
A Consistent Framework for Enterprise Information System Engineering

M. Nikolaidou1, N. Alexopoulou12, A. Tsadimas1, A. Dais1, D. Anagnostopoulos1

{mara@hua.gr, nancy@hua.gr, tsadimas@hua.gr,adais@hua.gr, dimosthe@hua.gr}
1 Harokopio University of Athens,

El. Venizelou Str, 17671Athens, Greece
2 Department of Informatics and Telecommunications,

University of Athens, Panepistimiopolis, 15771, Athens, Greece

Abstract
System engineering is the process of defining the desired
architecture of a system and exploring performance
requirements, ensuring that all system components are identified
and properly allocated and system resources can provide the
desired performance. A consistent framework for enterprise
information engineering, compatible to Zachman framework is
proposed. It consists of a metamodel describing different system
views and the relations between them, a corresponding
methodology of discrete stages, performed by the system
designer or software tools, and a UML 2.0 profile for view
representation.

1. Introduction 1
The Zachman framework for Enterprise Architecture
provides a taxonomy for relating the concepts that
describe the Enterprise to the concepts that describe the
Information System supporting it and its implementation
[1]. It can be used as a guide for establishing an
Enterprise Information System (EIS) to ensure that
Enterprise requirements are met. The framework
identifies the stakeholders involved in this effort and
provides corresponding viewpoints according to the
stakeholder perspective. For each viewpoint a system
model is defined consisting of different views related to
different aspects (e.g. data, function, network, etc). The
framework identifies the scope of each view and the main
entities participating in it. It does not provide a typical
model for the definition of each view, neither identifies a
representation language, thus it is technology neutral. It is
also simple and comprehensive. Although it is very
analytical supporting 30 different views, the definition of
such a large number of views and their relations might be
confusing.

System engineering is the process of defining the
desired architecture of a system and exploring

This research was supported by Pythagoras program (MIS 89198) co-funded by
the Greek Government (25%) and the European Union (75%).

performance requirements, ensuring that all system
components are identified and properly allocated and
system resources can provide the desired performance.
Enterprise information system engineering is a task
accomplished by the system designer, thus related issues
should be explored within the System Model of the
Zachman framework corresponding to the designer
viewpoint, although system model is not limited in system
engineering issues. For all the models supported,
Zachman framework proposes six (6) alternative views.

In this paper, we present our effort to establish a
consisted framework for enterprise information
engineering that is compatible to Zachman framework
and especially the System Model. The framework
provides:
• A metamodel describing different views. The

suggested views correspond to Zachman System
Model views. The relations between them are strictly
defined using constraints

• A methodology for EIS engineering based on the
proposed views. The methodology takes advantage of
the relations identified between views.

• The integration of software tools performing specific
configuration tasks.

• A representation meta-model for all the views
defined, which facilitated an integrated, easy-to-use
interface for the system designer.

2. EIS Architecture Frameworks
The widely referenced Enterprise Architecture framework
of Zachman [2] specifies the establishment of information
systems starting from the identification of the enterprise’s
business objectives. System engineering issues are
addressed in the System Model raw of the Zachman’s
matrix. It should be noted, that system designer may
actually work concurrently with the system developer (the
builder of the model), although in general system design
should be performed prior its implementation. In many
cases, during system design, although system architecture

is defined and the services provided by the distributed
applications are identified, detailed software design and
implementation is considered in the builder model.
System engineering issues should be dealt with
independently of the status of software development
process.

Rational Unified Process – System Engineering (RUP
SE) [3] is dealing with issues related to Zachman’s
System Model. For each viewpoint four (4) different
views are constructed. These views although are
independent, should be related at least by the refinement
relation [4], in order to ensure consistency between the
different detail levels of the System Model. UML 1.3
diagrams are employed for the illustration of these views.
For the representation of certain concepts not directly
supported in UML 1.3, such as system worker and
locality, which denotes a grouping of physical resources
providing logical services, the RUP SE framework
defines appropriate stereotypes. However, RUP SE does
not provide a formal metamodel or UML profile for view
representation.

Furthermore, the plethora of views all referring to the
same system model, although providing the capability of
detail system description, is complex to manage. The
most important issue is that as they refer to the same
system model, they should be kept aligned and consistent
with respect to each other. In order to ensure consistency
and avoid the loss of information critical during system
design, various types of relations between different views
(and corresponding models) should be enforced (e.g.
equivalence or refinement relations). We propose the
definition of a smaller number of views, formally related
to ensure consistency between them. Furthermore, we
propose to avoid further decomposing the System Model
into sub-models to reduce complexity. The discrete stages
of System Engineering process (in correspondence to
RUP SE successive phases, namely Context, Analysis,
Design and Implementation) can identified and
coordinated using constraints embedded in the metamodel
describing the views corresponding to the system. [5].
The framework also provides:
• A metamodel describing different views and the

relations between them (EIS metamodel). These
relations are strictly defined using constraints.

• A methodology for EIS engineering based on the
proposed views. The methodology consists of
discrete stages performed by the system designer,
software tools or a combination of both. Taking
advantage of the formal definition of relations
identified between views, system engineering stages
may by invoked by metamodel constraints, ensuring
that each of them can be independently performed.

• A UML representation for all defined views. A UML
2.0 profile is defined for this purpose (EIS
engineering profile)

3. EIS Engineering Framework
The framework is based in three complementary views:

Functional View is used to describe functional
specifications (e.g. system architecture, user behavior and
application requirements). System architecture refers to
the architectural model adopted. In the case of EIS, multi-
tiered client-server models are described. Services
provided by each application tier (called modules) are
also defined. User behavior is modeled through user
profiles defining the behavior of different user groups and
their performance requirements. Application requirements
are described in terms of quality of service (QoS)
requirements imposed to the network infrastructure, e.g.
amount of data processed, transferred or stored. Each
service is described in a greater level of detail through the
service description sub-view.

Topology View facilitates the definition of system
access points and the resource allocation and replication.
The term site is used to characterize any location (i.e. a
building, an office, etc.). As such, a site is a composite
entity which can be further analyzed into subsites,
forming thus a hierarchical structure. Functional and
topology views are related. Resources (e.g. processes and
files) correspond to services and data described through
functional view and are located into sites.

Physical View refers to the aggregate network.
Network nodes are either workstations allocated to users
or server stations running server processes. Topology and
Physical views are interrelated. Both are decomposed to
the same hierarchical levels of detail. At the lowest level,
network nodes are related to processes/data replicas.

Both views can be either defined by the system
designer or automatically composed by configuration
tools. The introduction of progressive site refinement for
both sites and networks, corresponding to Topology and
Physical View respectively, as well as the mapping of site
range onto network range, enables the identification of
dependencies between them. These dependencies must be
formally defined.
EIS engineering framework facilitates the following
discrete stages of System Engineering process:
1. System requirement definition.
2. Resource (process/data) allocation and replication

policy definition.
3. Network architecture design.
4. Performance evaluation of the proposed solution

(prior to implementation). Although it is not a
necessity, it is certainly useful.

As resource allocation and network design problems
cannot be independently solved, stages (2) and (3) are
repeatedly invoked for different abstraction levels until an
acceptable solution is reached [5]. Both resource
allocation and network architecture problems are usually
supported by automated or semi-automated tools using
mathematics, heuristics or a combination of both. These
tools may be repeatedly invoked for different abstraction
levels [6, 7]. The system designer may perform or
partially perform these tasks on his own, thus both
options must be supported. To evaluate system
performance, a simulation tool as the one described in [8]
can be used. The simulator uses as input the overall
system model and produces performance results. Since
each of these tools supports its own representation
metamodel (for example queuing networks, Petri-nets,
objects), there is a need to properly create and instantiate
the “internal” system model prior invoking the tool. The
proposed methodology stages along with EIS model
consisting of the predefined views are presented in figure
1.

Requirement Definition

Network Design

Performance Evaluation

System
Designer

Topology
View

Physical
View

Performance
accepted

yes

no

EIS
Model

EIS Design Methodology

Topology View
Diagrams

Functional View
Diagrams

Physical View
Diagrams

EIS UML
Representation

Resource Allocation

Functional View

Figure 1: EIS Engineering Framework
Discrete stages receive/modify information from/to
specific system views, as depicted by the arrows between
them. The relation between views and between stages is
also depicted in the figure. Requirement definition is the
initial stage and corresponds to the definition of system
architecture and application requirements (functional
view), the system access points (topology view) and
existing network architecture – if any- (physical view). A
metamodel is provided for the formal definition of views
and the relations between them. Each view is represented
by one or more UML diagrams properly extended, thus a
corresponding UML 2.0 profile is defined. Relations
between views must also be described in the UML profile.

Figure 2 depicts the mapping between the proposed
framework and Zachman’s focal points of the System
Model viewpoint in terms of their views.

Zachman Framework - System Model
People Function Data Process Network

Functional
not

addressed
yet

Topology Physical
EIS engineering framework

Figure 2: Mapping to Zachman Framework

3.1 EIS Meta-model
For each distributed application operating in the EIS, a
discrete Functional View is defined. Applications are
conceived as sets of interacting modules. Each module
offers specific services. Data entities are defined to
indicate portions of data used by application modules.
User behavior is also described in the Functional View,
through user profiles. For each module service, the
requirements imposed to the network infrastructure must
be defined. Thus the portion of data processed, stored or
transferred must be estimated. Also other services
participating in its implementation must be identified.
This is performed using a set of predefined operations,
sketching service functionality and describing its needs
for processing, storing and transferring (called
elementary operations). Since it is difficult for the system
designer to estimate the elementary operations describing
service requirements, an operation library, named
Operation Dictionary is provided.

Physical view comprises the network infrastructure.
The overall network is decomposed to subnetworks
producing thus a hierarchical structure. LANs typically
form the lowest level of the decomposition. Nodes, such
as servers and workstations are associated with LANs of
the lowest level. Nodes may include a processing unit and
a storage unit.

Topology view comprises sites, processes (defined as
instances of application modules) and users (defined as
instances of user profiles). Two types of sites are
supported: composite, composed by others, and atomic,
not further decomposed, constituting therefore the lowest
level of site hierarchy. Users, processes and files are
associated to atomic sites. The site hierarchy should
correspond to the network hierarchy depicted in the
physical view, while processes, files and users are related
to nodes included in the physical view.

The metamodel itself contains relationships and
restrictions inflicted between system entities belonging to
the same or different views, which may lead to a specific
stage invocation. Embedding restrictions within the
metamodel facilitates EIS engineering process
management taking into account the overall system model
and not the specific system view corresponding to a

discrete stage. Thus, the overall process becomes more
effective, since discrete stage (and corresponding tool)
dependencies are depicted within the model as view
dependencies and consequently they are easily identified.

3.2 EIS UML 2.0 Profile
In order to provide a standard method to represent system
views and facilitate the designer to interact with them, a
UML 2.0 profile [9, 10] was defined. UML 2.0 diagrams
are used to represent different aspects of views. EIS
entities are depicted as UML model elements included in
the corresponding diagram. They may be created by the
system designer through the UML modeling tool or
automatically by software tools. UML 2.0 stereotypes are
used to represent EIS entities, properly defined to include
additional properties and constraints. Essentially, the
concepts of the metamodel are reflected onto the
stereotype attributes and constraints. Attributes convey
the information required to describe EIS metamodel
entities (e.g. throughput, activationFrequency,
processingPower etc.). Constraints, which are extensively
used within the profile, represent relationships and
restrictions between metamodel entities maintaining
model consistency. Constraints mainly facilitate:
1) Automatic computation of specific attribute values
2) Limiting attribute value range
3) Relating attribute values of specific elements to

attribute values of other entities belonging to the same
or other UML diagrams (implementing thus the
linkage between different models) and

4) Model validation in view and overall model level.
Attributes and constraints for each stereotype are
analytically introduced in [11]. Functional View is
represented through UML component diagram, since
component diagrams are eligible for depicting system
functionality at a logical level. Concerning service
description sub-view, it is represented through an activity
diagram, as it involves flow of operations. UML
communication diagrams, which depict interaction
between entities, are suitable for the representation of
Operation Dictionary, since the latter involves
interactions between operations showing in particular
invocation order and parameter passing between them.
Physical View comprises the network infrastructure. As
such it is depicted through UML deployment diagrams,
which are commonly used to represent network
architectures [12]. Lastly, the representation of Topology
View is based on UML component diagrams.

4. Conclusions
A consistent framework for EIS engineering was
proposed. It consists of a metamodel describing proposed
system views and the relations between them, a
corresponding methodology consisting of discrete stages
performed by the system designer or software tools and a
UML 2.0 profile for view representation. Constraints
impose restrictions and relationships between entities
participating in different views, facilitating a formal
mapping between them.

5. References
[1] Zachman A. J., “A Framework for Information Systems

Architecture” IBM Systems Journal, Vol. 31, No. 3, pp.445
–470, 1999.

[2] Sowa F. J. and Zachman A. J., “Extending and formalizing
the Framework for Information Systems Architecture” IBM
Systems Journal, Vol. 38, No. 2&3, pp.590 – 616, 1992.

[3] Murray Cantor, Rational Unified Process for Systems
Engineering – Part II: System Architecture, 2003.

[4] Dijkman R.M., Quartel D.A.C., Pires L.F., Sinderen M.J.,
“An Approach to Relate Viewpoints and Modeling
Languages”, in Proceedings of the 7th International
Enterprise Object Computing Conference (EDOC’03),
IEEE Computer Press, 2003.

[5] Nikolaidou M., D. Anagnostopoulos, “A Systematic
Approach for Configuring Web-Based Information
Systems”, Distributed and Parallel Database Journal, Vol
17, pp 267-290, Springer Science, 2005.

[6] Graupner S., Kotov V., Trinks H., “A Framework for
Analyzing and Organizing Complex Systems”, in
Proceedings of the 7th International Conference on
Engineering Complex Computer Systems (ICECCS’01),
IEEE Computer Press, 2001.

[7] Nezlek G.S., Hemant K.J., Nazareth D.L., “An Integrated
Approach to Enterprise Computing Architectures”,
Communications of the ACM, Vol 42, No 11, ACM Press,
1999.

[8] Nikolaidou M. Anagnostopoulos D., "A Distributed System
Simulation Modeling Approach", Simulation Practice and
Theory Journal, Vol. 11, No 4, Elsevier Press, 2003.

[9] OMG Inc, UML Superstructure Specification, 8/10/2004.
[10] OMG Inc, UML 2.0 Infrastructure Specification,

30/4/2004.
[11] Alexopoulou N., Nikolaidou M, et al, “Introducing a UML

Profile for Distributed System configuration”, in
Proceedings of the 8th International Conference on
Enterprise Information Systems (ICEIS’2006), 2006.

[12] Kaehkipuro P., “UML-Based Performance Modelling
Framework for Component-Based Distributed Systems”,
Lecture Notes in Computer Science 2047, Performance
Engineering, Springer-Verlag, 2001.

.

