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Demand Response (DR) describes the reduction of energy consumption by end-use customers in 

response to power grid needs, economic signals or special rates. According to the Federal Energy 

Regulatory Commission, DR is defined as: “Changes in electric usage by end-use customers from their 

normal consumption patterns in response to changes in the price of electricity over time, or to incentive 

payments designed to induce lower electricity use at times of high wholesale market prices or when 

system reliability is jeopardized.” - [1]  

Developments in DR usually reflect national conditions and are triggered by different policies however 

they are all based on the same paradigms: Indirect Load Control, where the consumer reacts to external 

stimuli and adjusts his consumption (e.g. new price) or Direct Load Control, where specific devices are 

automatically adjusted according to specific agreement between the consumer and the provider. 

Although operational in theory, in practice, both approaches suffer from significant drawbacks; direct 

control disregards user behavior and habits while indirect approaches necessitate considerable 

interaction with the customer, thus creating discomfort. 

It is evident that a new approach is required that will combine the salient features of both direct and 

indirect DR paradigms so as to appropriately adjust energy consumption while in parallel minimize 

discomfort and intrusion. This last requirement implies the design and implementation of automated 

tools that exploit explicit and/or implicit information and limit direct interaction with the users. The 

latter necessitates the dynamic definition of a user profile based on the aggregation of various 

information sources (e.g. questionnaires, building sensors, and actuators), the analysis of user-driven 

events as well as the reaction of the user to external -system generated- stimuli. 

The envisaged paradigm shift calls for a personalized framework that operates in the consumer’s 

residence. The profiling engine should be deployed in a low end controller device (e.g. Raspberry Pi - [3], 

Soekris - [2] or similar embedded PC), not larger than an ADSL router and constantly monitor the 

residence of the consumer.  

Data acquisition performed by the monitoring process is an essential part of this profiling mechanism. 

The rate of sampling is a crucial factor since it is related to:  

i) the successful/unsuccessful detection of events,  

ii) the processing power needed to perform the sampling and,  

iii) the energy that the device and the sensor nodes consume during such actions.  

In order to address these issues we designed a simple and efficient mechanism that dynamically adapts 

the sampling rate of the monitoring procedure.  The algorithm attempts to kill two birds with one stone; 

on one hand, in the absence of events minimize the number of unnecessary monitoring actions, while 

on the other hand detect –ideally all– events when they appear.   



From a high level, methodological point of view, upon initiation, the algorithm searches for events 

scanning at the highest possible frequency (e.g. one scan per designated time). In the absence of events, 

its scanning rate is progressively reduced until a predefined, low threshold is reached. When an event is 

identified the algorithm is re-calibrated to the highest possible scanning frequency and keeps measuring 

at this frequency until no event is monitored. The same process is repeated until all events have been 

identified.   

The merits of the mechanism have been quantified by means of an analytical model. We model the 

procedure as a Markov chain, each state of which essentially adjusts the scanning frequency of the 

monitoring procedure. We assumed that a scanning/sensing/monitoring attempt is successful if it 

identifies an event, and unsuccessful otherwise. Each state of the Markov chain is characterized by a 

monitoring frequency. If the algorithm detects the occurrence of an event, it transitions to state Sk in 

which it operates at the highest possible monitoring frequency. If it does not detect an event, it 

transitions to a ‘lower’ state (towards state S1), in which sensing is sparser. Transition probabilities for 

any state Si are Pi and 1- Pi where the former denotes the probability of transition from Si to Sk and the 

latter from Si to Si-1.  

Further analysis indicates that the key factor that should be taken into account is the density of events 

d, i.e. the frequency of events occurrence during a day. After identifying d, then we can precisely 

calculate the length of the chain and thus calibrate the algorithm so as to detect the highest amount of 

events with the minimum possible number of loops. 

The added value of the aforedescribed algorithmic solution is twofold. First and foremost, it achieves a 

significant reduction in the CPU load of the monitoring device. CPU-load reduction is extremely 

important in our case since the embedded devices that accommodate the profiling framework are 

equipped with a single CPU (i.e. a Raspberry Pi comes with a 700MHz ARM processor) thus performance 

optimization is a strict pre-requisite. It is worth mentioning that theoretic analysis indicates that in 

eventful conditions, we can monitor more than 70% of events by performing 50% less loops than the 

always-on-case. Additionally, the generic nature of the mechanism enables its application on any case 

that can be reduced to an event-detection use case. From an end-user perspective the benefits are 

indirect and appear due to the minimization of the User-System interactions. 

Our work now focuses on developing a learning scheme so as to enable the algorithm to take into 

consideration past information and seasonality in order to autonomously calibrate its input parameters 

without requiring any human intervention. Obviously, each human is unique, thus a one-size-fit-all 

solution is not adequate. Our plan is to design an algorithm that will be adaptable to the end user, learn 

from him and eventually, after a period of time, identify and adapt to its behavioral (in terms of events 

generation) pattern. 
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