see Fig. 1). At this range of
values, sharing the budget between more users is beneficial
for the aggregate welfare. On the contrary, at high k values,
splitting the budget to many users results in low individ-
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k most skilled − equal payments
k most skilled − proportional payments
k closest − equal payments

Figure 3: Aggregate utilities achieved under the
three individual preference-agnostic payment allo-
cation rules: |L|=1, B=40, |U|=50.

ual payments that cannot substantially alter the task accep-
tance probabilities. At this range of values, the excess budget
fragmentation hurts the aggregate welfare. At intermediate
k values, the aggregate score exhibits short-term variations
(ups and downs) depending on whether the expected con-
tribution quality from the kth user outweighs the drop in
the expected qualities of the (k − 1) existing users due to
reductions of their own payments. For the sake of compari-
son, in the same example, our scheme distributes the budget
to 22 different users, determining payments in the range of
$0.28 to $3.4 and achieving an overall score of 15.13 (with
coinciding upper and lower bounds).

In Fig. 4, we show how the percentage gain of the ap-
proximately optimal over the other three payment allocation
schemes varies over 50 simulation runs (problem instances).
For a single simulation run, this gain is defined as:

Gs = 100 ·
zopt − zs

zs
, s ∈ {‘pekms′, ‘pekc′, ‘ppkms′}

where zopt is the objective function value under the (approx-
imately) optimal payments, and zs is its maximum value,
over all possible values of k, obtained with each of the three
other payment allocation rules.

Two remarks are worth making regarding Fig. 4. First, the
achievable gain with our scheme is anything but negligible.
It varies significantly depending on how each time users and
tasks are distributed in the physical space and the specific
scheme under comparison; it is stochastically higher over the
scheme that splits payments to the task-closest users and
lower over the one that aligns payments with the skills of
users. However, it does not fall below 25% (40%) for 50(resp.
100) users, while it exceeds 100% and even 150% in certain
cases. Secondly, the gain over all schemes improves signifi-
cantly when the pool of potential task contributors doubles
in size. The proposed scheme maps the increased diversity of
user skills and preferences more precisely and targets its pay-
ments more efficiently to maximize the quantity and quality
of user contributions.

4.2 Multiple tasks, single-task offers
We now consider the case where multiple tasks are to be

performed, and the mobile app may suggest at most one task
per user. Single-task offers and incentives are targeted to a
subset of users, while the rest of the users get no offer. The
SP now needs to determine: (i) the subset of users to make
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Figure 4: Histograms of the percentage gain in aggregate expected contribution quality achieved with the
approximately optimal payment allocation when compared with the three individual-preference agnostic
payment allocation schemes: |L|=1, B=30, |U|=50 (top row) and |U|=100 (bottom row), 50 simulation runs.

offers to, (ii) the task to recommend to each user, and (iii)
the payment to be offered to each user.

4.2.1 One user per task: Max-weight matching

First, consider the special case of the problem with one
task recommended to each user. This scenario is meaningful
if the task nature implies that the allocation of more than
one users is not feasible or does not contribute to the quality
of the task. This is the case in typical mobile crowdsourcing
applications (e.g., the crowdsourced delivery of parcels in [1]
and the small job-to-user matching in TaskRabbit).

Consider the weighted bipartite graph G, with node set
U ∪ L, edge set {eul : ∀u ∈ U , ∀l ∈ L}, and edge weights

δul = qulPu(C1|xul) = qulσ(wuddul + wupBl) . (11)

Note that the entire budget Bl of each task l is allocated to
one user. Then allocating tasks to users so that the total ex-
pected quality over all tasks is maximized reduces to solving
the max-weight matching problem on G.

4.2.2 More than one users per task: Mixed Integer
Nonlinear problem

In more general cases, each task l is recommended to more
than one users. Let Ul be the set of users to which task l is
recommended. The emerging optimization problem is non-
trivial to solve since the user selection per task and the bud-
get allocation are coupled. For given user subsets Ul for each
task l, budget allocation for each task is a continuous-valued
(nonconvex) sigmoid optimization problem. However, bud-
get allocation of a task l across users depends on the subset

of users Ul to which task l is allocated. The determination
of Ul is an integer-programming problem, and it is affected
by the constraint that at most one task is allocated to each
user. Therefore, the problem of task selection and payment
allocation turns out to be a Mixed Integer Nonlinear Pro-
gramming (MINLP) one and can be solved heuristically with
numerical methods [3].

4.2.3 Evaluation methodology

Hereafter we assume that the SP decouples the two prob-
lems, by adopting a static rule for determining which tasks
to be offered to users. Two examples of such rules are,

• “make an offer to a user for the task that lies closest
to her”, implying that

Lu
.
= {l : dul ≤ dul′ ,∀ l′ ∈ L, l′ 6= l}1 (12)

• “make an offer to a user for the task that she is most
skilled for”, whereby

Lu
.
= {l : qul ≥ qul′ ,∀ l′ ∈ L, l′ 6= l} (13)

With respect to the single-task scenario, the decision fea-
ture set and the class context remain the same. We generate
a synthetic training dataset in the same way and train the
model using normalized features (ref. Eq. (9)) and cross-
validation techniques. Having determined the sets of users

1If there are more than one tasks at exactly the same mini-
mum distance, the task to include in Lu is chosen randomly.



that will receive offers for each task, the payment alloca-
tion proceeds separately for each one of them. Namely, the
SP has to solve |L| different instances of the optimization
problem,

maximize
∑

u:l∈Lu

qulσ(wu,d · dul,n + wu,ppul,n)

subject to
∑

u:l∈Lu

pul ≤ Bl

0 ≤ pul ≤ pmax {u : l ∈ Lu} (14)

one for each task l ∈ L.

4.2.4 Numerical results

As with the single-task setting, and since there is only one
constraint function for each instance of (14), the solutions
of the branch-and-bound method are extremely close to the
optimal ones. The gap between the upper and lower bounds
for the objective function of (14) remains below 0.1 in all
problem instances we have experimented with and below
0.01 in 90% of the instances.

Likewise favorable is the comparison of these (approx-
imately) optimal payments with those determined under
individual-preference-agnostic alternatives. As comparison
reference for this scenario, we consider the scheme that pays
users in proportion to their quality indices (see the ppkms
scheme in section 4.1.2). This scheme consistently outper-
forms its competitors in our experimentation with single
task scenarios (refer to Figs. 3 and 4) and sets a more de-
manding benchmark for the approximately optimal payment
allocation scheme.

The comparison of the two solutions for payments alloca-
tion is summarized in Fig. 5 for an example scenario involv-
ing 150 users and 10 tasks. The gain of the approximately
optimal scheme varies from 20% to 60%, depending on the
rule for determining which task issues offers to each user
(Eqs. (12) vs. (13)) and the way users and tasks are spread
over the physical space. The advantage of our scheme is am-
plified when users receive offers from the task they are most
skilled for, as can be seen from Fig. 5a and 5b. This becomes
all the more important when looking at the absolutes scores
of the scheme under the two ways users can be matched to
tasks in Fig. 5c. The approximately optimal payment allo-
cation is more efficient when users receive offers from tasks
they are skilled for in that it results in more than 20% higher
aggregate expected quality of user contributions.

4.3 Multiple tasks, offers for pairs of tasks
For given task attributes, the “contribute vs. not con-

tribute” decision-making setting is probably the simplest a
user may be presented with by an application. However, it
is questionable whether it is the right one, i.e., the one that
will ease a positive response (contribution) from the user.

More specifically, it is well established that a comparison
reference is always sought for when assessing alternatives.
In the marketing community, the term “decoy effect” was
introduced to characterize extended experimental evidence
that consumers tend to predictably change their preferences
between two options when they are presented with a third
option that is asymmetrically dominated2.

2One of the most pronounced instances of the effect in the
marketing world relates to the way the Williams-Sonoma
company used this cognitive bias to start sales on a bread
maker with retail price set at $275 that no one was earlier

Our argument is that the application should be issuing
task offers to users in ways that respect these psychological
effects. Practically, the hint is that the offers for each task
should not be made independently but rather in pairs (or
even groups of larger size). In what follows, we discuss how
the problem faced by the SP changes in that case.

4.3.1 Evaluation methodology

For this scenario, we draw on real data collected through
an online customized questionnaire. Fifty people, mostly
graduate students of our University, replied to the question-
naire that was put online for two weeks during early summer
2015. The questionnaire invites its participants to consider
that they are visiting the city center during their leisure
time and receive offers about tasks on their smartphones.
The task description is minimal and neutral, to avoid bias
effects due to individual interests of participants: users are
asked to walk to an abstract place (only distance is provided)
and take a couple of photos for some monetary reward. The
task requests are presented in pairs and accompanied by two
pieces of information: the monetary payment p awarded to
those who carry out the task and the physical distance d that
a user would need to travel in order to get to the physical lo-
cation of the task. Hence, users are presented with instances
of a two-feature choice problem with two alternatives.

The 50 questionnaire participants made 20 such choices
sequentially, without having the option to go back to a pre-
vious choice and change it. The tasks that were paired within
each offer were chosen carefully so that they present a trade-
off between the two task attributes, reward and physical
location; that is, there was no instance where one task dom-
inated the other by simultaneously featuring higher reward
and smaller physical distance from the user. The question-
naire can be retrieved online3.

The choice problem faced by the users in this service set-
ting is different and so are both the class context and the
feature set. More specifically, we label user u as C1 at her
mth choice (yum = 1), when she chooses to carry out the
task that lies closer to her. The choice features are now four

xul1l2 = (dul1 , pul1 , dul2 , pul2) (15)

the notation xul1l2 reflecting that the feature vector now in-
volves attributes (i.e., distances and payments) of two tasks
rather than a single one: the distance (dul1) and payment(pul1)
related to the task lying closer to the user, and the re-
spective quantities for the task lying further away from her
(dul2 ,pul2).

As with offers for a single task, the problem is originally
a joint user-to-task and payment allocation problem. The
complexity concerns can be overcome if a static rule is adopted
for determining which tasks to be offered to which users. To
this end, the rules presented in Section 4.2.2 could be para-
phrased to “make an offer to the user for the two tasks that
lie closest to her” so that

Lu
.
= {l1, l2 : dul1 ≤ dul2 ≤ dul′ ,∀ l′ ∈ L, l′ 6= l1, l2} (16)

buying. The company released a second bread maker (as a
decoy), with slightly more capabilities but asymmetrically
higher cost ($400). The larger machine did not sell itself but
spectacularly increased the sales of the smaller bread maker
by making it seem like a great purchase opportunity.
3http://5.101.107.163:8080/Questionnaire/ (in Greek)
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Distance−based user−task matching

Skill−based user−task matching

a. Offer from the closest task b. Offers from the task the user is most skilled for c. Approximately optimal payments

Figure 5: (a,b) Approximately optimal payments vs. payments in proportion to the quality indices of users: %
gain in the aggregate expected contribution quality, under the two options for matching task offers to users,
eqs. (12) and (13), respectively. c) Aggregate expected contribution quality with optimal payments, under
the two options for matching task offers to users: Bl=10 ∀l ∈ L, |L|=10, |U|=150.

or “make an offer to the user for the two tasks that she is
most suitable for”, where

Lu
.
= {l1, l2 : qul1 ≥ qul2 ≥ qul′ ,∀ l′ ∈ L, l′ 6= l1, l2} (17)

The optimization problem the SP faces is:

max
∑

u∈U

∑

l1,l2∈Lu

qul1P (C1|xul1l2) + qul2(1− P (C1|xul1l2))

s.t
∑

u:l∈Lu

pul ≤ Bl ∀l ∈ L

pmin ≤ pul ≤ pmax u ∈ U , l ∈ Lu (18)

where

P (C1|xul1l2) = σ(wu · xul1l2)

with wu = (wu,d1 , wu,p1 , wu,d2 , wu,p2). pmin is the minimum
payment offered to a user for any of the two tasks, and
the remaining notation has been adapted to reflect the new
class and feature vector definitions: wu,d1 and wu,p1 are the
weights assigned by user u to the distance and payment of
the closer task; and qul1 is the quality index measuring the
expected quality of u’s contribution to this task.

4.3.2 Numerical results

We consider two rules for determining which tasks a user
should receive offers from, as encoded in Equations (16) and
(17). For the resulting task user sets, we compare the pay-
ments induced by the solution of (18) with those emerging
when distributing the task budget in proportion to the qual-
ity indices of its users. The gain achievable by our scheme is
computed as in (11). Figure 6 plots the distributions of this
gain over 30 instances of the problem with 50 users, 8 tasks,
and budget equal to $10 for each task. Its plots reflect the
two main trends in this scenario. First, the second rule (Eq.
(17)) for deciding which tasks to be offered to a user results
in consistently higher values of aggregate expected quality
of contributions. In Fig. 6c, this advantage is in the order
of 60%, when looking at median values. Secondly, within
the constraints of the specific user-to-task matching rules,
the approximately optimal payment allocation scheme yields
gains that are smaller and less variable when compared to
the scenarios in sections 4.1 and 4.2.2 but still significant.

5. CONCLUSIONS AND DISCUSSION
In this paper, we draw on machine learning models and

techniques to directly learn users’ individual preferences with
respect to crowdsensing tasks. We, then, build on this knowl-
edge to optimize the recommendation of tasks to users and
better target the provision of incentives to them. Our meth-
ods consistently outperform alternative task and payment
allocation policies not accounting for individual preferences.

Our formulations and analysis in this paper are concerned
with the maximization of the aggregate expected quality
of user contributions to tasks. A natural direction for ad-
vancing the research thread this paper initiates would be
to consider alternative objective functions or constraints re-
flecting per task performance requirements, i.e., that each
task should accumulate some minimum number of quality
of contributions. Accommodating those in the sigmoid opti-
mization framework would present an interesting challenge.

Another front for further work is presented by alternative
classification models. In this work, we considered logistic
regression as the probabilistic framework for modeling the
choices of users in mobile crowdsensing campaigns. With
such a modeling choice, the user heterogeneity was captured
in different values of the feature vector wu per user. How-
ever, other probabilistic classification models that have been
developed in machine learning and statistics could be also
considered. For instance, an interesting class of models is
that of generative classifiers, which first estimate the class
conditional densities, such as p(x|C1), and then perform
classification by computing posterior probabilities through
Bayes’ theorem [2]. Since these models are generative, i.e.,
they model the distribution of user profiles, they could en-
able additional tasks such as detection of outlying behavior,
where an observed user profile does not follow the estimated
distribution. Subsequently, such detections could motivate
specialized allocation payment procedures.

Finally, in this paper, we deal with the static one-shot
incentive provision problem. Equally interesting is the dy-
namic variant of the problem, where tasks and payments are
offered to users online taking also into account the current
quality of attracted contributions per task, the residual task
budget, and the remaining time before the end of the crowd-
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Distance−based user−task matching

Skill−based user−task matching

a. Offer from the closest tasks b. Offers from the tasks the user is most skilled for c. Approximately optimal payments

Figure 6: (a,b) Approximately optimal payments vs. payments in proportion to the quality indices of users:
% gain in the aggregate expected contribution quality, under the two options for matching task offers to
users. c) Aggregate expected contribution quality with optimal payments, under two options for matching
task offers to users: Bl=10 ∀l ∈ L, |L|=8, |U|=50, pmin=0.25.

sensing campaign. The treatment of this problem could draw
on the user profiling framework introduced in this paper and
our ideas for online payment allocation in [10].
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