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Abstract. Directed st-connectivity is the problem of deciding whether or not there exists a
path from a distinguished node s to a distinguished node t in a directed graph. We prove a time–
space lower bound on the probabilistic NNJAG model of Poon [Proc. 34th Annual Symposium on
Foundations of Computer Science, Palo Alto, CA, 1993, pp. 218–227]. Let n be the number of
nodes in the input graph and S and T be the space and time used by the NNJAG, respectively. We

show that, for any δ > 0, if an NNJAG uses space S ∈ O(n1−δ), then T ∈ 2Ω(log2(n/S)); otherwise

T ∈ 2Ω(log2(
n logn
S

)/ log logn) × (nS/ logn)1/2. (In a preliminary version of this paper by Edmonds
and Poon [Proc. 27th Annual ACM Symposium on Theory of Computing, Las Vegas, NV, 1995, pp.

147–156.], a lower bound of T ∈ 2Ω(log2(
n logn
S

)/ log logn) × (nS/ logn)1/2 was proved.) Our result
greatly improves the previous lower bound of ST ∈ Ω(n2/ logn) on the JAG model by Barnes and
Edmonds [Proc. 34th Annual Symposium on Foundations of Computer Science, Palo Alto, CA, 1993,
pp. 228–237] and that of S1/3T ∈ Ω(n4/3) on the NNJAG model by Edmonds [Time-Space Lower
Bounds for Undirected and Directed ST-Connectivity on JAG Models, Ph.D. thesis, University of
Toronto, Toronto, ON, Canada, 1993]. Our lower bound is tight for S ∈ O(n1−δ), for any δ > 0,
matching the upper bound of Barnes et al.[Proc. 7th Annual IEEE Conference on Structure in
Complexity Theory, Boston, MA, 1992, pp. 27–33]. As a corollary of this improved lower bound, we
obtain the first tight space lower bound of Ω(log2 n) on the NNJAG model. No tight space lower
bound was previously known even for the more restricted JAG model.
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1. Introduction. The st-connectivity problem (stcon) is a fundamental prob-
lem in computer science, as it is the natural abstraction of many search processes.
Its space and time–space complexities are of special interest because there are many
applications such as game searching, program verification, and databases in which the
size of the input graph is too large compared to the size of the internal memory of a
machine. In these applications algorithms that run in small space, and preferably in
small time simultaneously, are required. Stcon is also important in computational
complexity theory because it is complete for NSPACE(logn) under logarithmic space
reductions. Both stcon and the corresponding problem for undirected graphs, ust-
con, are hard for DSPACE(logn) since any problem solvable deterministically in log-
arithmic space can be reduced to either problem. (See Lewis and Papadimitriou [22]
and Savitch [28].) Thus, showing that there is no deterministic logarithmic space algo-
rithm for stcon that would separate the classes DSPACE(logn) and NSPACE(logn),
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while devising such an algorithm would prove that DSPACE(f(n)) = NSPACE(f(n))
for any space-constructible function f(n) ∈ Ω(logn) [28]. Stcon is also a candidate
problem for separating the classes of SC and NC [20]. Below we mention the pre-
vious works that are most relevant to our paper. For more information on graph
connectivity, we refer the reader to the beautiful survey paper by Wigderson [31].

1.1. Previous work. The most commonly used algorithms for st-connectivity,
breadth- and depth-first search run in optimal time O(m+n) and use O(n logn) space.
At the other extreme, Savitch [28] provided an algorithm that usesO(log2 n) space and
requires time exponential in its space bound (i.e., time nO(log n)). Tompa [30] showed
that stcon cannot be solved in polynomial time and sublinear space simultaneously
by the repeated squaring method. However, Barnes et al. [3] gave a polynomial time

algorithm for stcon that uses space S ∈ n/2Θ(
√

log n), providing the first polynomial
time, sublinear space algorithm. This shows that the repeated squaring method is
too restricted. In fact, their algorithm implies a general time–space upper bound of

T ∈ 2O(log2(n logn
S )) × n3 for S ∈ Ω(log2 n).

A natural question is whether the upper bounds of Savitch and Barnes et al.
are tight. Unfortunately, proving nontrivial lower bounds for natural decision prob-
lems on any general model of computation, such as Turing machines and branching
programs, appears to be beyond the reach of current techniques. Thus, it is nat-
ural to consider structured computational models [12] whose basic operations are
based on the structure of the input, as opposed to being based on the bits in the
input’s encoding. A natural structured model for stcon is the “jumping automa-
ton for graphs,” or JAG, introduced by Cook and Rackoff [13]. A JAG moves a set
of pebbles on the graph. There are two basic operations—moving a pebble along
a directed edge in the graph and jumping a pebble from its current location to the
node occupied by another pebble. Although the JAG model is structured, it is pow-
erful enough to simulate most known algorithms for stcon and related problems.
For example, depth-first and breadth-first search, random walks [1], and the algo-
rithms of Savitch and Barnes et al. can all be simulated on a JAG (see [13, 27]). To
our kowledge, all known deterministic or probabilistic algorithms for directed stcon
are implementable on a JAG. However, it is not clear how a nondeterministic JAG
can simulate Immerman’s and Szelepcsényi’s O(logn)-space algorithm for directed
st-nonconnectivity (stcon) [19, 29]. This motivated Poon [26] to introduce the more
general node-named JAG (NNJAG) model, an extension of the JAG, where the com-
putation is allowed to depend on the names of the nodes on which the pebbles are
located. Using this added power, Poon [26] showed how to simulate the Immerman/
Szelepcsényi algorithm on a nondeterministic NNJAG.

Cook and Rackoff [13] proved a lower bound of Ω(log2 n/ log logn) on the space
required for a JAG to compute stcon. Within the log logn factor, this is tight with
Savitch’s algorithm. Berman and Simon [7] extended this result to the probabilis-
tic JAG model. More precisely, they showed that any probabilistic JAG that solves

stcon within 2logO(1) n expected time requires Ω(log2 n/ log logn) space. Their prob-
abilistic JAG is allowed to flip a coin in each step and is able to solve stcon with
1-sided error, using O(logn) space and O(nn) expected time (see Gill [18]). In the
following, we will refer to such a probabilistic machine as a coin-flipping machine.

Poon [26] further generalized the bound, showing that S ∈ Ω( log2 n
log log n+log log T ) for any

coin-flipping probabilistic NNJAG with space S and expected time T .

Regarding the time–space tradeoff, there are many lower bounds proved for ust-



TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2259

con on various weaker variants of the JAG model [6, 11, 13]. Edmonds [15] was
the first to prove a time–space lower bound for ustcon on the regular JAG model
(with bounded space). All these results apply to (directed) stcon, which contains
ustcon as a special case. However, ustcon appears to be easier than stcon both
in terms of space and time–space complexity. For example, Nisan, Szemerédi, and
Wigderson [24] showed that ustcon can be solved in O(log1.5 n) space on a deter-
ministic Turing machine. There is also a randomized O(logn) space, polynomial time
algorithm (by Aleliunas et al. [1]) and a deterministic O(log2 n) space, polynomial
time algorithm (by Nisan [23]) for this problem. Although it is not known whether
the algorithms in [24, 23] can be simulated on a JAG or NNJAG, ustcon can in-
deed be solved in O(logn) space and polynomial time on a JAG due to the existence
of polynomial length universal traversal sequences [1]. Thus, one cannot hope to
get superpolynomial time lower bounds for stcon by establishing similar bounds for
ustcon.

The first nontrivial lower bound explicitly for stcon was given by Barnes and
Edmonds [4]. They showed that ST ∈ Ω(n2/ logn) on the JAG model. In fact their
result was proved on a more powerful variant of JAG called many states, big step JAG
which, unlike an ordinary JAG, is capable of traversing trees in O(logn) space. Using
a proof technique completely different from [4], Edmonds [14] showed that S1/3T ∈
Ω(n4/3) on the NNJAG model. These results still do not yield superpolynomial lower
bounds on time no matter how small S is. In view of this large gap between the
upper and lower bounds and the fact that the Barnes et al. algorithm was obtained
by combining several rather simple ideas, it seemed that further improvements to the
upper bound were quite possible.

1.2. New results. Rather surprisingly, in a preliminary version of this paper by

Edmonds and Poon [16], a lower bound of T ∈ 2Ω(log2(n logn
S )/ log log n)× (nS/ logn)1/2

is obtained. This implies that superpolynomial running time is necessary to solve

the problem whenever S is smaller than (n logn)/2ω(
√

log n·log log n). The bound also

nearly matches the upper bound of T ∈ 2O(log2(n logn
S ))×n3 (which is superpolynomial

for S ∈ (n logn)/2ω(
√

log n)) by Barnes et al. [3]. Here, by a more careful choice of
parameters and a tighter analysis, we prove that for any δ > 0, a probabilistic NNJAG
with 2-sided error, using space S ∈ O(n1−δ), requires expected time T ∈ 2Ω(log2(n/S)),
matching the upper bound of [3].

In this paper, we define an S-space probabilistic NNJAG as a distribution of S-
space deterministic NNJAGs. Hence, the probabilistic NNJAG must use time T ∈
2O(S) or else it will cycle. From this fact and the time–space tradeoff, we obtain
the first tight space lower bound of Ω(log2 n) on a probabilistic NNJAG with 2-sided
error. No tight space lower bound was previously known even for the more restricted
JAG model. However, a coin-flipping probabilistic JAG or NNJAG (as defined in

[7, 26]) can run usefully for up to 22O(S)

expected time. As mentioned before, it can
solve stcon with O(logn) space and O(nn) expected time. Thus, one can prove
only a time–space lower bound on this coin-flipping model. Since a coin-flipping
probabilistic NNJAG with space S and time T can be simulated on our probabilistic
NNJAG, using time T and space S + log T , our result is valid on the coin-flipping
model for S ∈ Ω(log2 n) (since log T ∈ O(S)). For space S ∈ O(log2 n), our result

still implies a lower bound of T ∈ 2Ω(log2 n) on the coin-flipping model. However, for

S ∈ O( log2 n
log log n ), Poon [26] gives a stronger lower bound of T ∈ 2(2Ω(log2 n/S)). For

example, when S ∈ O(logn), his result implies that T ∈ 2n
c

for some constant c > 0.
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This paper borrows a lot of techniques from [14]. The bound is proved for the
probabilistic NNJAG model by transforming the machine into a structured branching
program, and applying a progress argument introduced by Borodin et al. [10] and
also used in many proofs of time–space trade-off lower bounds, including [8, 5, 9, 33].
Roughly, the argument is that for every short path of the computation, the probability
that lots of progress is made, conditional on the fact that this computation path
is followed, is less than 2−S . (With space S there are at most 2S different such
subcomputations.) Our proof, however, is complicated by the fact that this is not
true for some “lucky” computation paths, and hence a number of new techniques are
required to overcome this. In addition, the argument is applied recursively, yielding a
substantially greater lower bound than would be possible without recursion. We note
that similar recursive techniques have also been used in [13, 7, 33, 15, 26].

1.3. Organization of this paper. We first define the NNJAG model in section
2. In section 3, we give the statement of our main result and its corollaries. In sections
4 and 5, we describe the families of graphs used to defeat the NNJAG. In section 6,
we define a notion of progress for an NNJAG on such families of graphs. In section 7,
we enhance and stylize the NNJAG model to simplify our proof. Sections 8 through
12 contain the technical proof of the lower bound. Section 8 contains the proof of
an inductive statement, Lemma 8.3, from which our main result follows. The proof
makes forward references to Lemmas 8.1 and 8.2, which are proved in sections 10
through 12 and section 9, respectively. Section 13 gives the conclusion and some open
problems.

2. The NNJAG model. A (deterministic) NNJAG [26] J is a finite state au-
tomaton with p distinguishable pebbles, q states, and a transition function ∆. The
transition function ∆ can depend nonuniformly on the size n of the input graph, and
the values of p, q can be functions of n. The input to J is a triple (G, s, t), where G
is an n-node graph containing nodes s and t. For every node in G, its out-edges are
labeled with consecutive integers starting at 0. The nodes in G are also labeled from
0 to n−1. We define the instantaneous description (id) of J as the pair (Q,Π), where
Q is the current state and Π is a mapping of pebbles to nodes, specifying the current
location of each pebble in the graph. When J is in id (Q,Π), the transition function
∆ determines the next move for J based on (1) the state Q and (2) the mapping Π.
A move is either a walk or a jump. A walk (P, i,Q′) consists of moving pebble P
along the edge labeled i that comes out of the node Π(P ) and then assuming state
Q′. (If there is no such edge, the pebble just remains on the same node.) A jump
(P, P ′, Q′) consists of moving pebble P to the node Π(P ′) and then assuming state
Q′. The NNJAG J is initialized to state Q0 with all its pebbles on node s. It is said
to accept an input (G, s, t) if it enters an accepting state on this input. An NNJAG
solves stcon for n-node graphs if for every input (G, s, t), where G is an n-node di-
rected graph, it accepts the input if and only if there is a directed path from s to t in
G. We define the space used by the NNJAG as p logn+ log q, i.e., as the number of
bits needed to specify an id. The time used is the number of moves it has made. For
simplicity, we assume that the labels of nodes s and t are always fixed (say, as 0 and
n− 1, respectively). Hence, s and t are not part of the input.

A probabilistic NNJAG J is defined as a distribution on deterministic NNJAGs.
On a given input, it first chooses probabilistically a deterministic NNJAG from the
distribution and then runs this deterministic NNJAG on the input. The space used
is taken as the maximum over all the deterministic NNJAGs in the distribution and
the expected (worst case) time is the expected (worst case) running time over the
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distribution. We say that J solves stcon with 2-sided error if for every input (G, s, t)
the probability of J entering an accepting state is at least 3/4 when there is a path
from node s to t and is at most 1/4 otherwise.

3. Statement of results. Our main result is the following.
Theorem 3.1. If J is a probabilistic NNJAG that solves stcon on n-node

graphs while taking expected time T and using space S, then T ∈ 2Ω(log2(n/S)) when

S ∈ O(n1−δ), where δ > 0 and T ∈ 2Ω(log2(n logn
S )/ log log n)× (nS/ logn)1/2 otherwise.

The proof of Theorem 3.1 follows by applying Yao’s lemma [32] to the following
theorem.

Theorem 3.2. For any δ, ε > 0 there is a distribution D on n-node graphs such
that

1. PrG∈D [G ∈ stcon ] = 1/2, and
2. for any deterministic NNJAG, using space S ∈ O(n1−δ) and (worst case)

time T 6∈ 2Ω(log2(n/S)), or S ∈ ω(n1−δ) and T /∈ 2Ω(log2(n logn
S )/ log log n)) ×

(nS/ logn)1/2,

PrG∈D[J is correct on input G] <
1

2
+ 2ε.

Proof of Theorem 3.1. Theorem 3 of [32] states that for any randomized algo-
rithm J that has probability of error at most λ and any input distribution D, the
expected time of J on the worst case input is at least half the average time of the best
deterministic algorithm that errs with probability at most 2λ on random input chosen
from D. By Theorem 3.2, the latter quantity is at least T × (1− 2λ− 1

2 − 2ε), where

T ∈ 2Ω(log2(n/S)) for S ∈ O(n1−δ) and T ∈ 2Ω(log2(n logn
S )/ log log n) × (nS/ logn)1/2

otherwise. Putting λ as some constant less than 1
4 − ε and since S ∈ O(n1−δ) for

some δ > 0, we get the required lower bound on a probabilistic NNJAG that errs with
probability at most λ.

Theorem 3.2 is strong enough to yield an optimal space lower bound for the
deterministic NNJAG model, as an immediate corollary.

Corollary 1. Any probabilistic NNJAG that solves stcon requires Ω(log2 n)
space.

Proof. Once the deterministic NNJAG to be used is chosen from the distribution,
the probabilistic NNJAG becomes deterministic. Hence, while using space at most S,
the NNJAG cannot take more than 2O(S) steps without going into an infinite loop.
If an NNJAG J uses space S /∈ Ω(log2 n), then for sufficiently large n the number
of steps it can take is smaller than the lower bound implied by Theorem 3.2 and the
result follows.

4. Layered graphs. From now on, we let δ be a fixed positive constant. A
(d, x, f)-layered graph, first defined in [4], is a graph consisting of d layers, each con-
taining x nodes. The jth node in layer i is denoted by (and named) u〈i,j〉. (Hence,
the NNJAG always knows the location of a pebble in terms of i, j.) Every node has
at most f outgoing edges to some (not necessarily distinct) nodes in the next layer.
Here, we will set f = Θ((n logn/S)1/2) for S ∈ O(n1−δ) and f = 2 otherwise.

Let D = d80 logn/ log fe (so that fD ≥ n80). Note that D is constant with
respect to n if S ∈ O(n1−δ) and D ∈ Θ(logn) otherwise. The distribution B(x)
is a distribution on (D,x, f)-layered graphs. Each graph G ∈ B(x) will have x/2
hard paths (to be defined shortly) of length D and is obtained as follows. In each
layer i, except the top layer, we pick (without replacement) a sequence of x/2 nodes,
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uniformly at random. Let us denote the jth node picked as v〈i,j〉. (It is the node
u〈i,j′〉 for some j′.) These nodes are called the hard nodes. The remaining x/2 nodes
in that layer are called the easy nodes. For layer 1, we choose the sequence of nodes
u〈1,1〉, u〈1,2〉, . . . , u〈1,x/2〉 as the sequence of hard nodes. We shall put in edges so that
if an NNJAG walks a pebble D − 1 steps starting from a hard node in the top layer,
then it is difficult for the pebble to be on a hard node when it reaches layer D.

First, the hard nodes are connected by the edges (v〈i,j〉, v〈i+1,j〉) for each i ∈
[1 . . . D − 1] and each j ∈ [1..x/2]. The path from v〈1,j〉 to v〈D,j〉 is called the jth
hard path. The nodes v〈1,j〉 and v〈D,j〉 are called the root and goal of the jth hard
path, respectively. Thus, there are x/2 hard paths, roots, and goals in G. The edge
labels are chosen independently and uniformly from [0 . . . f−1]. Thus, for each root r

the vector of edge labels on the hard path rooted at r, denoted ~̀r, is chosen uniformly
at random from [0..f − 1]D−1.

For each layer i ∈ [1..D−1], each hard node v〈i,j〉 will have further f−1 outgoing
edges, and each easy node will have f outgoing edges. The destinations of these edges
are chosen independently (with replacement) at random from the set of easy nodes in
layer i+ 1. In this way, the in-degree of each hard node is kept to 1.

5. Recursively layered graphs. Set χ = Θ(( n
3S

log n )1/4) for S ∈ O(n1−δ) and

χ = Θ(( nS
log n )1/2) otherwise. Set K = b log(n/(4χ))

log 2D c. Thus, K ∈ Θ(log(n log n
S )) for

S ∈ O(n1−δ) and K ∈ Θ(log(n log n
S )/ log logn) otherwise. Moreover, K ≤ logn since

S ≥ logn. We first construct, recursively, K + 1 distributions H0,H1, . . . ,HK on
layered graphs, where Hk is a distribution on (Dk, 2kχ, f)-layered graphs. Each such
graph has χ super goals. In addition, for k > 0, each graph in Hk has Dk−12k−1χ

hard paths of length D, each one with a goal. Our input distribution D of n-node
graphs in Theorem 3.2 is formed by adding a few nodes and edges to each graph in
HK .

The distribution H0 contains only one graph, which is simply a layer of χ isolated
nodes. These nodes are the super goals. For k > 0, a graph G in Hk is formed as
follows. We choose a graph G′ from Hk−1 and replace each layer i of G′ with a graph
Gi chosen from B(2kχ). Note that each Gi has 2kχ/2 = 2k−1χ hard paths and that
each layer of G′ has the same number of nodes. We identify the jth hard path of Gi
(i.e., the path from v〈1,j〉 to v〈D,j〉 of Gi) with the jth node in layer i (i.e., u〈i,j〉) of
G′. Every edge that goes into u〈i,j〉 of G′ will now go into v〈1,j〉 of Gi, and every edge
that goes out of u〈i,j〉 of G′ will go out of v〈D,j〉 of Gi. The easy nodes in Gi are not
connected to any node outside Gi.

Since G is uniquely determined by G′ and G1, . . . , GDk−1 (and viceversa), we often
denote G as a tuple 〈G1, G2, . . . , GDk−1 ;G′〉. The graph G′ is called the collapsed
graph of G, denoted C(G). The set of hard paths (respectively, roots and goals)
of G is the union of all the sets of hard paths (respectively, roots and goals) in
G1, G2, . . . , GDk−1 . Hence, G has Dk−12k−1χ hard paths (and the same number of
roots and goals) in total. The χ super goal nodes in G are the goal nodes of the χ

hard paths in GDk−1 , representing the χ super goal nodes in G′ ∈ Hk−1. Note that
the super goals are on the bottom level of G and are associated with the χ nodes in
the graph from H0. The edges within each of the Gis are called the base edges of G.
The other edges, i.e., those connecting the Gis, are in one-to-one correspondence with
the edges in the collapsed graph C(G) of G, and hence they are called the collapsed
edges. Note that graphs in H1 have base edges but not collapsed edges, and the graph
in H0 does not have any edge at all.
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Fig. 1. An example: f = 2.

Figure 1 shows a graph G ∈ Hk on the right and its collapsed graph C(G) ∈ Hk−1

and the symbol for a base graph in B(2kχ) on the left. We rearranged the nodes so
that all the hard nodes in the Gi’s appear on the left half.

For each k ∈ [0..K], we obtain a distribution Gk by adding to each graph in Hk
the following auxiliary nodes and edges (see Figure 2):

(A1) a directed path (s = w1, w2, . . . , w2kχ) with w1 = s and, for each j ∈ [1..2kχ],
an edge from wj to u〈1,j〉 of G;

(A2) the isolated node t;
(A3) a special isolated node, referred to as the lost node;
(A4) a number of isolated nodes so that the total number of nodes in the graph is

exactly n.
The lost node is introduced for technical reasons that will become clear in section

7. These auxiliary nodes and edges are fixed for each graph G ∈ Gk. Hence, for k > 0,
G can still be specified by a tuple 〈G1, G2, . . . , GDk−1 ;G′〉, where G1, . . . , GDk−1 are in
B(2kχ) and G′ is in Hk. The collapsed graph of G, denoted by C(G), is the graph G′

augmented with the auxiliary nodes and edges needed to form a graph in Gk−1 from a
graph in Hk−1. Thus, C(G) is in Gk−1. Note that, excluding the nodes added in (A4),
each graph in Gk consists of a (Dk, 2kχ, f)-layered graph, a path with 2kχ nodes, the
node t and the lost node. These add up to a total of (2D)kχ + 2kχ + 2 ≤ 4(2D)kχ

≤ n nodes for k ≤ K by our choice of χ and K. Hence, we are not adding a negative
number of nodes in (A4). Finally, the distribution D of Theorem 3.2 is defined as
follows. First choose a graph G′ ∈ GK and then uniformly at random choose one of
the χ super goals in G′ as the special node. With probability 1/2 connect the special
node to the isolated node t to form a graph G. Clearly, PrG∈D [G ∈ stcon ] = 1/2.

6. Defining progress. Consider the computation of an NNJAG J on input G.
We will analyze the progress of J during different phases of the computation. In the
following definition, a subcomputation A refers to a sequence of moves taken by the
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Fig. 2. A graph in Gk.

NNJAG, starting from certain id (Q,Π). Once we recast an NNJAG as a branching
program in section 7, one can think of A as a subbranching program.

Definition 1. For any subcomputation A and any input G ∈ Gk, wA(G) is the
number of different goals in G that were pebbled (i.e., reached by a pebble) at any
time during A. Similarly, w∗A(G) is the number of super goals in G that were pebbled
during A.

Note that when A begins, some pebbles may already be sitting on a goal node.
These goals will be counted as progress in wA(G). However, there can be at most
S/ logn such progress. The following lemma shows why reaching the other goals is
difficult for an NNJAG.

Lemma 6.1. If at some step T ′ a particular hard path does not contain any pebble
and at some later step T ′′ a pebble arrives at the goal of this path, then each edge in
that path must be traversed by some pebble between step T ′ and T ′′.

Proof. Observe that every node on a hard path has in-degree 1 and that in the
NNJAG model a pebble can arrive at a node only if the node is already occupied by
some pebble or if it walks to the node.

We point out that it is not necessary for a general computation model to find out
the hard path before it can inspect the edge connections of the associated goal node.
This is the only significant difference between a general model and an NNJAG model
that we will employ in our proof.

Recall that an input G = 〈G1, . . . , GDk−1 ;G′〉 ∈ Gk consists of the collapsed graph
G′ ∈ Gk−1 and the base graphs G1, . . . , GDk−1 ∈ B(2kχ). The NNJAG has to learn
both the structure of the base graphs and that of the collapsed graph. Obviously,
wA(G) measures how much A has learned about the base graphs. The following
lemma shows that wA(G) is also a good estimate of the number of different collapsed
edges traversed during a subcomputation A.

Lemma 6.2. The number of different collapsed edges of an input graph G ∈ Gk
that can be traversed during a subcomputation A of an NNJAG is at most f×wA(G).

Proof. An NNJAG can traverse an edge (u, v) only if there is a pebble on node
u before the traversal. If the edge is a collapsed edge, u must be a goal. Since every
goal has out-degree at most f , pebbling one such node allows the NNJAG to traverse
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at most f different collapsed edges.
Lemma 8.3, to follow, uses Lemmas 6.1 and 6.2 recursively to prove that it is hard

for an NNJAG to reach the χ super goal nodes. Roughly speaking, the argument goes
as follows. Suppose we have proved that it is hard to visit the super goals of graphs
chosen from Gk−1 within time Tk−1. Consider a graph G = 〈G1, . . . , GDk−1 ;G′〉 in Gk
and an NNJAG J with time Tk. We will prove, using Lemma 6.1, that for any input
G′ ∈ Gk−1, it is hard for J to visit many goals in the graphs G1, . . . , GDk−1 ∈ B(2kχ)
within time Tk. In particular, Lemma 6.2 implies that no more than Tk−1 different
edges in G′ are traversed. To conclude the argument, we show that J is effectively
an NNJAG trying to reach, within time Tk−1, the super goals for graphs chosen from
Gk−1, which is difficult by the inductive assumption.

It should be pointed out that J can traverse the same edge many times (which
is natural, since J cannot remember the result of too many edge traversals with
limited space). Therefore, we cannot directly claim that J runs in Tk−1 time on
inputs from Gk−1. For this reason, we measure the time of an NNJAG using the
s-height, hA(), of the corresponding branching program A. Precise definitions of s-
height will be given in section 7. Here, we just state that an NNJAG running in
time T will have hA(G) ≤ T for any G. Thus Lemma 8.3 will imply that if J

is an NNJAG that uses space S ∈ O(n1−δ) and time T /∈ 2Ω(log2(n/S)) or space

S ∈ ω(n1−δ) and time T /∈ 2Ω(log2(n logn
S )/ log log n)× (nS/ logn)1/2, then for any ε > 0,

PrG∈D [w∗J(G) > εχ ] < ε. Below we show how Theorem 3.2 follows from this last
statement.

Proof of Theorem 3.2. Choose G ∈ D. Recall that this can be done by choosing
Ga ∈ GK and then choosing one of its χ super goals to be special, uniformly at
random. Let Gb be the same as Ga except with an edge from the special node to t.
Then G is uniformly chosen to be Ga or Gb. If Ga is such that w∗J(Ga) > εχ, i.e., J
reaches a lot of super goals, then assume that J gives the correct answer on G. From
Lemma 8.3, the probability of this event is less than ε. If J pebbles at most εχ super
goals, then the probability that J pebbles the special node is at most ε because the
NNJAG cannot tell that a super goal is special unless it pebbles the node. Finally,
if J does not pebble the special node it cannot learn whether there is an edge from
the special node to t. Therefore, in this case, the computations on Ga and Gb are the
same and hence the probability of giving the correct answer for G is 1/2. Thus, the
probability of giving the right answer for G is less than 1/2 + 2ε.

7. An NNJAG as a branching program. We will introduce a variant of the
NNJAG model which we call the pebble location redundant NNJAG model. The reason
is that while the new model maintains all the power of an NNJAG it helps us prove a
collapsing lemma. In particular, we shall show that it is helpful to construct a pebble
location redundant NNJAG J ′ for graphs in Gk−1 from a pebble location redundant
NNJAG J for graphs in Gk. We call this the “collapsing” of J to J ′.

An NNJAG is said to be pebble location redundant if the current state always de-
termines the current location of all the pebbles and, hence, the state alone is sufficient
to specify the id of the NNJAG. More formally, this means that there is a function
Π̂ such that if the NNJAG is in state Q, then Π̂(Q) specifies the locations of all the
pebbles. As a first step in getting a pebble location redundant NNJAG, we enhance
a standard NNJAG as follows. First, we allow it to jump a pebble to the lost node
(which is isolated), and for any j ∈ [1..2kχ] to the nodes wj and u〈1,j〉. We call such
a jump a node-jump. Note that in the standard NNJAG model a pebble can jump
only to (the node occupied already by) another pebble. Also, we modify a step to be



2266 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

taken from an id (Q,Π) by the NNJAG to consist of the following substeps.

Substep 1. Based on (Q,Π), either it walks a pebble P along the edge with a specified
label `, or it node-jumps a pebble P . It can also choose not to move any pebble. Let
Π1 specify the new pebble locations.

Substep 2. Based on (Q,Π) and Π1, it performs a (possibly empty) sequence of
pebble-to-pebble jumps and then assumes some state Q′.
The intuition supporting these modifications is that a sequence of moves of a standard
NNJAG can be viewed as a sequence of “macro steps,” each of which starts with a
walk, followed by a (possibly empty) sequence of jumps. Each such jump causes the
standard NNJAG to enter a unique next id. Intuitively, the NNJAG “learns” about
the input only by taking walking steps. Each macro step can be performed in one
step in the enhanced model. It follows that a time lower bound on this new model
implies the same lower bound on the number of walking steps on the original model.
For any NNJAG J (modified as above) with p pebbles, q states, and T time, we can
construct a pebble location redundant NNJAG J ′ so that for any possible id (Q,Π)
of J , J ′ will have a state 〈Q,Π〉. In this state, J ′ will perform the same action as
J does on id (Q,Π).1 Thus, the pebble location redundant NNJAG J ′ will have p
pebbles and q × np states; hence using space log(q × np) + p logn = log q + 2p logn,
which is at most twice the space of J . Moreover, it uses no more time than J .

To be able to discuss subcomputations of the NNJAG better, it is convenient to
recast the NNJAG as an r-way branching program [8] (defined below). Although an
r-way branching program is a general model of computation, the branching program
we will examine has “structure” imposed by Lemmas 6.1 and 6.2 regarding NNJAG
computations.

A branching program is a directed acyclic graph with a designated source node
and a number of sink nodes. Each sink node in the graph is labeled with either accept
or reject and each nonsink node is labeled with an input variable. Furthermore, for
each possible value of the input variable that labels a nonsink node, there is a unique
out-edge from this nonsink node, labeled with that value. Hence, the out-degree of
the graph is at most r, where r is the maximum number of different values possible
for an input variable. A subbranching program is simply a subgraph rooted at some
node.

The nodes in this graph represent the possible states of the machine’s memory.
In particular, the source node represents the initial memory state. In each step the
machine queries an input variable, depending on the current state of its memory,
and then changes its memory to another state based on the value returned. Which
variable to query and which state to go to, on each possible outcome, are specified
by the graph. It is easy to see that for every input, there will be a unique path in
the graph from the source node to a sink node. We call such a path the computation
path followed by the input. We say that a branching program accepts an input if and
only if the computation path followed by the input leads to a sink node labeled with
accept.

Consider an arbitrary (pebble location redundant) NNJAG J that uses space S,
takes time T , and takes inputs from a distribution of n-node graphs with out-degree

1Note that in general, a standard NNJAG cannot be made pebble location redundant because, if
the move taken from an id (Q1,Π1) is a walk, the new pebble location, Π2, will depend on the input

graph. Hence, the NNJAG cannot know which new state Q2 to move to so that Π̂(Q2) = Π2. In
contrast, in the modified NNJAG the pebble location, Π2, after Substep 2, is uniquely determined

by (Q1,Π1) and Π′1. Hence, it is possible for the NNJAG to choose a state Q2 so that Π̂(Q2) = Π2.
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f . The corresponding branching program A has a row of configuration nodes for
each of the time steps t ∈ [1 . . . T ]. Each row has 2S configuration nodes (Q,Π, t),
one for each NNJAG id (Q,Π). For every id (Q,Π) of J and time step t, there
will be a configuration vertex (Q,Π, t) in A. The configuration vertex (Q0,Π0, 1),
where (Q0,Π0) is the start id of J , is taken as the start vertex of A. For each accept id
(Qa,Πa) of J , (Qa,Πa, 1), (Qa,Πa, 1), . . . , (Qa,Πa, T ) are accept configuration vertices
in A, and likewise for the reject ids. The input variables labeling the configuration
vertices of A are the variables X〈u,`〉, where u ∈ [0..n − 1] is a node name and
` ∈ [0..f − 1] is an edge label. The variable X〈u,`〉 will have value v if there is
an edge (u, v) labeled with ` in the input graph and the value “undefined” if there is
no such edge. Thus, if in id (Q,Π) the first substep of J walks a pebble from node u
along the edge with label `, the configuration vertex (Q,Π, t) in A will be labeled with
the variable X〈u,`〉. Furthermore, the vertex will have a directed edge labeled with
v to configuration vertex (Q′,Π′, t + 1) if for some input graph, X〈u,`〉 = v (i.e., the
queried edge has destination v) and the subsequent jumps taken in Substep 2 by J
bring the machine to the id (Q′,Π′). If J does not walk any pebble in Substep 1, the
configuration vertex will not get any label and will have only one unlabeled out-edge
pointing to some configuration vertex (Q′,Π′, t+ 1), depending on Substep 2 of J .

Note that the branching program A so constructed is leveled in the sense that each
configuration vertex can be assigned a level number so that edges from level i only go
to level i+1. Moreover, all the rows in A are identical, because the transition function
of the (deterministic) NNJAG does not depend on time. Therefore, the number of
distinct subbranching programs of a fixed height is at most 2S .

Finally, we introduce a variant of branching programs called sectioned branching
programs. A branching program is said to be sectioned if its vertices are partitioned
into sections so that the out-edges of a vertex in section i can only go to vertices in
section i or i+ 1. Thus, each computation path will go through each section at most
once.

Definition 2. A branching program A is properly sectioned for an input G if it
queries at most 3fS

log n different edges of G in each section. If A is properly sectioned

for G, then its s-height on G, denoted hA(G), is 3fS
log n times the number of sections A

contains; otherwise, hA(G) is infinite.
Note that a set of queries to the same edge of the input graph within a section is

charged as only one query in the s-height measure. The branching program defined
earlier can be viewed as a sectioned branching program with T/ 3fS

log n sections, each of

which queries at most 3fS
log n different input edges. Moreover, on every input G, A will

have s-height T = (T/ 3fS
log n )× 3fS

log n .

8. Proof outline. In the rest of this paper, a directed edge from u to v with
label ` will be denoted by the triple 〈u, `, v〉. Also, by G(O) we denote the distribution
obtained by selecting those graphs in G that satisfy a condition O. We will derive
Lemma 8.3 by induction. Before doing so, we present two lemmas that are central
to the proof of that inductive statement. The first mainly concerns traversing base
edges of graphs in Gk. It bounds the probability of a machine making a lot of progress
within a short period of time.

Lemma 8.1 (main lemma). Let A be any sectioned subbranching program derived
from some pebble location redundant NNJAG with at most S/ logn pebbles. Then for
any k ∈ [1..K],

PrG∈Gk [wA(G) ≥ 3S/ logn and hA(G) ≤ χ/8] < 2−2S .
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The intuition behind Lemma 8.1 is as follows. Recall that wA(G) is the number
of goals that get pebbled. We “give away” one such node for each of the (at most)
S/ logn pebbles. When hA(G) ≤ χ/8, A queries at most χ/8 different edges in G.
Consider the probability of pebbling the goal corresponding to an arbitrary root r,
assuming that the hard path rooted at r does not contain any pebble initially. There
are fD−1 possibilities for the vector, ~̀r, of edge labels on this hard path. To remind
us of its dependency on G, let us use the symbol ~̀r(G) instead of ~̀r in the following.

An NNJAG can move a pebble down from r following some vector ~̀ ∈ [0..f−1]D−1 of

edge labels, hoping that ~̀= ~̀
r(G). For G drawn from Gk, this probability is f−(D−1).

The NNJAG can dynamically choose ~̀ based on the names of the nodes on the path
it has traced so far. However, this will not be a lot of help, since the name of the
nodes on the hard path are chosen randomly. Recall that fD ≥ n80. Since χ ∈ O(n),
it follows that fD−1 � χ/8. Clearly, by querying at most χ/8 different edges in the

input graph, on the one hand, the NNJAG cannot try many different ~̀s. Hence, the
probability of having at least one of them being successful is small.

On the other hand, the NNJAG can eliminate some of the possibilities it needs
to consider by detecting “collisions of edges” and hence increase the probability that
it succeeds. For example, when it learns that two different edges have the same
destination node v, it learns that this node v is not on the hard path since its in-degree
is bigger than 1. Hence, any path continuing from node v need not be traversed.
However, within χ/8 steps, the probability that an edge traversed by the NNJAG
collides with some other traversed edge can be shown to be at most 1/4. (Intuitively,

the probability is
χ/8

2kχ/2 ≤ 1/8. For the simplicity of the proof, we argue in section 11

that this probability is at most 1/4.) By analyzing a variant of branching processes, we

can show that the probability of eliminating a large number of vectors ~̀ ∈ [0..f−1]D−1

in this way, is small. In other words, with high probability, the NNJAG still has a
lot of possible ~̀s to try out. This discussion considers only a single root. When there
are many roots, we need to take care of the dependencies among them before we can
apply some Chernoff-type bounds. The detailed analysis and proof of Lemma 8.1
comprise sections 10, 11, and 12.

The second lemma concerns the traversal of collapsed edges of graphs in Gk. Let
E be a fixed set of Dk−1 base graphs G1, . . . , GDk−1 ∈ B(2kχ) (we call such a set of
graphs a complete set) and Gk(E) be the distribution of Gk conditioned on these fixed
graphs. The lemma relates the computation of a pebble location redundant NNJAG J
on inputs in Gk(E) to that of a faster (in terms of s-height) pebble location redundant
NNJAG J ′ on inputs in Gk−1. For any complete set E of base graphs, define a function
CE from nodes in G ∈ Gk(E) to nodes in C(G) ∈ Gk−1 as follows:

CE(v) =

{
wi if v = wi for some i ∈ [1..2k−1χ],
u〈i,j〉 if v is on the jth hard path in Gi,
lost otherwise.

Note that the function is well defined because for an input G ∈ Gk(E), whether
a node v is a hard node, an easy node, or an auxiliary node is fixed. For any pebble
mapping Π for graphs in Gk(E), denote CE(Π) as the pebble mapping Π′ for graphs
in Gk−1 such that for any pebble P , Π′(P ) = CE(Π(P )).

Lemma 8.2 (collapsing lemma). Let k be any integer in [1..K], J be any pebble
location redundant NNJAG with p pebbles and q states, and E be any complete set of
base graphs. There exists a corresponding pebble location redundant NNJAG J ′ with
the same number of pebbles and states such that, for any G ∈ Gk(E), J is in id (Q,Π)
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in some step on input G if and only if J ′ is in id (Q,CE(Π)) in the same step on
input C(G) ∈ Gk−1.

Note that J and J ′ use the same space. Moreover, J traverses a collapsed edge
〈u, `, v〉 in G if and only if J ′ traverses the corresponding edge 〈CE(u), `, CE(v)〉 in
C(G), and J accepts G if and only if J ′ accepts C(G). The proof of Lemma 8.2 is
given in section 9. Having stated Lemmas 8.1 and 8.2, we are ready to state and
prove the following inductive statement.

Lemma 8.3. For any ε > 0 and any k ∈ [0..K], if Tk = εχ
(χ log n

24fS

)k
and A is

a sectioned branching program with no more than Tk/(
3fS
log n ) sections, derived from a

pebble location redundant NNJAG J which uses at most space S, then

PrG∈Gk [w∗A(G) > εχ and hA(G) ≤ Tk] ≤ k2−S < ε.

Proof of Lemma 8.3.
Base case. When k = 0, the branching program A can query at most T0 = εχ

different edges. Hence, it cannot discover more than εχ super goals.
Inductive step. Assume that the lemma is true for k − 1. Consider a sectioned

branching program A having at most Tk/
3fS
log n sections derived from some pebble

location redundant NNJAG J with at most S space. Suppose, for the sake of contra-
diction, that PrG∈Gk [w∗A(G) > εχ and hA(G) ≤ Tk ] > k2−S . We will show that in

this case there exists some sectioned branching program A′ with at most Tk−1/
3fS
log n

sections corresponding to some pebble location redundant NNJAG J ′ using at most
S space such that PrG′∈Gk−1

[w∗A′(G
′) > εχ and hA′(G

′) ≤ Tk−1 ] > (k− 1)2−S . This
contradicts the inductive hypothesis.

We break A into at most Tk−1/
3fS
log n slices so that slice i consists of section

i(Tk/Tk−1) to section (i + 1)(Tk/Tk−1) − 1, inclusive. (Thus each slice contains

Tk/Tk−1 =
χ log n
24fS sections.) Let F be the set of G ∈ Gk such that hA(G) ≤ Tk

and at least one subbranching program Â, which lies completely within a slice, has
w
Â

(G) ≥ 3S/ logn. Since hA(G) being finite implies that Â is properly sectioned for

G, h
Â

(G) ≤ (Tk/Tk−1)( 3fS
log n ) = χ/8.

Consider the maximal subbranching program Â which lies completely within slice
i and is rooted at the node through which G first enters slice i. There are at most
2S such subbranching programs in A. Combining this fact with Lemma 8.1, we have
PrG∈Gk [G ∈ F ] < 2−S . Therefore, PrG∈Gk [w∗A(G) > εχ and hA(G) ≤ Tk and G /∈ F ]
> (k − 1)2−S . Let us choose a complete set E of base graphs so that
PrG∈Gk(E) [w∗A(G) > εχ and hA(G) ≤ Tk and G /∈ F ] > (k − 1)2−S . By Lemma 8.2,
we can construct from the pebble location redundant NNJAG J , another pebble lo-
cation redundant NNJAG J ′ that runs on Gk−1 with the same number of pebbles and
states as J . From J ′, we can construct a sectioned branching program A′ with at most
Tk−1/

3fS
log n sections, one section for each of the slices of A. This is done by putting a

configuration vertex of A′ in section i if and only if the corresponding2 configuration
vertex of A is in slice i. In A, edges go only from vertices in slice i to vertices in
slice i or i + 1. Therefore, in A′, edges go only from vertices in section i to vertices
in section i or i+ 1. Hence, this is a legal way of partitioning the vertices of A′ into
sections. Now, consider an arbitrary graph G ∈ Gk(E) − F . At most 3S

log n progress

2There is a one-to-one correspondence between states of J and J ′. It is not hard to see that
there is also a one-to-one correspondence between configuration vertices of A and A′.
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is made in the unique maximal subbranching program that G passes through in each
slice of A. By Lemma 6.2, each such subbranching program can query at most 3fS

log n
different collapsed edges in G. Hence, each corresponding subbranching program in
A′ queries at most 3fS

log n different edges in C(G). Therefore, A′ is properly sectioned

for C(G) for all G ∈ Gk(E) − F . Since A has Tk−1/
3fS
log n slices, A′ has the same

number of sections. It follows that hA′(C(G)) ≤ Tk−1 for all G ∈ Gk(E) − F . Since
C(G) is chosen independent of the Gis, the distribution Gk(E) is isomorphic to the
distribution Gk−1. Therefore,

PrC(G)∈Gk−1
[w∗A′(C(G)) > εχ and hA′(C(G)) ≤ Tk−1 ]

≥ PrG∈Gk(E) [w∗A′(C(G)) > εχ and G /∈ F ]

= PrG∈Gk(E) [w∗A(G) > εχ and G /∈ F ]

≥ PrG∈Gk(E) [w∗A(G) > εχ and hA(G) ≤ Tk and G /∈ F ]

> (k − 1)2−S .

For k = K the above inductive statement implies that any deterministic pebble
location redundant NNJAG which uses at most S space and takes O(TK) time, will
pebble more than εχ super goals with probability less than K2−S . Recall that TK =

εχ
(χ log n

24fS

)K
. For S ∈ O(n1−δ), we set f = Θ((n logn/S)1/2), χ = Θ((n3S/ logn)1/4),

and K = Θ(log(n log n
S )). Hence TK = 2Ω(log2(n logn

S ))× (n3S/ logn)1/4 = 2Ω(log2(n/S)).

For S ∈ ω(n1−δ), we set f = 2, χ = Θ((nS/ logn)1/2), andK = Θ(log(n log n
S )/ log logn).

Thus, we get TK = 2Ω(log2(n logn
S )/ log log n)×(nS/ logn)1/2. For big enough n, K2−S <

ε, since K ≤ logn and S ≥ logn. Thus, if J is an NNJAG that uses space S and time
T /∈ Ω(TK), then for any ε > 0, PrG∈D [w∗J(G) > εχ ] < ε.

Note that for S ∈ O(n1−δ), the input graph has out-degree f = Θ((n log n
S )1/2)

which is nonconstant. We can convert the graphs of out-degree f into graphs of out-
degree 2 by replacing each node with a binary tree of size O(f). This blows up the

number of nodes by a factor of f . Hence, our lower bound becomes T ∈ 2Ω(log2(n/fS))

= 2Ω(log2(n/S)), where n is the number of nodes in the out-degree 2 graph.

9. Collapsing an NNJAG.

Lemma 8.2 (repeated). Let k be any integer in [1..K], J be any pebble location
redundant NNJAG with p pebbles and q states, and E be any complete set of base
graphs. There exists a corresponding pebble location redundant NNJAG J ′ with the
same number of pebbles and states such that, for any G ∈ Gk(E), J is in id (Q,Π) in
some step on input G if and only if J ′ is in id (Q,CE(Π)) in the same step on input
C(G) ∈ Gk−1.

Proof. J ′ will have the same set of states as J . Let Π̂ be the function that maps
the states of J to its pebble locations. We shall prove, by induction on the number
of steps taken, that if J is in state Q in step t on input G ∈ Gk(E), then J ′ is in the

same state in step t on input C(G) ∈ Gk−1 and CE(Π̂(Q)) specifies the locations of
its pebbles in that step. This proves the claim. Initially, J and J ′ are at state Q0.
Both Π̂(Q0) and CE(Π̂(Q0)) specify that all pebbles are on node s.

Assume that at step t, J is in state Q on input G and that, at the same step, J ′

is in state Q on C(G) and its pebble locations are specified by CE(Π̂(Q)). The move
of J ′ will be determined by the move of J . For the first substep there are three cases.

Case 1. If J does nothing , then J ′ also does nothing.
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Case 2. If J walks pebble P along the edge with label `, then there are three
subcases, depending on the node u that P was on.
(2a) If u is the lost node or the node wj for some j ∈ [1..2kχ], then the destination,

v, of P is fixed and CE(v) is either the lost node, the node u〈1,j〉, or wj+1.
Hence, J ′ node-jumps pebble P to CE(v).

(2b) If u is a hard node in layer D of some Gi (i.e., u is a goal node), then the
out-edges of u are collapsed edges. In this case, J ′ walks pebble P along edge
`.

(2c) If u is not a goal node, and not an auxiliary node, then the destination, v, is
fixed for all G ∈ Gk(E). If CE(u) 6= CE(v), then u must be a hard node and
v must be an easy node. Hence, J ′ node-jumps pebble P to CE(v), which is
the lost node. If CE(u) = CE(v), then J ′ does nothing.

Case 3. If J node-jumps pebble P to node v, then v must be either the lost node
or wj or u〈1,j〉 for some j ∈ [1..2kχ]. Hence CE(v) is either the lost node, wj , or u〈1,j〉
for some j ∈ [1..2k−1χ]. J ′ just node-jumps pebble P to CE(v).

Let Π1 be the pebble locations of J after the first substep and let J assume state
Q′ in the second substep. In its second substep, J ′ performs the same sequence of
pebble-to-pebble jumps as in the second substep of J and then assumes state Q′ if
and only if its pebble locations after the first substep is CE(Π1).

Let us check that in all the above cases the pebble location of J ′ after the first
substep is indeed CE(Π1). By the inductive hypothesis pebble P of J ′ was on node
CE(u) before the first substep while pebble P of J was on node u. Since J only moves
pebble P from node u to v in the first substep, we just need to show that J ′ moves P
from node CE(u) to CE(v) in the first substep. This is obviously true in all the above
cases except (2b). In Case (2b), 〈u, `, v〉 is a collapsed edge in G. By the definitions
of Gk and Gk−1, 〈CE(u), `, CE(v)〉 is an edge in C(G). Hence, pebble P of J ′ will be
on node CE(v) after the first substep. It follows that J ′ will also assume state Q′ in
the second substep. Moreover, in the second substep, J changes the pebble locations
from Π1 to Π̂(Q′) by pebble-to-pebble jumps. By construction, J ′ will also change

the pebble locations from CE(Π1) to CE(Π̂(Q′)).

10. Proof of the main lemma.
Lemma 8.1 (repeated). Let A be any sectioned subbranching program derived from

some pebble location redundant NNJAG with at most S/ logn pebbles. Then, for any
k ∈ [1..K],

PrG∈Gk [wA(G) ≥ 3S/ logn and hA(G) ≤ χ/8 ] < 2−2S .

Proof. Recall that every G ∈ Gk consists of Dk−1 graphs, G1, G2,. . . , GDk−1 ,
chosen independently from B(2kχ), a graph G′ chosen from Hk−1 and some fixed
auxiliary nodes and edges. Each Gi has 2k−1χ roots. Therefore, there are (2D)k−1χ

roots. Recall as well that wA(G) denotes how many of the (2D)k−1χ goals have been
discovered and that hA(G) is a measure of the number of edges queried.

Our proof will concentrate on the traversing of the base edges in G. We assume
that G′ is fixed and known to A. Hence, the probability is only over the graphs
G1, . . . , GDk−1 ∈ B(2kχ). Let Bk be the distribution

{ 〈G1, . . . , GDk−1〉 | G1, . . . , GDk−1 ∈ B(2kχ) }.
We allow the machine to query any variable X〈u,`〉 if u is a node in the top layer of a
Gi. Moreover, each time a variable X〈u,`〉 is queried, the following are returned: (1)
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the value, v, of X〈u,`〉; (2) whether v is a goal node; and, if so, (3) its corresponding
root node. With these changes, we can assume that the machine does not query any
collapsed edge, as there is no need.

Also, we modify A so that it has the following properties: (1) A is a decision
tree (i.e., it will not forget the answer to any previous query); (2) A will not repeat
any previous query; and (3) each computation path γ in A queries at most χ/8
different (base) edges and discovers at most 3S/ logn different goal nodes. (If γ
queries more than χ/8 different edges, we will cut it right after it queries the (χ/8)th
edge. Similarly, if γ discovers more than 3S/ logn different goal nodes, we will cut it
right after it discovers the (3S/ logn)th node.) It is clear that the modifications will
not decrease the probability stated in the lemma. With all the above assumptions
and modifications, we just need to show that PrG∈Bk [wA(G) ≥ 3S/ logn ] ≤ 2−2S .

Just before A starts, each of the S/ logn pebbles may already be partially way
down a hard path or even on a goal node. To simplify the analysis, we assume that
the goals of those hard paths that initially contain pebbles will be discovered by A.
There are at most S/ logn such goals. To pebble the remaining goals, we know, by
Lemma 6.1, that the entire hard path must be traversed by the NNJAG. In other
words, every edge in the hard path has to be queried by A. Let w′A(G) be the number
of roots such that every edge on its hard path in G has been queried by A. To prove
the lemma, it suffices to show that PrG∈Bk [w′A(G) ≥ 2S/ logn ] < 2−2S .

Consider an arbitrary computation path γ in A. It can be specified by the se-
quence of base edges, Eγ , it has queried and the sequence of node names, Rγ , specify-
ing whether a goal node is discovered in each step (and if applicable, its corresponding
root). For example, suppose γ queries the variable X〈u,`〉 which has the value v and
then the variable X〈u′,`′〉 which has the value v′. Suppose v is not a goal but v′ is
the goal node of root r; then Eγ = (〈u, `, v〉 , 〈u′, `′, v′〉) and Rγ = (0, r) (assuming no
root has name 0).

When γ is the computation path followed on input G we will say that “G follows
γ.” (It might be useful to think of G as being “processed” by A along γ.) First, let us

understand what we can deduce about ~̀r(G), the sequence of edge labels on the hard
path in G rooted at r, given that G ∈ Bk(Eγ). (Note that G may not actually follow
γ, because it might not agree with Rγ .) We say that a node v is a collision node with
respect to Eγ if Eγ contains two distinct edges 〈u, `, v〉 and 〈u′, `′, v〉 with the same
destination v. Since v has in-degree at least 2, it is known to be an easy node.

In general, we can classify ~̀ ∈ [0..f − 1]D−1 according to γ and r as follows.
Suppose we trace out a path through the edges in Eγ , starting at the root r and

following the sequence of edge labels ~̀ until the next edge to be taken is not contained
in Eγ . Then one of the following three possibilities will occur:

1. The path passes through some collision node with respect to Eγ .
2. The path reaches layer D without passing through any collision node with

respect to Eγ .
3. The path stops before reaching layer D and does not pass through any colli-

sion node with respect to Eγ .

We define Y〈γ,r〉 and Z〈γ,r〉 to contain the vectors ~̀ ∈ [0..f−1]D−1 such that when
the above procedure is applied, the second and third outcomes occur, respectively.

Claim 1. For any computation path γ in A, any input graph G ∈ Bk(Eγ), and

any root r, ~̀r(G) ∈ Y〈γ,r〉 ∪ Z〈γ,r〉.
Proof. For any ~̀ /∈ Y〈γ,r〉 ∪ Z〈γ,r〉 and any input G ∈ Bk(Eγ), the path from
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the root r labeled with ~̀ in G contains a collision node. Since collision nodes have
in-degree at least two in Eγ , they do not lie on the hard path. Thus, ~̀r(G) 6= ~̀.

Definition 3. For any computation path γ and any G ∈ Bk(Eγ), Prog〈γ,r〉(G)
is defined as the random variable indicating that all the edges in the hard path in G
rooted at r are mentioned in Eγ .

Obviously, Prog〈γ,r〉(G) is true if ~̀r(G) ∈ Y〈γ,r〉 and false if ~̀r(G) ∈ Z〈γ,r〉. If G
actually follows γ and Prog〈γ,r〉(G) is true, then the goal of root r is discovered. Let
y〈γ,r〉 = |Y〈γ,r〉| and z〈γ,r〉 = |Z〈γ,r〉|. Briefly, the probability that Prog〈γ,r〉(G) is true,

given that G ∈ Bk(Eγ) is approximately
y〈γ,r〉

y〈γ,r〉+z〈γ,r〉
, because all ~̀ ∈ Y〈γ,r〉 ∪ Z〈γ,r〉

have about the same probability to be chosen as ~̀r(G).
Let D′ = D/8. We say that root r is a high-collision root with respect to the

computation path γ if y〈γ,r〉+z〈γ,r〉 ≤ fD′ . Otherwise, we say that it is a low-collision
root with respect to γ. We say that γ is a high-collision computation if there are at
least S/ logn high-collision roots with respect to γ. Otherwise, we say that it is a
low-collision computation. Let C be the set of all high-collision computation paths.
Then

PrG∈Bk

[
w′A(G) ≥ 2S

logn

]
≤
∑
γ∈C

PrG∈Bk [G follows γ ] +
∑
γ /∈C

PrG∈Bk

[
w′A(G) ≥ 2S

logn
and G follows γ

]
≡ SUM 1 + SUM 2.

By Claim 2 in section 11, SUM 1 is at most 2−3S . Consider SUM 2. If both events
“w′A(G) ≥ 2S/ logn” and “G follows γ” occur, there exist at least 2S/ logn roots r
such that Prog〈γ,r〉(G) is true; i.e., all the edges on the hard path rooted at r in G are
in Eγ . For γ /∈ C, at least S/ logn of these are low-collision roots with respect to Eγ .

Definition 4. For any computation path γ and any G ∈ Bk(Eγ), w′′γ (G) is
defined as the number of roots r such that r is a low-collision root with respect to γ
and Prog〈γ,r〉(G) is true.

Then

SUM 2 ≤
∑
γ 6∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
and G follows γ

]
.

Since “G follows γ” implies “G ∈ Bk(Eγ),”

SUM 2 ≤
∑
γ 6∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
and G ∈ Bk(Eγ)

]

≤ max
γ 6∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
| G ∈ Bk(Eγ)

]
×
∑
γ 6∈C

PrG∈Bk [G ∈ Bk(Eγ) ] .

We claim that, for each graph G ∈ Bk, there are at most 26S different computation
paths γ for which G satisfies Eγ . To see this, observe that every computation path γ
in A queries at most χ/8 different base edges and discovers at most 3S/ logn different
goal nodes, each having at most n name choices for its corresponding root. Hence,

there are at most
( χ/8

3S/ log n

) × n3S/ log n ≤ 26S different sequences Rγ . If there were

more than 26S different computation paths γ’s such that G satisfies Eγ , then there
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exist two different computation paths γ and γ′ such that Rγ = Rγ′ and G satisfies
both Eγ and Eγ′ . For γ and γ′ to be different, there must be an edge 〈u, `, v〉 in
Eγ and an edge in 〈u, `, v′〉 in Eγ′ such that v 6= v′. Then G cannot satisfy both
Eγ and Eγ′ , a contradiction. Hence, our claim follows. From this claim, we have∑
γ 6∈C PrG∈Bk [G ∈ Bk(Eγ) ] ≤ 26S and thus,

SUM 2 ≤ max
γ /∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
| G ∈ Bk(Eγ)

]
× 26S .

Claim 4 of section 12 shows that PrG∈Bk
[
w′′γ (G) ≥ S/ logn | G ∈ Bk(Eγ)

]
is at most

2−9S for any γ in A. In conclusion,

SUM 1 + SUM 2 ≤ 2−3S + 2−9S+6S

≤ 2−3S+1

≤ 2−2S ,

where all inequalities hold for big enough n. Therefore, Lemma 8.1 (main lemma)
follows.

11. Bounding SUM 1. This section bounds the first sum, SUM 1, at the end
of the proof for Lemma 8.1 (main lemma).

Claim 2.
∑
γ∈C PrG∈Bk [G follows γ] ≤ 2−3S.

Proof. We first define two games called the edge-collision game and the branching-
process game. Let Sed and Sbr be the random variables indicating the success of
each game, respectively. We shall show that

∑
γ∈C PrG∈Bk [G follows γ ] ≤ Pr [Sed ]

≤ Pr [Sbr ] ≤ 2−3S .

11.1. The edge-collision game. The edge-collision game is defined as follows.
Dk−1 graphs G1, G2, . . . , GDk−1 are chosen randomly and independently from B(2kχ).
The player is informed of the hard path of each root in each Gi. He then queries edges
of the Gis one at a time. When the player queries an edge, he specifies 〈u, `〉, where
u is a node and ` ∈ [0..f − 1] is an edge label. The destination node v of the edge
〈u, `, v〉 is then revealed to the player. Based on the result of the previous queries, he
chooses the next edge to query. He is allowed to query at most χ/8 edges total.

The aim of the player is to minimize the number of leaves of certain trees associ-
ated with the queried edges. To be precise, let E be the sequence of base edges of the
input graph G that the player has queried during the game. Recall that in section 10
a node v is called a collision node with respect to E if it is the destination of more
than one edge in E. In this game, each edge in E will be in one of two conditions:
alive or dead. An edge is said to be dead if its destination node is (1) a collision
node or (2) the source of a previously queried edge. Otherwise, it is alive. We shall
construct from E a collection of f -ary trees by taking the following steps.
Step 1. If E does not contain a path from any root r to a node v, then delete v from
G (along with all its in-edges and out-edges).
Step 2. Delete all the nodes (along with their in-edges and out-edges) that are proper
descendents in E of the destinations of the dead edges. The dead edges and their
destinations are kept. The remaining edges in E that are alive are called the y-edges
and their destination nodes are called the y-nodes. Each such node has a unique path
from some root to it and that path contains no dead edges. Hence, the y-edges form
a collection of disjoint f -ary trees.
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Step3. “Fill up” the above trees so that each node has exactly f outgoing edges. More
precisely, for each y-node that does not have exactly f outgoing edges (counting the
dead edges), add the missing edges and attach to each such edge a complete f -ary
tree, of appropriate depth, such that its leaves are at layer D. The nodes and edges
that are added in this way are referred to as the z-nodes and the z-edges. They do not
correspond to actual nodes and edges in the input graph G. Note that each z-node
also has a unique path from some root to it and that path contains no dead edges.
We shall measure the performance of the game player by two sets of parameters.
They are somewhat similar to y〈γ,r〉, z〈γ,r〉 defined in section 10. Define ỹr and z̃r
(the performance parameters) as the number of y- and z-nodes at layer D that are
descendents of the root node r. Again, a root r is said to be a high-collision root if
ỹr + z̃r ≤ fD

′
, where D′ = D/8 as defined in section 10. The goal of the player is

to create as many high-collision roots as possible. More precisely, the player wins if
there are more than S/ logn high-collision roots. Let Sed be the indicator variable of
this event.

Note that the edge-collision game player can query whatever edges queried by A
and hence ensure that Eγ ⊆ E, where Eγ and E are the set of edges queried by A and
the game player, respectively. Consider the conditions for a root to be a high-collision
root. In A, a root r is a high-collision root with respect to Eγ if y〈γ,r〉 + z〈γ,r〉 ≤ fD′ ,
i.e., the number of vectors ~̀ ∈ Y〈γ,r〉 ∪ Z〈γ,r〉 is small. If a vector ~̀ ∈ [0..f − 1]D−1

is not in Y〈γ,r〉 ∪ Z〈γ,r〉, then the path obtained by following ~̀ from r must contain a
collision node in Eγ . The same node will also be a collision node in the edge-collision
game, provided Eγ ⊆ E . It follows that a high-collision root in A will also be a
high-collision root in the game. Therefore,

∑
γ∈C PrG∈Bk [G follows γ ] ≤ Pr [Sed ].

11.2. The branching-process game. Before we introduce the branching-process
game, we introduce some machinery that will be useful in bounding its probability of
success.

Consider a rooted, complete, f -ary tree of depth d. We allow every edge of such a
tree to die independently of all other edges with a fixed probability α. A node u is said
to be alive if and only if no edge along the unique path from the root to u is dead. If Zi
denotes the number of alive vertices at level i, then the sequence Z0 = 1, Z1, . . . , Zi, . . .
forms a branching process [2]. We will be interested in the distribution of the number
of live vertices with depth d, i.e., the random variable Zd. The expected number of
live children for an alive node is (1−α)f , and the expected value of Zd is ((1−α)f)d.
More precisely, the generating function for the offspring distribution in this branching
process is g(x) = (α+(1−α)x)f (i.e., the probability that a node has i out-edges that
do not die is the coefficient of xi in g(x)). A well-known fact is that if (1− α)f > 1,
then Pr [Zd = 0 ] = ξ, where ξ is the unique x ∈ (0, 1) such that g(x) = x. Moreover
η = g′(ξ) < 1. The following lemma states that the probability that Zd is much
smaller than its expected value is not much greater than the probability that it is 0.

Lemma 11.1 (see [25]). If (1−α)f > 1, then for d̃ ∈ [1, . . . , d] such that d−d̃→∞
and d→∞,

Pr
[
Zd ≤ ((1− α)f)d̃

]
≤ ξ +O(ηd−d̃).

In the branching-process game we will consider a variant of the above trees defined
in section 11.1, with depth D and out-degree f . For these trees, the variation lies in
the existence of a fixed path from the root to some leaf whose edges are guaranteed
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to survive; all other edges die independently with probability 1/4. Such a tree is said
to wither if it has at most fD

′
live leaves. We want to bound the probability, ρ, that

this happens.
To allow for a uniform treatment we first convert the f -ary trees to binary trees

when f > 2. In particular, if f > 2, then f = O(nε) for some ε > 0, and hence we can
assume that f is a power of 2. Thus, we replace each node v and its f edges/children
with a complete binary tree Tv of depth log f , i.e., with f leaves. If v is not on
the path that is guaranteed to survive, then all the edges in Tv die independently,
with probability 1/4. Otherwise, the edges along a unique path of Tv (the path
corresponding to the edge guaranteed to live) are guaranteed to survive while the rest
die independently with probability 1/4. It is easy to see, inductively, that for any set
of nodes at depth i log f , i = 0 . . . D, in the resulting binary tree, the probability of
being alive is no more than that of the corresponding nodes at depth i in the f -ary
tree. Moreover, D = d80 logne/ log f , for all f , and hence it will suffice to prove the
bound for f = 2 (D = d80 logne).

Let vi be the node at depth i which is on the path whose edges are guaranteed
to survive and let v′i be the sibling of vi. Let ρ′ be the probability that for all vi,
i ∈ [1..2D/3], either v′i is dead or v′i is alive, but the subtree rooted at v′i, Tv′i has

at most fD
′

live nodes, at depth D. Clearly, ρ ≤ ρ′. Each Tv′
i
, is a complete binary

tree of depth D − i, where every edge dies with probability 1/4. For α = 1/4 and
f = 2, we have ξ = 1/9 and η = 1/2. As D tends to infinity with n and Tv′

i
has depth

at least D/3, we can apply Lemma 11.1 to bound the probability that Tv′
i

has fewer

than fD
′

live nodes at depth D (given that v′i is alive) by 1/9 + O((1/2)D−i−D
′
).

Thus, the probability that Tv′
i

has at most fD
′

live leaves at depth D is no more

than 1/4 + 1/9 + O((1/2)D−i−D
′
) ≤ 1/4 + 1/9 + O((1/2)D/3−D

′
) = β < 1/2, since

D′ = D/8, D = d80 logne and n can be arbitrarily large. Since the 2D/3 subtrees
grow independently, we get ρ ≤ ρ′ ≤ β2D/3 ∈ O(n−5).

In the branching-process game in our graph we say that the root r of the same
type of tree above is a high-collision root if the tree rooted at r withers. Since there
are at most n roots, the expected number of high collision roots is µ ≤ n×ρ ∈ O(n−4).
Let Sbr be the random variable indicating the event that there are more than S/ logn
high-collision roots. As each tree grows independently of the others, we can apply the
Chernoff bound and prove that

Pr [Sbr ]

= Pr

[
number of high collision roots ≥

(
S

µ logn

)
µ

]
≤ 2−( S

logn )(log( S
µ logn )−log e).

Since µ ∈ O(n−4), Pr [Sbr ] ≤ 2−3S .

11.3. Branching-process game versus edge-collision game. This subsec-
tion proves the second inequality mentioned in the proof of Claim 2.

Lemma 11.2. The success of the edge-collision game is probabilistically dominated
by the success of the branching processes game, i.e., Pr [Sed] ≤ Pr [Sbr].

Proof. The edge-collision game starts by random choice of the graphs G1, G2, . . . ,
GDk−1 in B(2kχ). For each i ∈ [1..Dk−1], the first step in choosing Gi according to the
distribution B(2kχ) is to randomly partition the 2kχ nodes at each layer into 2kχ/2
easy nodes and 2kχ/2 hard nodes and to choose the hard path rooted at each root
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r. This information is revealed to the player. The edges in these paths correspond to
the edges in the branching-process game that are guaranteed to live.

The next step in choosing Gi according to the distribution B(2kχ) is to choose
for every remaining edge its destination among the 2kχ/2 easy nodes at the next
layer. This needs to be done only for those edges queried by the player. For each
i ∈ [1..Dk−1], for each layer d ∈ [1..D], and for each τ ∈ [1..χ/8], define the variable
v〈i,d,τ〉 to uniformly and independently take on a value from [1..2kχ/2]. Suppose
that the player is querying 〈u, `〉, where u is a node at layer d in the graph Gi, and
this is the τth query to easy edges at this layer in this graph. Then the variable
v〈i,d,τ〉 ∈ [1..2kχ/2] specifies the other endpoint of edge 〈u, `〉 among the 2kχ/2 easy
nodes at the next layer.

Consider the edge 〈u, `〉 queried at time t for some t ∈ [1..χ/8]. Before this query,
we do not know in advance which edges will be queried after time t because the player
is able to choose them dynamically based on the result of the current query. However,
the random variables v〈i,d,τ〉 do tell us the resulting destinations of all the edges
queried or to be queried. Together with the knowledge of the source of edges queried
before time t, we can tell whether the current edge will die. Specifically, suppose 〈u, `〉
is the τth edge queried at layer d in Gi. Then it will die if either (1) there is another
query at this layer τ ′ ∈ [1..χ/8] with the same destination, i.e., v〈i,d,τ〉 = v〈i,d,τ ′〉 for
some τ ′ 6= τ or (2) the destination is the source of some edge queried before time t.

In order to compare the success probability of the edge-collision game and the
branching-process game, let us first define random variables that will indicate which
edges die in the branching-process game. For each root r in each of the graphs Gi,
there is a corresponding root in the branching-process game. Consider the complete
f -ary tree of height D rooted at such a root r. A specific edge in this tree can be
specified by a string ~̀ ∈ [0..f − 1]∗. For each such edge, let x〈r,~̀〉 ∈ {0, 1} be the

random variable indicating whether this edge dies. If the edge is one of the edges
that are guaranteed to live in the branching-process game, i.e., the fixed hard path in
the input graph, then Pr[x〈r,~̀〉] = 0. Otherwise, Pr[x〈r,~̀〉] = 1/4 independent of the

other x variables.

Now consider a fixed algorithm for the edge-collision game. For each intermediate
time step t ∈ [0..χ/8], we define the tth game as follows. The game starts with t time
steps of the fixed algorithm for the edge-collision game. Let Et be the resulting base
edges queried. We want these edges to die in the tth game if and only if they die in
the edge-collision game. As previously mentioned, the edge associated with v〈i,d,τ〉 is
dead if and only if (1) there is another query at this layer τ ′ ∈ [1..χ/8] with the same
destination, i.e., v〈i,d,τ〉 = v〈i,d,τ ′〉, or (2) the destination, i.e., v〈i,d,τ〉, is the source
of an edge queried before time t. In (1), the query associated with v〈i,d,τ ′〉 can occur
either before or after time step t. Either way, we consider the edge associated with
v〈i,d,τ〉 dead. Given which edges in Et have died, the set Et can be transformed, as
described in Steps (1) through (3) in section 11.1, into a collection of f -ary trees made
up of y-nodes and y-edges (the living ones), z-nodes and z-edges, and some collision
nodes and dead edges. The tth game is completed by finishing the branching process
on the z-edges. Namely, each such edge will live or die according to the corresponding
random variable x〈r,~̀〉 ∈ {0, 1}. A node u in the resulting collection of trees is said

to be alive if all the edges on the path from the root of the tree to u are alive. A root
is said to be a high-collision root if it has at most fD

′
living nodes in layer D. The

tth game succeeds if there are more than S/ logn high-collision roots. Let St be the
random variable indicating the success of the game.
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Observe that the 0th game is simply the branching-process game and hence Sbr =
S0. The (χ/8)th game differs from the edge-collision game only in that in the edge-
collision game all the z-nodes and z-edges added in Step 3 are treated as live while in
the (χ/8)th game some of the z-edges may die according to the x〈r,~̀〉 variables. The

additional children at layer D hurt only the edge-collision game player. Therefore,

Pr
[
S(χ/8)

]
≥ Pr [Sed ]. What remains to be proved is that, for every t ∈ [1..χ/8],

Pr [St−1 ] ≥ Pr [St ].

Let ~V(<t) specify a possible computation up to and including the (t− 1)st query.
It will specify the values of t− 1 of the v〈i,d,τ〉 variables. Which of them are specified

will depend dynamically on the computation. The computation ~V(<t) will also specify
the set of queried edges in the graph Et−1 and the next query 〈u, `〉 made by the
player. Let the node u be on layer d of Gi and the query be the τth one at this layer
in this graph.

Let us consider the following cases. In the first case, Et−1 does not contain a
unique path with no dead edges from a root to u. In this case, the descendant nodes
and edges of node u will be deleted from the y-node tree, both in the (t− 1)st game
and in the tth game. Hence, whether this edge dies has no effect on either game. In
the second case, 〈u, `〉 is on a hard path. For both games, the edge is guaranteed to
live.

In the third case, Et−1 contains a unique path with no dead edges from a root to

u and 〈u, `〉 is not on a hard path. Let r and ~̀ specify the root and the labels in this
path. In the (t−1)st game, whether the edge from 〈u, `〉 dies is specified by the variable
x〈r,~̀〉 ∈ {0, 1}. In the tth game, the destination of the edge from 〈u, `〉 is specified by

the variable v〈i,d,τ〉. Consider one setting ~V(>t) of all the v〈i′,d′,τ ′〉 variables other than

those set by ~V(<t) and other than the variable v〈i,d,τ〉. Consider as well one setting
~X(6=t) of all the x variables other than x〈r,~̀〉.

Compare Pr[St−1 | ~V(<t), ~V(>t), ~X(6=t)] and Pr[St | ~V(<t), ~V(>t), ~X(6=t)]. In both
cases, the probability is only over the values of v〈i,d,τ〉 and x〈r,~̀〉. Everything else is

fixed by ~V(<t), ~V(>t), and ~X(6=t). For every value of v〈i,d,τ〉 and x〈r,~̀〉, which edges die

before time step t and which die after time step t is the same for both the (t−1)st and
the tth game. The only change in the game is whether or not the edge from 〈u, `〉 dies.

In the (t− 1)st game, this edge dies with probability Pr[x〈r,~̀〉 | ~V(<t), ~V(>t), ~X(6=t)] =

1/4. In the tth game, this edge dies if there exists a τ ′ ∈ [1..χ/8] (τ ′ 6= τ) for which
v〈i,d,τ〉 = v〈i,d,τ ′〉 or v〈i,d,τ〉 is equal to the source of an edge queried before time t.
~V(<t) and ~V(>t) fix at most χ/8 − 1 different values of the variables v〈i,d,τ ′〉 and at
most t − 1 ≤ χ/8 − 1 different values as the sources. The value for v〈i,d,τ〉 is chosen

uniformly from [1..2kχ/2]. Therefore, the probability that v〈i,d,τ〉 collides with one of

these ≤ 2(χ/8− 1) values given ~V(<t), ~V(>t), ~X(6=t) is at most 1/4. Having a smaller
probability of this edge dying can hurt only the tth game player. We can conclude
that

Pr
[
St−1

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]
≥ Pr

[
St

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]

and hence

Pr [St−1 ]
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=
∑

~V(<t),~V(>t), ~X(6=t)

Pr
[
St−1

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]
× Pr

[
~V(<t), ~V(>t), ~X(6=t)

]
≥

∑
~V(<t),~V(>t), ~X(6=t)

Pr
[
St

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]
× Pr

[
~V(<t), ~V(>t), ~X(6=t)

]
= Pr [St ] .

12. Bounding SUM 2. This section bounds the second sum at the end of the
proof of Lemma 8.1. It suffices to show that PrG∈Bk

[
w′′γ (G) ≥ S/ logn | G ∈ Bk(Eγ)

]
≤ 2−9S . The event w′′γ (G) ≥ S/ logn happens when at least S/ logn of the low
collision roots r have Prog〈γ,r〉(G) true. If, for every root r, Prog〈γ,r〉(G) were true
with a fixed probability independent of the other roots, then we could apply the
Chernoff bound directly. However, there are indeed dependencies among different
roots. Fortunately, if each event has a low probability of success no matter what
outcomes of the other events have, then by the following lemma from Edmonds [14]
the Chernoff bound still holds.

Lemma 12.1 (Lemma 14 of [14]). Let R be the set of roots. For each r ∈ R, let
x̂r ∈ { 0, 1 } be the random variable indicating the success of the rth trial. For each
r ∈ R and O ∈ { 0, 1 }R−{ r }, let Z〈r,O〉 = Pr[x̂r = 1 | O], where O indicates that the
other trials have the stated outcomes. If for every r and every possible outcome of the
other trials O, Z〈r,O〉 ≤ ρ, then for every δ > 1, Pr[

∑
r∈R x̂r ≥ 2δρ|R|] ≤ 2−0.38δρ|R|.

Proof. Let X̂ =
∑
r∈R x̂r. To bound Pr[X̂ ≥ 2δρ|R|], we will consider a sequence

of random variables, xr, r ∈ R, defined as follows: for x1, we choose uniformly at
random λ1 ∈ [0, 1] and set x1 = 1 if and only if λ1 ≤ Pr [ x̂1 = 1 ]. In general, if we
have set x1 = a1, . . . , xi = ai, we choose uniformly at random λi+1 ∈ [0, 1] and set
xi+1 = 1 if and only if λi+1 ≤ Pr [ x̂i+1 = 1 | x̂1 = a1 ∧ · · · ∧ x̂i = ai ]. Clearly, the
sequences x̂r and xr are identically distributed and Pr [xr = 1 ] ≤ ρ for all r ∈ R.

Consider now a sequence of random variables yr defined by yr = 1 if and only
if λr ≤ ρ, r ∈ R, where λr is as above. By construction, xr ≤ yr for all r ∈ R.
Hence, if X =

∑
r∈R xr and Y =

∑
r∈R yr, then X ≤ Y . Moreover Y is the sum of

|R| independent Boolean random variables. Applying the Chernoff bound we get, for
δ > 1,

Pr
[
X̂ ≥ 2δρ|R|

]
= Pr [X ≥ 2δρ|R| ] ≤ Pr [Y ≥ 2δρ|R| ] ≤ 2−0.38δρ|R|.

In Claim 3, we first show that the probability that Prog〈γ,r〉(G) is true is small
for low-collision roots r. Then we will apply Lemma 12.1 in Claim 4 to get the desired
bound for the second sum.

Claim 3. For any computation path γ in A, any root r, and any subset O of
roots indicating for which roots r′ other than r, Prog〈γ,r′〉(G) is true,

PrG∈Bk
[
Prog〈γ,r〉(G) | G ∈ Bk(Eγ) and O

]
≤ 4

3

y〈γ,r〉
y〈γ,r〉 + z〈γ,r〉

.

Proof. Let us consider a fixed γ and r. Recall that ~̀r(G) is the random variable
indicating the vector of edge labels on the hard path rooted at r in graph G drawn
from Bk and that ~̀r(G) ∈ Y〈γ,r〉 ∪ Z〈γ,r〉. Recall as well that Prog〈γ,r〉(G) is true if

and only if ~̀r(G) ∈ Y〈γ,r〉. We shall drop the subscripts in Y〈γ,r〉, Z〈γ,r〉, y〈γ,r〉, z〈γ,r〉,
~̀
r(G), Prog〈γ,r〉(G), and Eγ , when there is no chance of confusion. We shall also write
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PrG∈Bk [ · | G ∈ Bk(Eγ) ] as Pr [ · | E ]. Note that

Pr [ Prog(G) | E and O ]

=
Pr [ Prog(G) | E and O ]

Pr [ Prog(G) | E and O ] + Pr [¬Prog(G) | E and O ]

=

∑
~̀∈Y Pr

[
~̀(G) = ~̀ | E and O

]
∑
~̀∈Y Pr

[
~̀(G) = ~̀ | E and O

]
+
∑
~̀∈Z Pr

[
~̀(G) = ~̀ | E and O

] .
Let ~̀y be the vector in Y that maximizes Pr[~̀(G) = ~̀ | E and O] over ~̀ ∈ Y and let
~̀
z be the vector in Z that minimizes Pr[~̀(G) = ~̀ | E and O] over ~̀ ∈ Z. The above

probability is at most

y × Pr
[
~̀(G) = ~̀

y | E and O
]

y × Pr
[
~̀(G) = ~̀

y | E and O
]

+ z × Pr
[
~̀(G) = ~̀

z | E and O
]

=
y

y +
Pr[ ~̀(G)=~̀z|E and O ]
Pr[ ~̀(G)=~̀y|E and O ]

× z
.

What remains to be proven is that

Pr
[
~̀(G) = ~̀

z | E and O
]

Pr
[
~̀(G) = ~̀

y | E and O
] ≥ 3

4
.

Let Ny(G) and Nz(G), respectively, be the set of edges on the path with label ~̀y
and ~̀

z from root r in G. Let H(G) be the random variable specifying the hard path

rooted at r in G, i.e., both the nodes and the labels ~̀(G). The fact that ~̀y ∈ Y means

that the path following the edge labels in ~̀
y is totally contained in E. Therefore,

Ny(G) is equal to some fixed value Ny determined by E. Then the statements ~̀(G) =
~̀
y and ~̀(G) = ~̀

z are equivalent to H(G) = Ny and H(G) = Nz(G), respectively.
The possible values Nz for the random variable Nz(G) (i.e., the path in G rooted at

r with edge labels ~̀z) can be divided into two sets. Let Nz ∈ Az if and only if some
edge 〈u, `, v〉 in Nz has the same destination with a different edge 〈u′, `′, v′〉 in E, i.e.,
v = v′ but 〈u, `〉 6= 〈u′, `′〉. In this case, Nz cannot be the hard path. That is, for
Nz ∈ Az, Pr [H(G) = Nz | E and O ] = 0. Now consider an Nz /∈ Az. Given that
G contains E ∪Nz and satisfies O, we argue that it is equally likely for H(G) to be
Ny or Nz. To see this, first observe that O does not affect how H(G) can be chosen
because O is a condition on the hard paths of roots other than r. Second, both fixed
paths Ny and Nz, started from root r, are contained in E ∪Nz. Furthermore, neither
Ny nor Nz contains any collision node with respect to E ∪ Nz. By symmetry, it is
equally likely for Ny and Nz to be chosen as H(G). Hence,

Pr [H(G) = Ny | Nz(G) = Nz and E and O ]

= Pr [H(G) = Nz | Nz(G) = Nz and E and O ] .

Note as well that “H(G) = Nz” implies “Nz(G) = Nz.” Therefore,

Pr [H(G) = Ny and Nz(G) = Nz | E and O ]
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= Pr [H(G) = Nz and Nz(G) = Nz | E and O ]

= Pr [H(G) = Nz | E and O ] .

The above ratio then becomes

Pr
[
~̀(G) = ~̀

z | E and O
]

Pr
[
~̀(G) = ~̀

y | E and O
]

=

∑
Nz /∈Az Pr [H(G) = Nz | E and O ]

Pr [H(G) = Ny | E and O ]

=

∑
Nz /∈Az Pr [H(G) = Ny and Nz(G) = Nz | E and O ]

Pr [H(G) = Ny | E and O ]

= Pr [Nz(G) /∈ Az | H(G) = Ny and E and O ] .

The input distribution Bk first chooses the hard paths. Then every other edge is
added independently at random. If Nz(G) is not a hard path, at each level i ∈ [2..D],
its node is chosen from the 2kχ/2 easy nodes at this level. A sufficient condition for
Nz(G) not to be in Az is that for all its edges not fixed by E, their destinations do
not collide with any node mentioned in E. Let hi be the number of nodes mentioned
in E at level i that Nz(G) must avoid. It follows that

Pr [Nz(G) /∈ Az | H(G) = Ny and E and O ]

≥ Πi∈[2..D]

(
1− hi

2kχ/2

)
≥ 1−

∑
i∈[2..D] hi

2kχ/2
≥ 1− 2 · χ/8

2kχ/2
≥ 3

4

because
∑
i∈[2..D] hi ≤ χ/8 and E contains at most χ/8, different edges and each edge

involves two nodes.
Claim 4. For any computation path γ in A,

PrG∈Bk [w′′γ (G) ≥ S/ logn | G ∈ Bk(Eγ)] ≤ 2−9S .

Proof. Recall that w′′γ (G) is the number of roots r in G such that r is a low-
collision root with respect to γ and Prog〈γ,r〉(G) is true. Hence, the expected value µ
of w′′γ (G) is ∑

low-collision roots r

PrG∈Bk
[

Prog〈γ,r〉(G) | G ∈ Bk(Eγ)
]
,

and by Claim 3,

µ ≤
∑

low-collision root r

4

3
× y〈γ,r〉
y〈γ,r〉 + z〈γ,r〉

≤ 4

3

∑
low-collision root r y〈γ,r〉

fD′

≤
χ

6 · fD′ ,
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as
∑
r y〈γ,r〉 ≤ χ/8 (at most χ/8 different edges are queried by γ). Since χ ∈ O(n)

and fD
′ ≥ n10, we have µ ∈ O(n−9). By Lemma 12.1,

PrG∈Bk

[
w′′γ (G) ≥ S

logn
| G ∈ Bk(Eγ)

]
≤ 2−( S

logn )(log( S
µ logn )−log e)

≤ 2−9S .

13. Conclusion. We have proven that any 2-sided probabilistic NNJAG solving
the st-connectivity problem for n-node graphs in (expected) time T using space S must

have T ∈ 2Ω(log2(n/S)) when S ∈ O(n1−δ) for some δ > 0, and T ∈ 2Ω(log2(n logn
S )/

log log n)×(nS/ logn)1/2 for general S ∈ O(n logn). This greatly improves the previous
bounds of ST ∈ Ω(n2/ logn) by Barnes and Edmonds [4] and S1/3T ∈ Ω(n4/3) by
Edmonds [14]. Moreover, the bound is tight for S ∈ n1−Ω(1). As a corollary, we also
obtained a space lower bound of Ω(log2 n) on a probabilistic NNJAG. No such tight
lower bound was known before, even in the more restricted JAG model.

An obvious open problem is to close the gap between the upper and lower bounds
when S /∈ n1−Ω(1). However, the major open problem is to prove similar lower bounds
on a general model of computation. To achieve that, one possible approach is to start
with a JAG/NNJAG-like model and add more and more power, pushing our way
towards the ultimate model of the branching program. A major complaint regarding
a JAG or NNJAG is its restricted access to the inputs. As pointed out in Etessami and
Immerman [17], the space lower bounds of [13, 7, 26] are proven on a tree. However,
it is easy for a RAM to solve stcon on trees in O(logn) space. All it needs to do is
to walk a “pebble” from node t backward and see if it hits node s.

In response to this, we define a model called the Stack NNJAG that can solve
stcon for trees in O(logn) space, and yet on this model we can still prove the same
time–space lower bound. In this model, there is a constant number of stack pebbles in
addition to those regular pebbles. Each stack pebble has a stack which can remember
the path that it has traversed since its last jump. More precisely, all the pebbles,
whether regular or stack pebbles, are initially on node s. The stack of each stack
pebble is empty initially. Whenever a stack pebble walks along an edge (u, v), the
node u is pushed onto the stack. Whenever a stack pebble jumps to another pebble
P ′, it empties its stack. If P ′ is also a stack pebble, then P copies the stack of P ′ to
its own stack. A stack pebble can also backtrack along the path, i.e., to move to the
node v if v is the top of the stack and then pop the stack. Note that the pebble is
not allowed to visit any arbitrary node. Any node reachable by a stack pebble must
be reachable from s by a directed path. The space for storing the stacks is given for
free.

To prove the time–space lower bound, observe that the height of the graph used in
our paper is O(

√
(n logn)/S). If

√
(n logn)/S ≤ S/ logn, each stack can store only

at most O(S/ logn) nodes. Since a stack NNJAG has a constant number of stack
pebbles, it can be simulated by a normal NNJAG with at most Θ(S/ logn) extra
pebbles. The extra pebbles simply jump to and remain on each node that a stack
pebble reaches. This increases the space used by the algorithm by at most Θ(S). If√

(n logn)/S ≥ S/ logn, then S ≤ n1/3 logn. In this case, the bound we have for a

normal NNJAG is T = 2Ω(log2 n). Now observe that the height of each stack is at most
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the height of the graph, i.e., at mostO(
√
n logn). Hence, any stack NNJAG with space

S can be simulated by a normal NNJAG with space O(S +
√
n logn) ∈ O(

√
n logn),

and the same lower bound applies.

Note that the stack NNJAG model seems to be incomparable with a branching
program because of the way we charge the space. Also, defining an intermediate
model between the NNJAG model and branching program seems hard. For example,
allowing the model to move a pebble to an arbitrary node or to the next node in some
fixed ordering would give the power of branching programs. Within a polynomial
factor of time and constant factor of space, so does allowing it to move a pebble
backward along any directed edge [6]. The idea is that one can treat the graph as
undirected and, using a universal traversal sequence [1], visit any vertex in polynomial
time. Hence, whenever the branching program queries the out-edges of a node v, the
enhanced NNJAG can place a pebble on node v (by the universal traversal sequence)
and perform the same query on v.
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