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Abstract 
We introduce a natural k-coloring algorithm and 

analyze its performance on random graphs with con- 
stant expected degree c (Gn,p=c/n). For k = 3 our re- 
sults imply that almost all  graphs with n vertices and 
1.923 n edges are 3-colorable. This improves the lower 
bound on the threshold for random 3-colorability sig- 
nificantly and settles the last case of Q long-standing 
open question of Bollobds [5]. We also provide a tight 
asymptotic analysis of the algorithm. We show that 
for all k 2 3, if c 5 klnk - 3/2k then the algorithm 
almost surely succeeds, while for any E > 0 ,  and k suf- 
ficiently large, if c 2 (1 + E)k In k then the algorithm 
almost surely fails. The analysis is based on the use 
of differential equations to approximate the mean path 
of certain Markov chains. 

1 Introduction 
Let Gn,p denote the random graph on n vertices 

where each of the (;) possible edges is present, inde- 
pendently of all others, with probabilityp = p ( n ) .  The 
range of p that we will be interested in is p = O ( n - l ) .  
For a graph property Q, we say that GnIp almost surely 
( a s . )  has Q if limn-+m Pr(G,,, has Q) = 1. One of 
the first observations made about Gn,p by Erdos and 
RCnyi [12] in their seminal work on random graph the- 
ory was the existence of threshold phenomena, the fact 
that for many interesting properties Q, the probabil- 
ity of Gn,p having Q exhibits a sharp increase at a 
certain critical value of p .  This notion of “sharpness” 
and “sudden appearance” is certainly not limited to 
random graphs and in fact  it permeates  numerous dif- 
ferent settings of probabilistic product spaces, rang- 
ing from coin-flipping in distributed computing, to 
random-satisfiability, to statistical physics. Quanti- 
fying “sharp” and deriving general conditions for the 
“sudden appearance” of properties has been studied 
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in [6, 7,  14, 15, 20, 31, 331, among numerous others. 
Recently, Friedgut [14] made very significant prog- 

ress in our understanding of this area by establish- 
ing necessary and sufficient conditions for a prop- 
erty to have a sharp threshold. Roughly speaking, 
he showed that a property has a “coarse” threshold 
(as opposed to a sharp one) if and only if it can be 
well-approximated by the property of containing some 
graph from a list of “small” graphs. Using the main 
theorem of [14], Achlioptas and Friedgut [l] showed 
that the chromatic number of a random graph ex- 
hibits a sharp threshold, in the sense that for k > 3, 
there exists ck (n )  > 0,  such that for any c < ck (n ) ,  
a s .  ,y(G,,p=,/,) 5 k,  while for any c > Ck(72) ,  
a s .  X(G,,p=c/n) > k. It is widely conjectured that 
lim-,m Ck (n )  converges to an absolute constant C k .  

Determining C k ,  even for k = 3, remains one of the 
most important open problems in the field of random 
graphs and it is closely related to the problem of de- 
termining the ratio of clauses to variables at which a 
random instance of k-SAT turns from a.s. satisfiable 
to a.s. unsatisfiable. For recent progress in this latter 
problem see [2, 14, 17, 221. 

Luczak [24] proved that asymptotically Ck N 2k In k 
by showing the existence of suitably large, disjoint in- 
dependent sets in Gn,p=ck/n. Algorithmically, sub- 
stantially less progress has been made. One of the 
first heuristics to be analyzed [18],[4], GIC, formscolor 
classes by repeatedly removing greedily chosen inde- 
pendent sets until the remaining graph has no com- 
ponent with more than one cycle, at which point it 
is easy to &color it . Shamir and Upfal [32] and Fer- 
nandez de la Vega [13] showed that for any E > 0, 
there exists k 2 k(6) such that if c < (1 + ~ ) k l n k  
then GIC a.s. succeeds in k-coloring Gn,p=cln, while if 
c > (1+~)  k Ink then GIC a s .  fails to k-color Gn,p=cln. 
Different variations of this heuristic have been shown 
to have the same asymptotic performance [18]. (If we 
continue to remove independent sets greedily until the 
end of the execution, then the heuristic becomes quite 
inefficient [29] and for any c > 1, the number of colors 
it uses grows with n.) It is a major open question [16] 
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whether for any E :> 0 there is a polynomial time algo- 
rithm which will a s .  k-color, Gn,p=cln for arbitrarily 
high k ,when c = (1 + c ) k  In k. 

A different approach to determining Ck is motivated 
by the following: in many cases, a graph property 
P has the same threshold as a much weaker graph 
property P’. For example, the property “has a per- 
fect matching” has the same threshold as the property 
“has minimum degree at least one”, and the prop- 
erty “has a Hamilton cycle” has the same threshold as 
the property “has minimum degree at least two”. In- 
spired by these, and other properties, Bollobds asked 
whether the property “has chromatic number greater 
than k” has the same threshold as the property “has 
a subgraph with minimum degree at least k”. (It 
is a well-known fact that if x(G) > k then G must 
have such a subgraph.) In 1991, Pittel, Spencer and 
Wormald [30] determined the threshold p = 7 k / n  for 
Gn,p to have a subgraph with minimumdegree at least 
k, for each k 2 3, e.g. 73 = 3.35 . . .  (see [lo] and 
[26] for some earlier bounds on this threshold and 
hence c k ) .  Molloy [27] observed that this, along with 
some results of Bollobbs and Thomasson [5] regard- 
ing GIC, imply thah the answer to Bollobds’ question 
is negative for k 2 4. In particular, he showed that 

In this paper, we introduce and analyze a greedy 
“list-coloring” algorithm. The algorithm runs by 
maintainingfor each uncolored vertex v,  a list of nvail- 
able colors L,. If no list becomes empty, then the 
algorithm successfully finds a coloring of the graph. 
More specifically, the algorithm is defined as follows: 

~4 2 5.16.. . > 5.14.. . = 74.  

k-GREEDY-L IST (k-GL) 

0 I n i t i a l i z e :  U = V ( G ) ,  and 
L, = {1, ..., k} f o r  every w E U .  

While U # @  

1 .  Pick a vertex w uniformly a t  random 
from { U  E U : lLul i s  smallest }. 

2 .  I f  IL,l> 0 
then assign t o  v a color w chosen 

else ex i t  ( f a i l ) .  

3 .  For each U E U that i s  adjacent t o  w 
set L, = L,\{w}. 

uniformly a t  random from L,  

Set U = U - {w). 

To aid the analysis, when lLvl = 0 instead of exiting 
it will be more convenient to: 

assign t o  v a color w chosen uniformly a t  
random from {1,2, ..., k } .  

Hence, the algorithm continues until all vertices re- 
ceive colors. Clearly, if no vertex is labelled bad when 
U = 0 then k-GL has k-colored G properly, and we 
say that k-GL succeeds. Let 

d k  = sup{c I Pr[k-GL succeeds on Gn,p=c/n]  > 0) . 

We show that for c < d k ,  k-GL succeeds with proba- 
bility E(C) > 0, while for c > dk, k-GL a s .  fails. Let 
W-1 denote the -1st branch of the W function [ll], 
defined by W(z) exp(W(z)) -- z. 

Theorem 1 d3 = Wq1(-exp(5/2)) = 3.847.. . 
Let 

Label w bad. 

f k ( c )  = JiE pr[x(Gn,p=c/,&) 5 k] 

From [l], it follows that for all c, E >- 0, 

if f k ( c )  2 E then f k ( C ’ )  = 1, ior c’ < c . 

This fact along with theorem 1 imply that c3 2 d3. 

Since k-colorability is an edge-monotone property, 
a well-known equivalence between the two random 
graph models [3] implies 

Corollary 1 Almost all graphs wiih n vertices and 
1.923 n edges are 3-colorable. 

By theorem 1, we have c3 > 3.84 > 3.35.. . = 73 
proving that the answer to Bollobds’ question is neg- 
ative for k = 3 as well. This settles the question 
completely and indicates that the gap is significantly 
greater than previously known. 

Corollary 2 For all k 2 3, there i2i 6 > 0 such that 
f o r  7 k  < c < (1 + 6 ) Y k ,  a.s. Gn,p=e:ln is k-colorable 
and has a subgraph with minimum degree at least k. 

We will see that although we can determine analytic 
expressions for d k  for all k 2: 3, computing a good 
approximation of d k  for k 2 4 seemti to be a difficult 
numerical problem. In spite of this fact we will prove 
that the behavior of k-GL on Gn,p exhibits a sharp 
threshold, in the following sense: 

Theorem 2 

a. For all k 2 3, if c 5 k In k - 3/2k then k-GL as .  
succeeds. 

b. For any E > 0 ,  there exists k(E) such that f o r  all 
k 2 IC(€) ,  i f  c 2 k l n k ( l +  E)  then I-GL as. fails. 

Hence, although k-GL is quite good for small k, 
asymptotically it is “equivalent” to GIC. 

205 



1.1 Outline of the analysis 
For 0 5 i 5 IC, we denote by Si the set of uncolored 

vertices ZI with lL,l = i. Conditioning on the size of 
each Si at a particular step, we can determine the ex- 
pected change in each size during the next step. This 
allows us to model the behavior of these sizes through- 
out the algorithm’s execution with a set of functions 
s1(x), ..., sk(x) defined by a system of differential equa- 
tions. It follows from the main theorem of [34] that for 
0 < IC < 1, after roughly x n  vertices have been colored, 
a.s. lSil = s i ( x )n+o(n ) .  This is a common technique 
- for other applications see [8, 9, 17, 21, 28, 30, 341 - 
and we omit a detailed justification in this extended 
abstract. 

We show that if s i ( x )  < 0 for all 0 5 x 5 1, then 
the algorithm will succeed with constant positive prob- 
ability. Intuitively, this means that if vertices enter S1 
slowly enough (at a rate less than one per step so that 
si (x) < 0) then we can take care of them one at  a time. 
On the other hand, if si(.) > 0 for some 0 < x < 1, 
then 5’1 a.s. becomes quite large, (of size O ( n ) )  and it 
will a.s. eventually contain two adjacent vertices with 
the same unique color in their lists, so the algorithm 
will fail. Upon establishing these facts, determining 
dk reduces to solving the associated system of differ- 
ential equations. For IC > 4 the system of differential 
equations along with its initial conditions yields a par- 
ticularly unwieldy formula for dk. To prove theorem 2, 
we will derive two new sets of initial conditions that 
are simpler to deal with. For theorem 2.a the set of 
initial conditions corresponds to analyzing a variation 
of IC-GL where we initialize the lists of the vast major- 
ity of vertices to contain much fewer than IC colors. For 
theorem 2.b the set of initial conditions does not have 
an algorithmic interpretation but we prove that the 
functions derived under these conditions lower bound 
the functions si for all i. Rather surprisingly, theo- 
rem 2.b indicates that the severe handicap imposed 
to prove theorem 2.a does not substantially affect the 
asymptotic performance of the algorithm. 

We will omit floors and ceilings throughout, unless 
this leads to ambiguity. 

2 Preliminaries 
In our analysis, for all I C ,  we assume that the ran- 

dom graph is not given to us in its entirety at  the 
start of the algorithm. Instead we will learn about 
the graph as the algorithm proceeds. This scenario 
has been aptly named the method of deferred decisions 
by Knuth, Motwani and Pittel [23]. In particular, it is 
easy to see that at  any step, the edges that have been 
examined (exposed) by k-GL are precisely the edges 
incident to colored vertices. 

We say that k-GL is presently at  t imet (step t )  if it 
is in the process of carrying out the (t + 1)st iteration 
of the main loop. In other words, at  time t ,  exactly t 
vertices have been colored thus far. Let Si(t) denote 
the random set of vertices whose lists have length i 
(contain i colors) at  time t (for i > k ,  Si(t)  = 0 for 
all t ) .  We will often refer to the “lower” i + 1 sets 
collectively, so we let 

% 

U i ( t )  = U Sj( t )  
j=O 

We will sometimes refer to Ui or Si when no ambiguity 
arises. We define ASi(t) = ISi(t + 1)1 - ISi(t)l and 
A U i ( t )  = IUi(t + 1)1 - IUi(t)l. For 1 (1, ,..,IC}, 
111 = i, let $( t )  = { v  E Si(t)  : L,  = 1).  We prove the 
following fact at the end of section 3.  

Claim 1 For every 0 5 i 5 k ,  if f l , f 2  are i-subsets 
of { 1, . . . , k } ,  then for every 0 5 t 5 n, 

From claim 1, we get 

Lemma 1 For every 1 5 i 5 I C ,  and for  every 1 5 t 5 
n,  the expected number of vertices which move f rom 
si(t) to s i - l ( t  + 1) during step t is kl~i(t)l+ o(1). 

Proof Suppose that the vertex being colored is 
w E S j ( t ) .  Recall that until step t + 1 we have ex- 
posed nothing about edges between w and U .  There- 
fore, each U € Si(t) is adjacent to w with probabil- 
ity p = c /n .  For each w E L,, the probability that 
w E L, is, by claim 1, j / k .  By the definition of k-GL 
each color in L,  is assigned to w with probability l/j. 
Hence, since lLul = i, the probability that U moves to 
Si-1 ( t  + 1) is and the lemma follows from linearity 

From lemma 1, we can determine the expected 
change in each Si at each step, and thus in each Ui. As 
long as Ui( t )  # 0, by the definition of the algorithm, 
we will be removing exactly one vertex from U; in each 
step. Since the list of each vertex shrinks by at  most 
one in each step, the vertices entering Vi are precisely 
those moving from Si+l to Si. Hence, by lemma 1, 
when U;(t)  # 0, 

of expectation. 0 

E[AUi(t)] - (i + l)cIsi+l(t)l - 1 + o(1) 
kn 

and similarly when Ui-l( t )  # 0 

(i + 1)c  i c  
E[ASi(t)] = - kn  I Si+l (t ) I - I si (t ) I +o( 1) . (2) 
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The fact that ( l ) ,  (2) are valid only if U i ( t )  f 0, 
U;- l ( t )  # 0, respectively will be the main compli- 
cation of the analysis. We will often need to focus 
on the expected number of vertices entering S; (and 
hence Vi)  at step t so we let 

(i + 1)" 
Ini(t) = -- Pi+l ( t )  I kn 

Lemma 2 

(a) Letto 2 0 and6 > 0 be such that IUi(to)l = 0 
and In;@) < 1 - 6, for t 2 to. Then with 
probability at least p, for some p > 0 ande- 
pendent o f n ,  Ut,to U;-l( t )  = 0, and a.s. 

(b) Let t o  2 0 and 6 > 0 be such that IUi(to)l = 
o(n) and Ini(t) < 1 - 6, for t 2 t o .  Then 
a.s. U;@) = ~ ( n ) ,  f o r t  2 t o .  

(c) Let t o  2 0 and 6 , ~  > 0 be such that 
In;(t) > 1 + 6, for t o  < t < t o  +En. Then 
0.S.  U i - l ( t )  # 0.  

Ut>t, Ui-z ( t )  = K 

Proof 
(a): Let Po(p) denote a Poisson distributed variable 
with mean p.  At each step, the distribution of the 
number of vertices which move from Si+l to Si is 
asymptotic to Po(1ni). Thus, for t 2 t o ,  IUi(t)l is 
statistically dominated by the random variable Z ( t )  
defined by Z(t0) =: 0 and Zt+l = max(0,Zt $- J t }  
where Pr[Jt = j ]  =: Pr[Po(l - 6) = j + 11, for each 
j 2 -1. Since E(Jt) < -6, it is straightforward (but 
tedious) to show that 

(4) 
t=to  

Thus, the probabili1,y that no vertices enter Ui-1 after 
time t o  is at least p = (1 - :)o(n) > 0. The expected 
number of vertices which enter U;-1 after time to is 
at most IU;(t)l x E = O(1). From Markov's in- 
equality we get I Ut>to Ui- l ( t ) l  < logn a s .  This last 
property implies that a s .  Ut>to Ui- l ( t )  contains no 
two adjacent vertices which in  turn implies that a.s. 
Ut>t, Ui-2(4 = 0. 
(b): The proof of this fact follows similarly to the proof 
of part (a). 

(c): In this case, for t o  < t < t o  + En, IUi(t)l sta- 
tistically dominates the random variable Z ( t )  defined 
by Z(t0)  = 0 and Zt+l = max{O,Zt + J t }  where 

Pr[Jt = j] = Pr[Po(l + 6) = j + 11, for each j 2 -1.  
Since E(Jt) > 6, there a s .  exist t b  and C > 0 such 
that lUZ(tb)l > icn, implying that U, ( t b )  contains Cn 
vertices with the same list. If there is an edge between 
any two of these vertices then Ut>to Ut-l( t )  # 0. The 

probability that there is no such edge is (1  - $)( 2 ) = 
o(1)- 0 

3 Three colors 
It is easy to show that if all tht: components of 

a graph G have at  most one cycle then 3-GL suc- 
ceeds on G with probability one. For Gn,p=c/n, 
it is well-known (see e.g. [12, 193) that if c < 1 
then a.s. all its components are nnicyclic. Thus, 
we will assume c > 1 for the rest of the paper. 

Lemma 3 There zs some E = E ( C )  > 0 such that a.s. 
for every log2 n 5 t 5 En, I ~ z ( t ) l  > 0. 

Proof We have that E[AU,(t)] 2 c/niS3(t)I - 1, 
and hence for 6 = > 0, if S3(t) > e n  then 
E[AU,(t)] > 6. Since S3(0) = n and E[A&(t)] 2 
-c/nlS3(t)l- 1 2 - (e+ 1) these exist E > 0 such that 
a.s. E[AUz(t)] > 6, for 0 5 t 5; En. The claim follows 

Definition 1 Let t l  = min{t I t > en,Uz(t) = 0}, 
where E as as zn lemma 3. 

- 
C n  

immediately. 0 

Lemma 4 A.s .  no vertex wzll be labelled bad after 
time tg . 

Proof Note that Inz(0) = c > 1,  Inz(n) = 0 and 
that Inz(t) is non-increasing with t. Denote by t* the 
first step such that In2(t) < I and note that, as we 
argued in the proof of lemma 3,  a.s. I:* > En, for some 
E > 0. Since E[AU2(t)] 2 Inn(t) - 1,  it is straight- 
forward to verify that there exists 61 > 0 such that 
a.s. IU2(t)l > 61n for En 5 t < t*.  Hence, since 
A U z ( t )  2 -1, we have that a s .  t o  :. t* + bin. From 
this last fact, since E[AS3(t)] 5 -[nz(t), it follows 
that there exists 6 2  > 0 such that a s .  Inz(t0) < 1 -62.  
The lemma follows from applying (a) of lemma 2 with 

0 

Lemma 3 implies that for log'n 5 t 5 En, a s .  
E[AS,(t)] = -Inz(t) and E[AUz(t)] = InZ(t) - 1. In- 
spired by this fact, we introduce the following two dif- 
ferential equations 

i = 2, 6 = 6 2 ,  t o  = tz. 

s3(0) = 1 SL(2) = -cs3(2) , 
U;(.) = CSg(2)  - 1 ,  u2(0) = 0 .  

The unique solutions are ss(2) = er:p(-m),uz(z) = 
1 - z - exp(-cz). Let 20 denote the smallest root 
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of U ~ ( X )  in (0,1]. The following follows immediately 
from the main theorem of [34]. 

Fact 1 For0 5 t 5 t i ,  IS3(t)l = s3 ( t /n )n+o(n ) ,  and 
IUZ(t)l = uz(t/n)n + .(.I. 

In view of lemma 2, our goal is to derive a condition 
on c such that for all 0 5 t 5 n,  

2c 
3n 

Inl(t)  = -lSz(t)l < 1 - E ,  for some 6 > 0 . 

By (a) of lemma 2, such a condition would in fact im- 
ply IUl(t)I = o(n) and hence IUz(t)l = ISz(t)l + o(n)  
for all 0 5 t 5 n. Therefore, the threshold for posi- 
tive probability of success will be the value of c for 
which m a ~ , ~ [ o , ~ ~ ]  $uz(x) = 1. It is easy to ver- 
ify that in [O,xo], uz is unimodal (in fact uz is uni- 
modal in [0,1]) and in particular U Z ( X )  5 uz(ln c / c )  = 
(c - lnc - l) /c.  For c > 1, g(c  - lnc - 1) = 1, for 
c = q 5 W_,(-exp(5/2)) = 3.847. .  ., where W-1 
is the -1st branch of the W function, defined by 
W(x)exp(W(x))  = x. 

Theorem 1 d3 = W_l(-exp(5/2)) = 3.847.. . 
Proof of Theorem 1 For c > 7, from fact 1, there 
exist x 5 xo and 6, E > 0 such that Inl(t) > 1 + 6 
for (x - ~ ) n  5 t 5 (x + ~ ) n .  Thus, (c) of lemma 2 
implies that a s .  3-GL will fail. For c < q,  from 
fact 1, there exists 6 = 6(c) > 0 such that a s .  for 
all 0 5 t 5 t ; ,  Inl(t)  < 1 - 6. Hence, applying (a) 
of lemma 2 for 0 5 t 5 t; and invoking lemma 3 

0 for t8 5 t 5 n concludes the proof. 

Proof of Claim 1 (sketch) We first sketch the 
proof for k = 3 and then for general k. 

The claim is trivially true for the only list of length 
three. For the three lists of length two,. first note that 
in establishing lemma 4, we only refer to E[AU2(t)], 
the derivation of which does not rely on claim 1 (ver- 
tices move from S3 to U2 iff they are adjacent to the 
vertex being colored). Also, for t 2 tz the claim is triv- 
ially true since 51.5. U z ( t )  = o(n) for all such t by (b) 
of lemma 2. To prove the claim for t < tz ,  instead 
of developing one differential equation for ISZ(t)I, we 
develop a system of three differential equations, one 
for each IS$(t)l. The three differential equations are 
((symmetric” and moreover, the initial conditions are 

-!?I,& and the claim follows the main theorem of [34]. 
For general k the ingredients of the proof are sim- 

ilar. The claim is trivially true for the only list of 
length k and in general the equidistribution of the (f) 

identical for all e, sf(0) = 0. Hence, si1 $22 e for all 

lists in Si implies the validity of the expression for 
E[AUi-l(t)]. Arguing as we did for Sz when k = 3, 
we inductively derive the equidistribution of the (i!l) 
lists in Si-1 . 0 

4 
We define the following system of differential equa- 

tions, which we denote by S. We set uk(x) = l - x 
and for 1 5 i 5 k - 1, 

The analysis for general k 

min{x I c?ui+l(x) 2 11, 

1, if no x as above exists 
x; = 

ui(x) = 0 ,  for x E [O,xq] 

i +  1 
U:(.) = c,(ui+l(x) - ui(x)) - 1 ,  for x 2 xi . 

Note that the system is triangular and xf is de- 
fined strictly in terms of ui+1, so S is well-defined. 
For example, since uk(x) = 1 - x and c > 1, 
x i q l  = 0 (compare to lemma 3) and so U;.~(X) = 
c (U(.) - U k - l ( X ) )  - 1. 

Definition 2 I f  xf = 1 then we say that ui is degen- 
erate. I f  ui is non-degenerate let xf = min{x > xf I 
ui(x) = 0}, otherwise let xf = 1. 

It is straightforward to show that if ui is degenerate 
then so is u j  for all j < i. Furthermore, it is also 
straightforward to verify that for all non-degenerate 
ui, 0 E x i  5 ... 5 xi 5 x; 5 ... 5 x i  1. The 
following analogue of fact 1 holds: 

Fact 2 For any non-degenerate ui, Q.S. for every 
xf < x < x;, Iui(xn)l = ui.(x)n + o(n).  

As in Section 3, k-GL a s .  fails if Inl(z) ever ex- 
ceeds 1, and if Inl(c) is always less than 1, then it 
succeeds with probability at least p for some p > 0 in- 
dependent of n. The following lemma, which we state 
without proof, is quite helpful. 

Lemma 5 I fu i  is non-degenerate then Ini(t) is max- 
imized f o r  some 0 5 t 5 xfn  and ui(x) 5 0 for all 
2 E [XF, 11. 

Thus our analysis of the algorithm for any k and c 
is reduced to solving S and determining whether 

2c 
X ( k , c )  = - max U ~ ( X )  < 1 

+E[r;,r;] 
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It follows that for any k 2 3 ,  d k  is the unique solu- 
tion for c > 1 of X ( k , c )  = 1.  Despite the elemen- 
tary structure of S ,  its exact solutions, which would 
allow us to determine dI, for all k ,  are very com- 
plicated due to the initial conditions of the system. 
For example, Uk-:? can be written as 

U I , - ~ ( Z )  = 1 - IC + ( k  - l)e-'" 

+ ke-c";-a e - w ( " - " ; - z )  1 k 
- (-7 

It is crucial that cannot be "eliminated" from 
the expression for Uk-2. Moreover, has a closed 
form only in terms of the W function. For UI,-3 we 
have to determine u;-~, i.e., the solution of UI,-%(Z) = 
&. This is already very difficult. Thus, although 
we can write down analytic expressions for the exact 
solutions of S, they involve solving increasingly harder 
exponential equations and the solution for u2 which is 
of interest, involves solving k - 3 such equations. It is 
not clear that such a formula would yield significant 
insight to the asymptotic behavior of k-GL.  

5 Asymptotics for k 

two systems of equations which "approximate" S. 
6.1 Almost sure success 

then k - G L  a.s. succeeds. 

In the following we prove theorem 2 by ana,lyzing 

Theorem 2.a For all k 2 3 ,  if c 5 k In k -- 3 / 2 k  

By (a) of lemma 2 ,  if Ini (t) < 1 - E ,  for all 0 5 t 5 n 
then Ut lo  Ui-z(t11 = 0 as .  Thus, if for all 0 5 t 5 n ,  
IU,(t)l is such that, Inz(t) 5 $lU3(t)[ < 1-6, for some 
E > 0 then k - G L  i ~ s .  succeeds. Consequently, lJ3 will 
be central in what; follows. We will also need to show 
that initializing the lists to fewer than k colors cannot 
increase the probability that the algorithm succeeds. 
For this, we start with L ,  = ( 1 , .  . . , IC} for all U ,  and 
repeatedly argue its follows: fix an initialization of the 
lists, a vertex v arid a color w E L,. By a straightfor- 
ward monotonicity argument, the probability that the 
algorithm succeeds does not increase by removing w 
from L,. Finally, let HI, = l / i  denote the k-th 
Harmonic number and recall that HI,  > In k .  

To prove theorem 2.a we will prove that for c < 
kHk - 3 / 2 k ,  k - G L  a s .  colors Gn,p=c/n, even when 
the lists of the vast majority of vertices contain much 
fewer than k colors initially. In particular, let M = 
 HI, - 3 / 2 )  ancl assume that we initialize the lists 
of the vertices as follows: 

1. Partition the vertices randomly into sets Pi, i = 
3 , .  . . , k ,  such that [Pi1 is [M/ij or [ M / i ] .  

2 .  Let Q = lPil/(f).  Partition Pi randomlyintosets 
Ni j ,  j = 1 , .  . . , (!), such that llVijI is LQJ or 191, 
for all j. 

3 .  For each vertex U :  If v E Nij then L,  is initialized 
to the j- th i-subset of {I., , . . , A;}. 

For c < k(Hk - 3 / 2 )  we will call this initialization 
of the Si (and hence of the initial conditions for the 
differential equations) harmonic loading. 

If we apply the algorithm after the above initializa- 
tion, the vertex to be colored from 1: = 0 until U3(t )  = 
0, will be chosen from U3. Since IU2,(O)I = n(n) ,  there 
is E > 0, such that IU,(t)l > 0 for 0 5 t 5 En and 
it is straightforward to prove that (claim 1 holds here 
as well (note that for each ii all I S ~ ( 0 ) l  differ by at  
most one initially). Thus, for all 3 5 i 5 k - 1, the 
differential equations for IUil derived in section 4 are 
valid at  t = 0 and hence only the initial conditions 
of S need to be modified. Finally, raince the solutions 
of the differential equations with the new initial con- 
ditions correspond to an execution of the algorithm, 
we get that for all 3 5 i 5 k ,  ui(z) 5 ui+l(x) + o( l ) ,  
implying that xi" 5 z:+~ for all suclh i. In conclusion, 
U I , ( X )  = 1 - Z, while for 3 5 i 5 le -- 1, 

i + l  
k U:(.) = c- (Ui+1(2) - .i(.)) - 1 . ( 5 )  

Now note that under harmonic loading there exists 
some E = E(C) > 0, such that for all 2 5 i 5 k - 1, 

i + l  
Ini(O) = c-(ui+~(O) - ui(0)) + o(1) 

" 

L. + 0 ( 1 )  - - 
k ( H k  - 3 / 2 )  

< 1 - E .  (6) 

The following lemma is central for the 'ui under har- 
monic loading. 

Lemma 6 There is = ((c:) > 0,  such that for 3 5 
i 5 k ,  U:(.) < -5, for 2 E [ O , Z ~ ] .  

Proof 

"backwards induction". 
Base case: Trivial, since U:(.) = -1. 
Inductive step: Assume that the lemma is true for 
ui+l,  4 5 i + 1 5 k and recall thaf, 2 xf. Solv- 
ing ( 5 )  for ui, with the initial condition, and taking the 

To simplify notation, let 'y = c y  and take 
= exp(-y)E, where E is as in (6). The proof is by 
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Proof of Theorem 2.a Since IU2(O)l = 0, by (a) 
of lemma 2, it suffices to show that for 0 5 t 5 n,  
Ina(t) < 1 - SI for some 6 > 0. Take S = E ,  where c 
is as in (6), and recall that Ini(t) = w ( l U i + l ( t ) /  - 
IUi(t)l) and that for 0 5 t 5 z f n ,  IUi(t)l = ui( t /n)n+ 
o(n) .  Since InZ(0) = F u ~ ( O )  + o(1) < 1 - E and, 
by lemma 6, U S  is decreasing in [O,z;] we have that 
Inz(t) < 1 - E ,  for 0 5 t 5 z5n. For z:n 5 t 5 
n ,  we will show that in fact InZ(t) = o(1). For all 
3 5 i 5 k ,  equation ( 5 )  along with lemma 6 imply 
that Ini(zfn) 5 c y u i + . 1 ( z f )  + o(1) < 1 - C ,  and 
by lemma 6, ui+l is decreasing in [zf, zftl]. Hence, 
by (b) of lemma 2, IUi(t)l = o(n)  for z f n  5 t I zftln. 
Since = 1, invoking this fact for i = 3 , .  . . , le - 1 
concludes the proof. 0 

5.2 Almost sure failure 
For any E > 0 ,  there exists le(€) 

such that for all k 2 I C ( € ) ,  zfc 2 klnk(1 + c )  then 
k-GL Q.S. fails. 

Theorem 2.b 

Similarly to the proof of theorem 2.a, we will ex- 
amine the differential equations of S subject to initial 
conditions different from the ones in S. In particu- 
lar, we will provide initial conditions such that the re- 
sulting functions are substantially easier to deal with. 
Unlike the proof of theorem 2.a, though, these initial 
conditions do not correspond to an initialization of 
the lists of the vertices, and the resulting functions do 
not have an algorithmic interpretation. In spite of this 
fact, we will be able to prove that they provide a lower 
bound to the solutions of S for all z E [0,1]. Using 
the lower bound for lU2(t)l, we will derive a condition 
on c such that k-GL a.s. fails. 

Recall that ui(z) = 0, for z E [O,zJ and, by 
lemma 5, ui(z) 5 0, for z E [z:iJ, 11. For all 2 5 i 5 k ,  
we will define a function l i ,  similar to U ; ,  and prove 
that l i ( z )  5 ui(z), for all z E [0,1]. Specifically, 

l k ( z )  = 1 - 2, while for 2 5 i 5 k ,  

l i (0)  = 0 and 
i s  1 

k 
I+) = c- (li+l (x) - l z ( z ) )  - 1 . 

Lemma 7 For 2 5 i <: k ,  

for aZZ z E [0, 13. 

The last inequality is derived by taking cases: if z E 
[0, z 3  we note that ui(z) = 0, while for all s E [0, 21, 

yui+l(s) 5 1 . Hence, we keep both summands and 
get l i ( x )  5 0 = U;(.). If z E [xi”, 11 we use that for all 
s E [O,xi],  yui+l(s) 5 1. This allows us to drop the 

0 (negative) first summand and obtain ui(z). 

Lemma 8 

Proof Since all differential equations in the system 
for the li “start” at  z = 0, solving the system is 
straightforward. Let Si(.) denote 

As the system is triangular, one can verify that 

by induction. Now, Si(.) has a “closed” form with 
roughly min{i, k - i} terms (for k > 0). Fortunately, 
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we are interested in 1 2 .  Letting z = exp(cx/k) we have 

k - 3  

12(x) = 1 - " + ( - * ) - k c  ( 5 )  (k-;-  l ) ( - Z ) j  
j = O  

- - -x 
+ 2-"2 - 1y-2 (2  + ( k  - 2)2 + ( k - 1  )) 

k 

> (1-;;) - x  . 

0 

Proof of Theorem 2.b Fix E > 0 and assume 
that k 2 IC(€) to be defined below. We will show that 
there exist Zb,C > 0, both independent of k ,  such 
that for xbn 5 t 5 (xb + C)n, Inl(t)  > 1 + 6, for 
some S > 0. The theorem then follows from (c) of 
lemma 2. Recall that c 2 (1 + 6)kln k for some arbi- 
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