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a b s t r a c t 

Future 5G network ecosystems comprise a plethora of 3GPP and non 3GGP Radio Access Technologies 

- RATs. Deployment scenarios envision a multi-layer use of macro, micro and femto-cells where multi- 

mode end devices, supporting different applications, are served by different technologies. The association 

of end devices to the most appropriate RAT/layer will therefore become a tantalizing process necessitating 

the introduction of mechanisms that decide and execute an optimal mapping. The latter is of paramount 

importance since sub-optimal configuration of network components will affect overall network perfor- 

mance. Towards this end, we introduce the Context Extraction and Profiling Engine (CEPE), a knowledge 

discovery (KDD) framework catering for the extraction and exploitation of user behavioral patterns from 

network and service information. An eNB exploits the knowledge scheme derived by CEPE in order to 

improve the placement of end devices to RATs/layers. In the context of this paper, we provide a thorough 

analysis of existing standards, research papers and patents, discuss the main innovation of our proposal 

and highlight the differences with existing schemes. Building on use cases involving mobility manage- 

ment mechanisms that typically affect device to technology mapping (i.e. cell (re)selection, handover) we 

provide an extensive set of experiments that demonstrate the validity and viability of our idea. Over- 

all evaluation showcases that CEPE achieves high quality results thus emerging as a viable approach for 

network optimization in future 5G environments. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

o  

s  

i  

h  

t

 

p  

t  

d  

(  

a

 

c  

s  

p  

d  
1. Introduction 

Future 5G networks target to support a plethora of 3GPP (GSM,

HSPA, LTE, LTE-A) and non 3GGP Radio Access Technologies - RATs

- (e.g., WiFi). According to network traffic data analysis and projec-

tions [1] , the envisaged deployment scenarios consist of a multi-

layer use of macro, micro and femto-cells where multi-mode end

devices, supporting different applications, are served by different

technologies. Besides the tremendous growth, which is expected in

terms of number of devices, due to an increasingly diverse set of

new and yet unforeseen services, users and applications (including

machine-to-machine modules, smart cities, industrial automation,

etc.), novel and less predictable mobile traffic patterns are also ex-

pected to emerge [2] . In such context, the inherently complex task

of associating end devices to the most appropriate RAT/layer neces-

sitates special care, since in this ultra dense environment any sub-

optimal configuration of network elements will affect overall net-
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ork performance. Note that although the fundamental problem

f placing UEs to the most appropriate RAT is a well-studied is-

ue for past cellular generations, it is expected to be of paramount

mportance specifically for 5G networks where the expected much

igher densification of the network will offer multiple points of at-

achments of the UEs to the network. 

In cellular networks, three mechanisms affect the appropriate

lacement of end devices to RATs/layers, namely: cell (re) selec-

ion, call admission control and handover. Cell (re)selection is a

evice control operation while call admission control and handover

in the case of horizontal handovers) are network controlled oper-

tions assisted by end devices. 

Due to their importance, these mechanisms have drawn signifi-

ant attention from the research community. During the past years,

tandardization bodies like 3GPP have specified well established

rocedures that typically employ simple algorithms (e.g., an end

evice or an eNB evaluates the signal strength) to reach a decision.

esearchers worldwide have built on these solutions and produced

 rich set of algorithms both in scientific publications and patents.

n order to provide more sophisticated mechanisms the proposed

http://dx.doi.org/10.1016/j.comcom.2017.06.003
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pproaches take into consideration additional parameters like the

ocation and speed of a terminal, the experienced interference, the

xecuted service, the required Quality of Service (QoS), the avail-

ble bandwidth, the energy consumption, the user profile etc. All

his information is referred as “contextual information” and can be

sed to improve network performance and eventually the QoE for

he users. The main goal of all these mechanisms is to employ ap-

ropriate tools (e.g., utility functions, fuzzy logic etc) so as to eval-

ate the context information and reach a decision which optimizes

he placement of the users in RATs and layers in terms of through-

ut/latency/delay or other KPIs. 

An alternative approach is to monitor the behavior of a user

e.g., location, mobility pattern, use of specific services), analyze

t and try to create a classification of end devices based on the

espective user behavior. This classification can then be exploited

y the mechanisms that affect the placement of end devices to

ATs/layers. For example, there are users that use their smart-

hones only for placing phone calls, while others are “demanding”

ata users (e.g., web surfing, emails, games). For the first case, the

etwork could place devices on legacy systems like for example

SM while for the latter they could be placed on LTE or WiFi ac-

ess networks. 

The innovation of this idea is to build a user profile on an auto-

ated way by analyzing in offline mode a number of user-related

arameters and combine them with available contextual informa-

ion. In order to achieve this, knowledge discovery schemes (i.e.

ata mining and machine learning techniques) are suitable en-

blers to collect vast amount of information and from them au-

omatically extract the expected behavior of end users. Note that

lthough the bibliography has a plethora of solutions on placing

Es to RATs, usually the generation of a user profile in an auto-

ated way is not discussed and the alternative solutions assume

hat this information is somehow collected. The main contribution

f our paper is exactly the design and evaluation of a knowledge

iscovery framework capable of extracting such information and

sing it in network control functions to improve the overall per-

ormance of the network. 

In the context of this paper we provide a thorough analysis of

xisting mechanisms (i.e., cell (re)selection, call admission control

nd handover) as they are specified in 3GPP standards, research

apers and patents ( Section 2 ). Following the analysis, we discuss

ow these approaches differ from our proposal of building a user

rofile from contextual information and using it to improve con-

rol mechanisms in cellular networks. We also detail the procedure

f extracting knowledge from context information and present our

pproach for building a Context Extraction and Profiling Engine

CEPE) and using it ( Section 3 ). We assess the validity and viability

f the proposed mechanism by means of extensive experimenta-

ions under real world scenarios ( Section 4 ). We conclude the pa-

er and sketch future research directions in Section 5 . 

. Related work 

In the context of this paragraph we present existing mecha-

isms for cell (re)selection, call admission control and handover

s specified in 3GPP standards, research papers and patents (para-

raph A). We also provide a small overview of the various KDD

ools that we use later on in CEPE (paragraph B). We conclude the

ection and pave the way towards the definition of CEPE by pro-

iding a motivating discussion in paragraph C. 

.1. RAT/Layer mapping mechanisms 

.1.1. Cell selection/reselection 

The cell selection procedure, as specified in 3GPP [3] , is based

n the link quality level indicators, namely the Reference Signal
eceived Power (RSRP) and the Reference Signal Received Qual-

ty (RSRQ). Several approaches have been proposed in the litera-

ure, primarily targeting a) reduction of number of handovers, b)

inimization of the admission control reject probability upon a

ew session initialization as well as c) handover failures. All meth-

ds [4–19] consider signal strength-related information (RSS, RSRP,

SRQ, SINR, etc.) while in most of them, a bias in favor of the small

ells is used. Almost all approaches are decentralized, apart from

7] , which exploits the User Equipment’s (UE) RSRP measurements

nd proceeds in power control for interference management. 

A considerable number of effort s attempt s to optimize the

erived solution based on interference mitigation [8–11] or

ther power control techniques [7,8,11,12] . ABS schemes (Almost

lank Subframes- employed for reducing interference) are often

sed [13–15] , in some cases for the identification of the avail-

ble/expected throughput. The expected bit-rate is another in-

ut, which several proposals are considering so as to provide

he required user requirements [4,12–17] . In parallel to the aca-

emic research effort, several patents have been claimed in rela-

ion to cell (re)selection schemes [20–24] . Similarly to the afore-

entioned solutions proposed in literature, most patent focus in

imple RSS/RSRP-based solutions, while all propose decentralized

echanisms, i.e., mechanisms, which are deployed on the UE side,

here the primary processing and decision making takes place;

he UE selects the optimal target RAT/cell and makes the respective

equest towards the base station and/or the network core. How-

ver, the patent proposals are in general simpler and easier to im-

lement since they are mainly based on smaller number of pa-

ameters and the information exchange involves less network el-

ments. 

In general, context information related to the UE behavior (e.g.,

E mobility, accessed services, etc.) is rarely employed for cell se-

ection. The schemes that use context information focus only on

he potential target cell’s available bandwidth, or the probability of

eing served by a specific cell. To the best of our knowledge, there

s no method that exploits detailed past information of UEs for cell

re)selection. 

.1.2. Call Admission Control (CAC) 

According to 3GPP, call admission control procedure involves

he RRC connection establishment procedure, which is triggered by

ither the UE or the network. The topic of call admission control

s one of the best studied in the literature. The survey in [25] pro-

oses a classification of user-based call admission control policies,

hile it identifies some significant features towards the CAC pro-

edure optimization such as channel utilization maximization and

oS reduction minimization. In another survey [26] , the authors

ttempt to make a new categorization of the proposed solutions:

rioritized, non-prioritized and optimal policies. Different catego-

izations of proposed approaches have also been made, such as in

27] , where deterministic/stochastic guarantee aspects, distributed/

ocal control and adaptation to traffic conditions are taken into ac-

ount. Additionally, several CAC schemes are compared in terms

f performance and complexity; the common characteristic of all

hese schemes is the handover prioritization. 

Besides these surveys, several additional schemes [28–37] at-

empt to address CAC related challenges. Most of them operate

t the eNodeB/Wi-Fi Access Point level [28,30,32–35] , while the

est provide a general overview of the network. Regarding context

nformation, most mechanisms take into account available band-

idth, while fewer consider the type of the service [34,35] , and UE

obility [37] . Concerning patents [38–43] , most claimed schemes

erform CAC-based on the base stations local view (bandwidth,

ackhaul link, location, etc.). We also observed that several solu-

ions assume QoS classes [44–46] . Finally, only two mechanisms

39,47] are exploiting previous knowledge, which however is used
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only for bandwidth estimations without taking into account the

generic user behavior. 

2.1.3. Handover 

A handover is the process of transferring an ongoing call or

data session from one channel connected to the core network to

another channel. A handover can take place from an LTE eNB to

another eNB, to a femtocell (HeNB), or to a completely different

Radio Access Technology (RAT) within 3GPP standards (e.g. UTRAN

technology network), or even out of the 3GPP specified technolo-

gies (e.g., Wi-Fi). The second type of handover is characterized as

vertical handover. 

The primary handover policy within 3GPP is the “Strongest

cell handover decision policy”, based on the RSRP or RSRQ val-

ues measured by the UE. Small cells are considered as one of the

most promising solutions for macro-cellular network layouts. To-

wards this end, 3GPP’s LIPA and SIPTO standards [48] aim to im-

prove the femto-macro cells’ interworking and offloading. Numer-

ous handover mechanisms have been proposed, while much effort

has been invested into further optimizing the standardized mecha-

nisms. Xenakis et al. present [49] an overview of the main criteria

and propose a classification which shows that a significant number

of effort s emphasize on the received power (RSSI, RSRP, RSRQ, etc.),

without taking into account additional contextual information such

as the mobility of the UE, or the type of the UE’s traffic. 

On the other hand, researchers have proposed multiple solu-

tions [50–58] , some of which target the mitigation of interference,

the spectral efficiency of the user or related issues [50,51,53,54] ,

others make use of SDN-controlled access networks [52] ; other

use diverse context parameters in order to build a holistic user

profile [55–58] . In another comprehensive survey [59] , the au-

thors present a plethora of vertical handover mechanisms based

on several input parameters, such as latency, RSS, SINR, packet

loss, throughput, bandwidth, number of connected users, preferred

network, mobility, as well as battery consumption. Many of these

mechanisms attempt to create an overall context-aware mecha-

nism, by combining several of the afore-mentioned parameters for

the vertical HO decision outcome. 

In addition to the schemes proposed in literature, a significant

number of patents related to handover optimization mechanisms

have been proposed [60–66] . Some emphasize on context-related

information collection, while others focus on several other tech-

nical enhancements. An initial observation is that some proposals

attempt to enhance the handover procedure’s core procedures; ei-

ther from the algorithmic or the technical perspective, i.e., by mod-

ifying the triggering mechanisms, the RSRQ threshold schemes, the

exchanged messages’ sequence, etc., without focusing on additional

network-related information or user-related context-information.

Several claimed patents are based on network related-information

such as bandwidth, delay etc. A smaller number of these take into

account user-related information such as application information,

prediction of location, etc. None of them, however, correlates appli-

cation usage, past location, mobility patterns, device characteristics

and capabilities in order to finally build a generic user profile and

use it in order to realize resource mapping from a holistic network

point of view. 

2.2. KDD tools 

Methodologies and tools for KDD are divided into three cat-

egories: unsupervised, supervised and semi-supervised. Unsuper-

vised KDD methods assume the existence of pattern(s) in data

which they try to unveil (e.g. identify clusters of similar observa-

tions). Supervised KDD methods on the other hand focus on learn-

ing existing pattern(s) from available data (i.e. training set) and
hen use them in order to classify previously unknown observa-

ions (e.g. assign a new object to a set of predefined classes ). Fi-

ally, Semi-Supervised KDD bridges the two aforementioned genres

y attempting to identify pattern(s) in datasets (like Unsupervised

DD) using information provided by a limited training set. Before

elving into the details of our framework we present a number of

DD algorithms which we employ in our work. 

.2.1. k-Means clustering 

k-Means [67] is a partitioning clustering algorithm used for

any unsupervised learning tasks. k-means tries to separate sam-

les in k groups of equal variance by minimizing the sum of intra-

luster distances. The algorithm essentially minimizes the objective

unction: 
k ∑ 

i =1 

∑ 

x ∈ C i 
| | x − m i | | 2 where x is an object from the dataset

nd m i the centroid of cluster C i . k-Means is often referred to as

loyd’s algorithm [68] . 

.2.2. Spectral clustering 

Spectral clustering operates on the first k eigenvectors derived

rom the decomposition of the data graph Laplacian and applies k-

eans on the projected dataset in order to derive the clusters. The

lgorithm operates on a large graph defined by the data similarities

hich may be a full graph, a k-nn graph (only the k-nearest neigh-

ors of each object are retained) or an e-neighbourhood graph

only the points within range e are retained). The graph’s adja-

ency matrix W is used for the definition of D , a diagonal matrix

ith D i,i = 

n ∑ 

j=1 

W i, j . Using D and W we define the graph Laplacian

 : 

• Unnormalized Graph Laplacian: L = D - W 

• Normalized Graph Laplacian: L sym 

= I - D 

−1/2 WD 

−1/2 

• Normalized Graph Laplacian: L rw 

= I –D 

−1 W 

The first k eigenvectors of L comprise the embedding of the

riginal dataset in R k . The eigenvalues � of L are used for iden-

ifying the value of k ; the multiplicity of the zero eigenvalue pro-

ides an approximation of k since each zero eigenvalue denotes a

isconnected component of the graph (i.e. a cluster). If the graph

s connected (i.e. σ i � = 0 ∀ i ) but data enjoy a clustered struc-

ure, we expect a large gap in the eigenvalues; assuming that

i ≤ σi +1 ∀ i, then k = i when | σi +1 − σi | � | σ j+1 − σ j | ∀ i � = j. The

atter is known as the “eigengap heuristic” . k-Means is applied

n the end in order to discretize the solution and assign labels to

lusters [69,70] . 

.2.3. Naïve Bayes 

Bayesian methods are a set of supervised learning algorithms

ased on Bayes’ theorem [67] . Bayesian methods are called “Naive”

ue to the fact that they operate under the salient assumption

hat class membership depends on only one variable rather than

heir combination. From a practical perspective, calculations are

ast and simple; given a training set with C classes, we compute

(C j ), j = 1…C for all classes of the set. Then, by considering the

naïve” approach we quantify P(x i |C j ) for all instances of class C j 
nd all values of variable x j from the set of observations. 

.2.4. ID3 decision tree 

Decision Trees are powerful learning mechanisms used for clas-

ification and prediction. The ID3 algorithm [67] is the most known

nd widely used due to its simplicity and effectiveness. ID3 iter-

tes over the dataset and divides it along variables taking into ac-

ount their entropy. Specifically, on each iteration, it goes through

emaining variables, calculates their entropy and uses the variable
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Fig. 1. Methodology for knowledge extraction and RRM operation via RAT selection. 
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ith the smallest entropy in order to split the dataset. The algo-

ithm continues on the remaining attributes until either all vari-

bles are used or there are no more observations to divide (e.g.

mpty dataset or all remaining data belong to the same class) 

.3. Motivating discussion 

The comprehensive overview of the various solutions proposed

y the researcher community, leads us to the conclusion that most

pproaches are either too simple to implement but achieve sub-

ptimal solutions, or provide significant improvements but their

omplexity or the burden placed on the network components ren-

ers them unattractive for a real deployment by the operators. It

s therefore evident that existing solutions need to cover a larger

ap in order for RRM mechanisms to be able to efficiently and

ealistically support the real needs and requirements of 5G net-

orks, with one of the primary challenges being to deal with

he constantly increasing number of mobile users and bandwidth-

ntensive services [12] via effective and efficient network planning.

An important issue is related to the additional information that

eeds to be exploited by the network. A novel, overarching frame-

ork, on top of all three control schemes (i.e., cell (re)selection,

all admission control (CAC) and handover) should be able to take

dvantage of multiple sources of information (UE or network ori-

nted) and extract from it additional knowledge. The new scheme

hat we envisage collects information about users, services, termi-

als and network conditions and –based on offline processing and

nowledge extraction– categorizes the UEs according to their be-

avior. From an architectural perspective, the derived models are

assed to the HSS and to the serving MME of a terminal so as to

e exploited during the cell selection, CAC and handover processes.

. The context extraction and profiling engine 

Fig. 1 describes the methodology for the knowledge extraction

nd the subsequent enhancement of the afore-described mobility

ontrol schemes. 

The first step is to identify the data that should be monitored,

ollected and processed as well as the Key Performance Indicators
KPIs) which will be used in the end in order to assess the ef-

ectiveness and efficiency of the derived model. At least four data

ypes and associated KPIs should be selected and used, namely:

etwork operation data, user behavior information, terminal capa-

ilities and service data. Afterwards we proceed with the evalu-

tion of the contextual information which entails the extraction

f data (e.g. selection of measurement according to location, time

tc) and the derivation a model which will be used in order to

reate enhanced cell (re)selection, CAC and handover mechanisms.

he model is finally evaluated against the initially defined set of

PIs. 

It should be noted that CEPE is not an algorithmic solution but

 KDD framework focusing on the exploitation of available contex-

ual information in order to dynamically identify profiles and as-

ociate them with sets of rules which upon application can ame-

iorate the overall network operation (i.e. provide a more efficient

AT/layer mapping of UEs). 

In section III.A we provide a high level description of CEPE;

he unsupervised version of our framework appears in section III.B

hile its supervised counterpart in section III.0. The description in-

ludes algorithmic details and computational complexity consider-

tions. Model evaluation and querying is presented in sections III.0

nd III.E respectively. 

.1. High level description 

For simplicity reasons, we assume that each observation derived

rom our ecosystem resembles a row in a log file consisting of all

he monitored parameters. For example, assume that a User with

is Device starts at Time t 0 consuming a Service through a Network

echnology. User refers to the unique identifier of the specific UE,

evice to the specific type of equipment that is used along with

he device capabilities (CPU, monitor, etc.) and the Service relates

o the type of the session that is active when the particular infor-

ation is logged (i.e., VoIP call, browsing, Video streaming, etc.).

inally, the Network refers to the type of the RAT, as well as the

ell layer via which, the specific service is being consumed (e.g.,

i-Fi, LTE femto-cell, macro cell, etc.). Consider now that we take

 “snapshot” of the system every t seconds. Thus our log input will

e made up of numerous rows that look like: 

User �Device �Service �Network@Time 

Obviously, using the available information, we can derive addi-

ional parameters and augment our model. For example: 

• Uplink Peak User Throughput: find the max value within a spe-

cific time frame 

• Downlink Peak User Throughput: find the max value within a

specific time frame 

• Uplink Delay: calculate uplink delay within a specific time frame

• Downlink Delay: calculate downlink delay within a specific time

frame 

Similarly we can quantify any required indicator and augment

ur input data: 

{User �Device �Service �Network@Time, KPI 1 , …., KPI n } 

Note here that the level of granularity can change by selecting

ifferent time periods or a different entity. For example we may

gnore the User and Device axes of our data model while aggregate

ecords per Week and evaluate the effect of Service consumption

n our Network : 

{ Service �Network @ Time Week , KPI 1 , KPI 2 , …., KPI n } 

During the design of CEPE we took into consideration the huge

mount of available information as well as the need to formu-

ate and derive various groups and associations, either apparent

r latent, offline or at near real time. CEPE therefore operates on

wo levels (i) Macroscopic/ Horizontal where each observation is
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Fig. 2. Schematic depiction of the envisaged KDD. U i , S i , D i and N i depict distinct 

user, service, device and network groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Employed mathematical notation. 

Symbol Explanation 

x Row vector x 

x i The i th coordinate of x 

x Variable x 

x t The value of variable x at time t 

X Matrix X with observations as rows 

x T or X T Transpose of x, X 

X ij The value of cell i,j of X 

X :,j or X j,: The j th column/row of matrix X 

X 1:n,: or X :,1:n All rows/columns of X from index 1 to n 

|X| The number of observations (rows) in X 

U, D, S, N The matrices of user, device, service and 

network observations respectively 
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treated as a whole and (ii) Microscopic/ Vertical where all opera-

tions are applied on the elements defining each observation. 1 This

two-level approach facilitates the application of CEPE on large data

collections while in parallel –since a significant portion of the in-

formation remains static (e.g. device type) – speeds up classifica-

tion. From a high level, methodological perspective, the proposed

framework builds a is implemented in three steps (refer to Fig. 2 ):

• Data are aggregated from the identified data sources and for-

mulate the dataset to be processed (Level 0) 

• The dataset is broken down into subsets in order to derive sets

of similar observations (Level 1, e.g. similar time period, similar

geographic area etc). 

• Each subset is broken down into entity specific chunks follow-

ing a simple disaggregation approach; each observation is bro-

ken down into its constituting entities (Level 2, e.g. User, Device,

Network and Service sets). 

Similar observations per entity are grouped together (e.g.

User = { User 1 , User 2 , …, User N }). We assume that each group de-

fines a node in a graph which is connected with another entity

node via an edge with weight w i, j where i and j denote groups

of different entities (e.g. User i and Service j are connected with an

edge of weigh t w i, j ). 

The next step is to answer questions; for example, how to op-

timally assign a User to a RAT (e.g. cell id and location) taking

into account contextual information. A naïve usage of the model

for this purpose would be consider the User entity, identify the

User ’s group, traverse the graph and find the most proper User-

Service-Device-Network path (e.g. a path that maximizes the sum

of weights). As we will see in the following paragraphs, we exploit

this graph-traversal approach but apply a more elaborate scheme. 
1 Recall that an observation comprises the concatenation of instantiations of dif- 

ferent participating entities (e.g. User x Device x Service Status @ Time). 

s  

(  

v  

2

Building and updating this model takes place offline, since it is

ime consuming. The updates are based on a sliding window ap-

roach where a set of observations is replaced by a new one. This

ction is executed periodically, in the data-warehouse of the net-

ork operator, since it implies rebuilding the models. 

Searching on the other hand can take place in real-time. Net-

ork and Device nodes are few (devices can be roughly catego-

ized into maximum 10 groups; types of networks even less) while

ser nodes are also limited by the input User . The added value of

EPE is that it is generic in the sense that it can be applied to the

hole dataset, a subset of the dataset or a time-projection of it.

his means that you can obtain different models for different geo-

raphic areas, time slots etc. 

CEPE can be applied in either a supervised or an unsupervised

ontext thus leading to different results. In the unsupervised CEPE,

e assume that there are some groups in our data which we at-

empt to identify. On the contrary, in the supervised CEPE, we

now in advance the groups (i.e. classes) and attempt to define a

odel that best describes them so as to be able in the future to

ategorize previously unobserved instances. 

Evidently, everything comes at a cost; in the unsupervised case

e gain flexibility and adaptability but the approach is prone to ill-

efined and noisy data. In the supervised case we gain robustness

ut lose adaptability. For example, consider the case where a net-

ork operator identifies a new user group based on accumulated

harging data records (CDRs) and customer information (CRM). Us-

ng this information, he sets up a campaign (e.g. offers free MBs

o low spenders), which in turn results in the definition of a new

roup (e.g. low spenders who exhibit high-spender characteristics

or a certain amount of time). Supervised CEPE will successfully

ategorize users in the initial group set but will fail to identify the

ew one. The unsupervised CEPE will exhibit worse performance

n the first case –identification of profiles– but will find out that a

ew group has emerged when enough data are accumulated. 

In the rest of the paper, we assume that all entities are repre-

ented as a high dimensional vector residing in R 

n . Before delving

nto details, we provide a table ( Table 1 ) summarizing the basic

athematical notation we employ. Note that our vectorization as-

umption renders the algorithm data agnostic and capable of ac-

ommodating changes in the underlying data model. Indeed, any

hange in the raw data necessitates an update in the mapping

unction (i.e. the function which will map an entity –for example

 User – as a high dimensional point) leaving CEPE unchanged. 

.2. CEPE unsupervised version 

The unsupervised version of CEPE operates under the salient as-

umption that there is some latent structure in the data collection

i.e. groups/clusters of similar observations) which attempts to un-

eil and formalize it through rules. The algorithm appears in Table

 . 
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Table 2 

The unsupervised version of CEPE approach. 

Step function: unsupervised_CEPE 

Input parameters X: The dataset where rows are observations and columns are 

monitored variables 

u, d, s, n ← number of user/ 

device/ service/ network-related 

variables in observations 

1. U ← X :, 1: u Divide the dataset into entity specific chunks. 

D ← X : ,u +1: u + d 
S ← X : ,u + d+1: u + d+ s 
N ← X : ,u + d+ s +1: | X T | 

2. ul,Uc ← spectral_clustering( U ) 

ur ← decision_tree( U,ul ) 

Run spectral clustering and decision tree classification for all 

derived matrix chunks. 

dl,Dc ← spectral_clustering( D ) 

dr ← decision_tree( D,dl ) 

Spectral clustering facilitates the identification of clusters (i.e. 

groups of similar observations) while the decision tree 

classifier extracts a rule-set which will be used for the 

classification/mapping of new observations to the identified 

clusters. 

sl, Sc ← spectral_clustering( S ) 

sr ← decision_tree( S,sl ) 

ul denotes the label vector of user clustering (e.g. 

‘user_group_x’, ur the classification rules (e.g. age > 18 ̂  

income < 50 K → user_group_x) and Uc the corresponding 

centroids (e.g. average age 22.5, average income 35 K). 

nl,Nc ← spectral_clustering( N ) 

nr ← decision_tree( N,nl ) 

3. v ← distinct_classes( ul ∪ d l ∪ 
sl ∪ nl ) 

Merge all label vector and identify the distinct elements (i.e. 

cluster labels) that will form the nodes of the graph. Store 

them into vector v. 

4. E i, j ← P ( v i | v j ), ∀ i � = j Calculate the adjacency matrix 

5. G ← full_graph( v,E ) Generate the graph 

Output parameters G : The graph 

ur, dr, sr, nr: The set of rules 

ul, dl, sl, nl : The set of labels 

Uc, Dc, Sc , Nc : The set of centroids 
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We assume that the dataset is split into subsets in accordance

ith the variables in consideration. An intuitive selection could be

he time and location axes (e.g. weekdays, 9:0 0–12:0 0 around co-

rdinates {(x,y),(z,a)}) however this is indicative since the proce-

ure can be applied along any data dimension. This step corre-

ponds to descending from Level 0 to Level 1 as depicted in Fig.

 . 

Thereinafter, we break down every derived subset into entity

pecific data-chunks following a simple disaggregation approach;

ach observation is broken down into its constituting entities (e.g.

ser, Device, Network and Service chunks as depicted in Step 1 of

able 2 ). 

The next step entails the application of spectral clustering on

he identified chunks and the derivation of entity-specific clusters

Step 2). We assume that the derived membership is correct and

enerate a knowledge model using a decision tree classifier. The

ree model facilitates abstraction and generalization; the rules will

elp us categorize new instances faster without maintaining the

hole dataset in memory or constantly updating the spectral de-

omposition. 
Each distinct cluster label defines a node in a graph (Step 3),

hich is connected with another entity node via a weighted edge
 ij . The simplest way to weight edges is the use of conditional

robabilities; for example, when connecting a user cluster with a
ervice cluster, we can define a weight: 

 i, j = 

times that a user of this cluster consumed a serv ice of that cluster

number of serv ices 

The possible paths that traverse all entities (i.e. from a given

ser node to any Network node traversing all other entities) cor-

espond to the different profiles (i.e. the different combinations of

ser – Device – Service – Network labels that CEPE identified in

he data collection). 

The spectral clustering algorithm appears in Table 3 ; at first we

alculate the graph Laplacian L (Step 1) by taking into account the
ata pairwise similarities. Afterwards we derive its eigen decom-

osition (Step 2) and apply the eigengap heuristic on the matrix of

igenvalues � ( � is a diagonal matrix with eigenvalues in descend-

ng order along its main diagonal – i.e. σ ii � = 0 and σ ij = 0 when i � = j).

Spectral clustering is both a clustering and a dimensionality re-

uction algorithm. The new dataset is obtained by retaining the

rst k eigenvectors of E (Step 4) and embeds the original observa-

ions from R 

n to R 

k where n is the number of variables. We employ

he k-means algorithm in order to discretize the result (i.e. de-

ive the clusters from X new 

). Finally, taking into account the cluster

embership information we calculate the centroids on the original

atrix X (Step 6). 

The computational complexity of the procedure is primarily

ominated by the application of spectral clustering on matrixes

, D, S and N as well as the formation of graph G thus is

pper bounded by O(| v | 2 + | U | 3 + |S| 3 + | D | 3 + | N | 3 ). Memory require-

ents are upper bounded by O (| v | 2 + | U | 2 + |S| 2 + | D | 2 + | N | 2 ) due to

he storage of the graph G and the eigen decomposition of U, D, S

nd N . 

.3. CEPE supervised version 

The key differentiating factor of the supervised case with re-

pect to the unsupervised one is that we know in advance how

e should break the data chunks into distinct clusters. The latter

s due to the fact that we are aware of the underlying structure of

ur data collection. 

The formal description of the algorithm appears in Table 4 .

gain we assume that the dataset is split into subsets in accor-

ance with the variables in consideration and we break down ev-

ry derived subset into entity specific data-chunks as depicted in

tep 1. 

As soon as the preprocessing is performed, data is fed to a clas-

ifier (Step 2). Note that in general we can apply any type of clas-
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Table 3 

The spectral clustering algorithm. 

Step function: spectral_clustering 

Input parameters X: The dataset where rows are observations 

and columns are variables 

1. L ← D − X X T Calculate the un-normalized graph Laplacian 

L a . D is the degree matrix and XX T the 

observations’ pairwise similarities matrix 

according to their internal product (i.e. 
| x | ∑ 

i =1 

x i y i 

where x,y are observations –i.e. rows– of X ). 

2. E , � ← eig ( L ) Derive the eigen-decomposition of L 

3. k ← eigengap ( �) Use the eigengap heuristic and find the 

number of clusters k. 

4. X new ← E :, 1: k Derive the new dataset. 

5. labels ← k-Means( X new ,k) Run k-means clustering in order to discretize 

the result. 

6. C ← centroids( X,labels ) Calculate the centroids on the original matrix 

X . 

Output parameters labels : The labeling scheme as derived from 

k-means C : The centroids calculated on the 

original matrix X. 

a The normalized graph Laplacian can also be used as well as any scheme (e.g. kernel similar- 

ity, k-NN search etc) for the definition of the pairwise similarities matrix W. For simplicity rea- 

sons we present only the un-normalized graph Laplacian case together with the internal product 

similarity computation. 

Table 4 

The supervised version of CEPE approach. 

Step function: supervised_CEPE 

Input parameters X : The dataset where rows are observations 

and columns are monitored variables 

ul, sl, dl, nl : The labeling scheme 

u, d, s, n ← number of user/ 

device/ service/ network-related 

variables in observations 

1. U ← X :, 1: u Divide the dataset into entity specific chunks. 

D ← X : ,u +1: u + d 
S ← X : ,u + d+1: u + d+ s 
N ← X : ,u + d+ s +1: | X T | 

2. ur ← decision_tree( U , ul ) Run decision tree classification for all derived 

matrix chunks. ur denotes the classification 

rules (e.g. age > 18 ̂  

income < 50 K → user_group_x). 

dr ← decision_tree( D , dl ) 

sr ← decision_tree( S , sl ) 

nr ← decision_tree( N , nl ) 

3. v ← distinct_classes( ul ∪ d l ∪ sl 

∪ nl ) 

Merge all label vector and identify the distinct 

elements (i.e. cluster labels) that will form the 

nodes of the graph. Store them into vector v. 

4. E i, j ← P ( v i | v j ), ∀ i � = j Calculate the adjacency matrix 

5. G ← full_graph( v,E ) Generate the graph 

Output parameters G : The graph ur, dr, sr, nr : The sets of 

classification rules 
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a  
sification algorithm. A Tree Classifier –e.g. the ID3 we used in the

experiments & the unsupervised case– will produce a set of classi-

fication rules (i.e. X & Y → Z ). A Lazy Learner –e.g. kNN, [67] – will

construct a tree and then identify for each incoming observation

its k closest instances. A multiclass SVM classifier – [67] – will pro-

duce, for each pair of classes, a set of support vectors which will

define a linear equation that optimally separates the two classes.

Evidently, any classifier is directly applicable without affecting the

methodology. 

The rest of the procedure is identical to the unsupervised CEPE.

Conceptually, the approach is the same; the key differentiating fac-

tor, –which eventually provides better discrimination results–, is

the existence of the correct labeling scheme, which significantly

enhances and speeds up the procedure. 
a  
The computational complexity of the procedure is primarily

ominated by the application of the decision tree classifier on ma-

rixes U, D, S and N as well as the formation of graph G thus is

pper bounded by O(| v | 2 + (u| U |) 2 + (s| S |) 2 + (d| D |) 2 + (n| N |) 2 ) where

, d, s, n are the number of user/ device/ service/ network-related

ariables in observations and | U |, | S |, | D | and | N | the number of

espective observations. Memory requirements are upper bounded

y O (| v | 2 + | X |) due to the storage of the graph G and original data

atrix. 

.4. Rules extraction and feedback loop 

Until this point, CEPE description has focused solely on building

nd maintaining a knowledge base containing groups and associ-

tions between users, devices (e.g. type, capabilities, battery sta-
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us, mobility, charging etc), RATs (e.g. type, cell-id, location) and

ervices. We have stated however, that the goal is to map UEs to

ATs and proposed to do so via a set of rules. In the context of this

aragraph, we will discuss the derivation of these rules from our

nowledge model and their evaluation. 

A first straightforward approach could be the manual extrac-

ion and evaluation of rules. A human expert (e.g. network admin-

strator) identifies the various groups, studies their properties (e.g.

roup A is made up of prepaid subscribers that perform x top-ups

 month and communicate primarily with SMS) and then derives

he combinations that according to his expertise will optimize net-

ork operation. For example, consider an unsupervised case were

e have identified the following profiles: 

• User Group X: User Group 19–29, Prepaid subscription, 2GB

available for data, when at 20% of credit, service consumption

and calls drop sharply by 50%, moving at high velocity 

• Service Group Y: Video Streaming (i.e. YouTube), VoIP Services

(i.e. Skype) take up more than 80% of his time 

• Device Group Z: Samsung Galaxy S4 

A human administrator would probably come up with a rule

hat optimizes the QoE of the user class and avoids excessive net-

ork signaling, e.g., reduce the large number of HOs occurring due

o high user velocity. A probable rule could be the following: 

• User Group X ^ Service Group Y ^ Device Group Z → Macro Cell

This approach is plausible for an average number of

roups/classes per entity (e.g. less than 10 per entity) consid-

ring that numerous cases can be grouped together. But obviously,

f we need finer granularity (i.e. higher level of detail per class) we

eed to come up with a semi-supervised or a totally unsupervised

pproach for rules derivation. 

Assuming that the network is configured to take optimal de-

isions most of the time, we can autonomously generate a set

f rules, which upon application can ameliorate network condi-

ions. The derivation is based on the graph constructed in the fi-

al step of CEPE. Recall that every node of the graph represents

 distinct class of a particular entity (i.e. U 1 in Fig. 2 corresponds

o a class label of entity User ) and is connected with other nodes

ia weighted edges with edge weights depicting the probability of

aving instances of both classes on the same path. 

We can employ two distinct strategies in order to derive the

ule-set; directly apply Bayesian logic (i.e. Naïve Bayes classifica-

ion), find all possible rules and rank them according to their score

r alternatively identify the paths that traverse all class types (i.e.

ser, Device, Service and Network ) and rank them according to the

um of weights. 

This way, the case with the highest probability (i.e. appears

ost of time) is the one applied as a rule in similar situations.

owever, such an approach is prone to mis-configurations; a cor-

ect but rare decision will be ignored and never be applied even

hen it should be. Evidently, in order to employ this procedure,

e need a kind of feedback loop that will promote correct rules

nd degrade those invalid. 

Recall that in the beginning we proposed the extraction of

 set of KPIs against which CEPE performance will be evalu-

ted; depending on the induced amelioration or deterioration on

hese KPIs we can create a score for each rule in the form
1 
n 

∑ n 
i =1 w i p i where w i is an optional weight – importance – for the

 th KPI defined by an administrator, p i the percentage change of

he i th KPI due to the application of the rule in question and n the

umber of evaluated KPIs. 

The approach is depicted in Tables 5 and 6 . We assume that

he network initiates with the rules derived according to the graph

raversal plan and operates with these rules for a given time pe-
iod t ; afterwards, a set of predefined KPIs x is evaluated per user

gainst their counterparts during operation period t-1 . 

For each set of n KPIs we calculate 1 
n 

∑ n 
i =1 

( x t−1 
i 

−x t 
i 
) 

x t−1 
i 

, where p i =
( x t−1 

i 
−x t 

i 
) 

x t−1 
i 

, x t 
i 

the value of the i-th KPI obtained during trial period

 and x t−1 
i 

the same value during the trial period t-1 (or in the

ase that t = 1 when the system run without CEPE). Depending on

he importance of each KPI we can adjust the sum by including

eights from a set w thus obtaining the final score for a given

ule. Finally we sum up the individual scores per user and obtain

 holistic value for each rule or set of rules. 

.5. Querying a CEPE defined model 

The algorithmic solutions presented in the previous sections

reate the knowledge base and associate rules set, upon which de-

isions will take place. In the context of this paragraph we will fo-

us on the decision step; given a CEPE model and an observation,

ow to best assign it to a specific class and which rule should CEPE

dvice for invocation? 

Recall that we have essentially structured a set of profiles and

 set of rules so given an observation we want to identify the opti-

al set of classes (i.e. profile), on which it should be mapped and

he proper rule to invoke. 

Querying can take place either real-time or offline. Real-time

earch means that the required parameters will be periodically

ransmitted from the UE to the network, which in turn will feed

hem to the model and derive the classification of the observation.

It now becomes apparent that the vertical division step is ex-

remely helpful since static information (e.g. device capabilities,

ser preferences etc.) will not change thus classification will take

lace only once for the updated entities. As soon as the observa-

ion has been properly classified, we match it with the rules and

pply the one with the highest rank. In case of multiple matching

ules we can randomly select and apply one since the subsequent

valuation step will assess its correctness. 

Offline querying on the other hand assumes that user behavior

xhibits strong periodicity in terms of time and location. Therefore

he user profile and service profiles will not change over time en-

bling the exploitation of previous decisions. The approach appears

n Table 7 . 

.6. Experimental evaluation 

In order to assess the validity and viability of our approach, we

erformed extensive experiments using the NS3 network simulator

73] and custom Python modules. We considered a usage scenario

rom the METIS project [71,72] which we implemented in NS3 and

valuated the application of CEPE (implemented in Python) on the

ase of handovers. 

Through the experiments we attempted to replicate –to the best

ossible extent– a real life situation. Towards this end we con-

ucted an extensive literature review that covered a large number

f aspects like mobility speed, energy consumption patterns, ser-

ice usage patterns, etc. We present our findings and configuration

n the following. 

.6.1. Experimentation scenario and setup 

The scenario considers a large shopping mall with high density

f customers and service staff (essentially, an established 5G sce-

ario, i.e., Ultra Dense Environment). A typical setting for a future

xtended rich communication environment, involves “traditional”

adio networks and wireless sensor networks, where customers

ccess mobile broadband communication services while they are

irectly addressed by personalized location-based services of the
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Table 5 

Evaluate a rule-set using feedback from all subscribers. 

Step function: evaluate_rule_set 

Input parameters r t : A vector of matrixes containing as elements one matrix per 

KPI for evaluation time t . 

r t-1 : A vector of matrixes containing as elements one matrix 

per KPI for evaluation time t-1 . 

w : A vector containing the weights for each KPI. 

1. r ← number of elements in r t Find the number of rules included for evaluation 

2. score ← 0, s ← Ø

3. for i = 1:1:r s i = 

e v al uate _ rul e ( r t 
i 
, r t−1 

i 
, w ) score 

+= s i 

For all rules in this evaluation run, calculate the induced 

amelioration/ degradation percentage and add it to the overall 

score. 

4. score = 

1 
r 

score Normalize the score taking into account the number of rules 

Output parameters score : The score obtained for the particular rule set s : A vector 

containing the scores for all rules. The i-th element of s 

contains the score of the i-th rule. 

Table 6 

Evaluating a single rule using feedback from all subscribers. 

Step function: evaluate_rule 

Input parameters X t : A matrix containing as columns the values 

of the KPIs at time t for all users. 

X t-1 : A vector containing as columns the values 

of the KPIs at time t-1 for all users. 

w: A vector containing the weights for each 

KPI. 

1. u ← number of rows of X t Find the number of users and KPIs included in 

this evaluation 

n ← number of columns of X t 

2. score ← 0 

3. for i = 1:1:u 

score + = 

1 
n 

n ∑ 

j=1 

w j 

( X t−1 
i, j 

−X t 
i, j 

) 

X t−1 
i, j 

For all users in this evaluation run, calculate 

the induced amelioration/ degradation 

percentage and add it to the overall score. 

4. score = 

1 
u 

score Normalize the score taking into account the 

number of users 

Output parameters score : The score obtained for the particular rule 

Table 7 

Querying a CEPE model. 

Step function: query_CEPE 

Input parameters o : An observation 

ur, dr, sr: The sets of classification rules as derived from the 

decision tree classifiers of either supervised of unsupervised 

CEPE. 

online/offline : A flag signifying whether the procedure will run 

real-time of offline 

N : The set of network mapping rules as derived from the 

graph traversal process 

u, d, s ← number of user/ 

device/ service variables in the 

given observation 

1. u ← o 1: u 

d ← o u +1: u + d Divide the observation into entities 

s ← o u + d+1: | o T | 
if online: 

2. ul ← classify( u , ur ) Run the classifier for all derived observation chunks and 

attribute them the most fitting label (ul, dl, sl). 

dl ← classify( d , dr ) 

sl ← classify ( s,sr ) 

else: 

3. ul, dl, sl ← get_historic( u, d, s ) Search past observations 

4. R ← get_rules(ul, dl, sl, N ) The set of rules accompanied by their score as derived by the 

graph traversal process. 

Output R 1 : The rule with the highest score 

parameters 
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Fig. 3. Simulation topology. 

Table 8 

NS-3 configuration. 

NS3 network node Tx power (dBm) [74] Downlink (DL) Earfcn (MHz) [74] Bandwidth (RBs) [74,75] Antenna type [74] 

Macro cell 35 2120 50 (10 MHz) Parabolic, 15 dBi 

Femto cell 20 2120 15 (3 MHz) Isotropic 

GSM 35 2120 15 (3 MHz) Parabolic, 15 dBi 

UE 20 – – Isotropic 

Macro cell 35 2120 50 (10 MHz) Parabolic, 15 dBi 
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hopping environment. Overall, the network deployment allows

eamless handling of services across different domains, e.g. mo-

ile/fixed network operators, real estate/shop owners, application

roviders. Based on this description, we use the NS3 and model

 single floor, 200 × 100 m building, containing 10 rooms, with an

TE Femto cell placed in each of them. Outside, two LTE eNBs are

laced, 150 m north of the mall with Inter-Site Distance (ISD) equal

o 200 m, and a GSM cell between them (at equal distance from

he eNBs). Fig. 3 depicts the considered simulation topology. 

Our simulation scenario is based on 3GPP Specifications

74] and [75] . In details, the transmission mode is SISO (Single

nput Single Output); the handover algorithm is the A2A4 RSRQ-

ased 

2 and the scheduler is the NS-3 implementation of the Pro-

ortional Fair MAC scheduler [75] . We use the Hybrid Buildings

ropagation Loss Model for path loss implemented in NS3 with In-

ernal Wall Loss at 10.0 dB Shadow, Sigma Indoor at 10.0 dB [74] .

he network node configuration appears in Table 8 . Services are

mplemented using NS3 ′ s UDP client-server application model and

he desired data rates are achieved through configuration of the

acket size and the inter-packet interval parameters. The service
2 https://www.nsnam.org/docs/models/html/lte-design. 

tml#fig- lte- legacy- handover- algorithm . 

e  

a  

i  
chedule for every user is pseudo-randomly generated at the be-

inning; as the simulation progresses they affect and are affected

y the battery state and the charging status. Service parameters

ppear in Table 9 Each time one of the services is triggered ac-

ording to the service schedule mentioned above, a constant bit

ate traffic model is generated with the respective duration; the

raffic is between the clients (UEs) and a remote host, while our

easurements concern only the part of the access network. 

Every user follows a mobility model comprising a) the velocity

nd b) the path pattern (linear, random, etc.). The mobility model

ay change during simulation. Every 4 min, each user randomly

elects a model; additionally, when a UE has moved 30 m towards

ny direction, it randomly selects another direction to move next.

he considered mobility models are: Stationary Mobility (0 m/s –

.8 m/s) where customers move very slow or remain at their po-

ition; Low Mobility (0.8 m/s – 1.4 m/s) where customers move

ith a slow or average pace inside the mall; and Medium Mo-

ility (2 m/s + / −0.6) where customers walk fast inside the mall.

oreover, every user has a charging level denoted as Bronze, Sil-

er or Gold (randomly assigned based on a uniform distribution),

mulating the data capacity of his subscription. Bronze users have

 maximum of 500 MB to spend on data services (the initial value

s randomly generated between 40–500 MB), Silver users a max-

https://www.nsnam.org/docs/models/html/lte-design.html#fig-lte-legacy-handover-algorithm
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Table 9 

Service parameters used in simulation. 

Service Value Comments 

Type characteristic 

Short duration voice Duration 100 s ( + / −10) Average call duration is 1.8 ′ [76] 

Rate 13 kbps UL & DL Average rate is 12.65 kbps [77,78] 

Long duration voice Duration 240 s ( + / −20) 

Rate 13 kbps UL & DL 

Web data Duration 4 s ( + / −2) Average web page access session duration is 4.2 seconds [79] 

Rate 1.6 MB DL ( + / −500 KB) Average web page size is 1.6MBs [80] 

FTP data Duration 9 s ( + / −2) Average session for file download is 9.8 seconds for 3MBs file [79] 

Rate 3 MB DL ( + / −60 KB) 

Video stream data Duration 240 s ( + / −30) Average YouTube video duration is 4.12 ′ [84] Average DL speed 443 kbps [82] 

Rate 13.5 MB DL ( + / −1.5) Average size for 480p video is 250 MB per hour in YouTube [85] 

VoIP data (G726 codec [81] ) Duration 90 0 s ( + / −30 0) Skype audio only UL 42–47 kbps, DL 42–47 kbps [82] 

Rate 45 kbps UL & DL Average Skype call duration is ∼20 minutes [83] 

Table 10 

Types of devices and associated battery consumption. 

Device type Screen type Battery capacity (mAh) Macro cell battery consumption Femto cell battery consumption 

High capabilities device (Based 

on Nexus 5) 

LCD 1080 ∗1920, 4.95inch 2300 145,27 ∗t(talk) + 483,19 ∗t(web) 

+ 377,04 ∗t(video) + 7,66 ∗t(idle) 

0.714 ∗ Macro cell consumption 

Medium capabilities device 

(Based on Samsung S3) 

Super AMOLED 720 ∗1980, 4.8inch 2100 215,38 ∗t(talk) + 325,58 ∗t(web) 

+ 222,22 ∗t(video) + 2,65 ∗t(idle) 

Low capabilities device (Based 

on Nokia E66) 

TFT 240 ∗320, 2.4inch 10 0 0 133,33 ∗t(talk) + 230,77 ∗t(web) 

+ 312,5 ∗t(video) + 2,97 ∗t(idle) 
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c  
imum of 2 GB (the initial value is randomly generated between

10 0–20 0 0 MB), and Gold users have no threshold. 

When data services are used, the available data that a user has

according to his subscription are reduced. Recall that in real life,

users tend to reduce their activities (i.e. data usage and session du-

ration) when their data availability becomes low. In order to repli-

cate this behavior, we assume that when bronze users consume

80% of available data they reduce their activities to 10% of their

normal habits and corresponding session duration to 70%. Simi-

larly, silver users reduce their data intensive activities to 50% when

they consume 80% of their available data and cut their duration by

50%. 

We consider 3 different device classes, namely high, medium

and low capabilities terminals, which affect the total battery capac-

ity and batter reduction of a UE. The battery consumption formula

is based on the battery’s maximum capacity and the battery’s con-

sumption of each service on every device. In the case of smaller

(Femto) cells, we consider that the consumption is proportional

to the Macro cell’s consumption [86–88] due to the fact that less

transmission power is needed on the UE side. Throughout the sim-

ulation we consider that users do not change devices. 

Battery status is initialized similarly to charging status (i.e. uni-

form distribution, but taking into account maximum capacity due

to different devices). Furthermore, we consider 3 distinct battery

levels, namely High, Medium and Low , each having an impact on

the user behavior. Initial battery state is randomly distributed be-

tween 20% and 80% of maximum capacity. A device has High bat-

tery status when more than 35% of the total battery capacity is

available. A high battery status has no effect in the rate or dura-

tion of the services used throughout the scenario. A Medium bat-

tery status is assigned to devices operating between 10% and 35%

of total battery capacity. When a device’s battery status drops to

Medium, the user consumes 50% of the calls/services he would

normally consume (i.e. in High battery status) and their duration

is cut by 50%. Finally, a low battery status is assigned to devices

operating below 10% of total battery capacity. When a device’s bat-

tery status drops to Low, the user only uses 10% of calls/services

he would normally consume (i.e. in High battery status) and their

duration is reduced by 70% (duration reduction does not apply for
 o  

v  
eb pages). Table 10 below describes in detail the characteristics

f the three device classes and the battery models. 

.6.2. Experimentation methodology 

Using this scenario and assumptions we generate a number of

atasets upon which CEPE was evaluated. During simulation time

e monitor the status of the user, device, network and service and

tore it into a log file. Each record of the dataset contains the time

f the observation, the UE’s International Mobile Subscriber Iden-

ity (IMSI) and all of the information we can collect related to UE’s,

ervices’ and network’s state at the specific time of the observa-

ion. An excerpt of this information is depicted in the following

gures ( Figs. 4–6 ). Note that in the device dynamic measurements

 Fig. 5 ) we have also considered user mobility as collected in the

imulation environment in a simplified way. In a real implemen-

ation of CEPE this information can be collected by reported in-

ormation from the UE based on GPS data, or network collected

nformation like the recorded positions of network attachment or

he handover rate. 

Data are post-processed in order to add labeling information;

very instance is attributed a label based on the scenario assump-

ions of the previous paragraph. We consider this labeling infor-

ation as the ground truth, i.e. the correct labels that our model

hould identify. Moreover, we map continuous variables like in-

ome and age to nominal values and string data to integer val-

es (e.g. an education level ‘College’ is mapped to 2). This way we

anage to map all variable values to real numbers and thus map

ny instance as a high dimensional point residing in R 

n , where n

s the number of variables describing each observation. 

The final dataset is provided to CEPE for training. As soon as

he knowledge base is built we rerun the same experiment using

he derived rule-set and the learnt model. The second time, NS-3

ses the CEPE model in order to i. classify a user according to his

ehavior and ii. identify the best set of actions to apply given the

esults of i. 

Evaluation is performed along two axes; at first we assess the

lassification capability of CEPE itself and then we assess its effect

n network conditions. Both supervised and unsupervised CEPE

ersions are evaluated with respect to their ability to build a model
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Fig. 4. Sample of the user and device static characteristics. 

Fig. 5. Sample of user and device dynamic measurements. 

Fig. 6. Sample of the network related measurements for the same time period. 
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hat identifies new observations. In the unsupervised CEPE case we

ssess 

i. the ability of Spectral Clustering to build a model that is close

to the original labeling scheme 

ii. and the ability of ID3 to properly model it and classify new in-

stances with it. 

The evaluation of the supervised case is simpler since we only

ssess the ability of CEPE to build a model which is close to real

ata. 

In order to assess the quality of the clustering and

lassification algorithms we employ the F − measure =
 ∗ Precision ∗Recall 
Precision + Recall 

, where P recision = 

T rue Positi v es 
T rue Positi v es + F alse Positi v es 

and

all = 

T rue Positi v es 
T rue Positi v es + F alse Negati v es 

. F-measure is a binary classification

etric (i.e. 1–0 classification) however it can be extended for

he multiclass case. In extending a binary metric to multiclass or

ultilabel problems, the data is treated as a collection of binary

roblems, one for each class. So, we calculate the F-measure per

lass and then average obtained values across the set of classes. 

Due to the inherent randomness of k-Means we validate our re-

ults by applying a 10-fold cross validation procedure. During this

rocess we break the dataset into 10 equisized bins; we use 9 bins

or training the model and 1 for testing it. We repeat the process

0 times each time using a different testing bin, so as to make sure
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Fig. 7. Experimentation methodology. 
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nology. 

3 The derived affinity matrix offered the best discriminative depiction of the un- 

derlying data clusters (i.e. clusters were better separated and clearer compared to 

other configurations). 
4 Note the 5%-10% difference in the exhibited F-measure between Device and Mo- 

bility; combining these together would indirectly conceal this. 
5 Note here that short-range wireless technology does not always imply lower 

power consumption, since this also involves numerous other parameters related to 
that all bins have been used for both training and testing. In every

iteration we compute the F-measure as describe in the previous

paragraph and report the average value obtained throughout the

10 iterations. 

We retain the best performing model and proceed along the

second evaluation axis that focuses on the effect of CEPE rules

and profiles on network conditions. We quantify mainly two

KPIs, namely: Uplink (UL)/Downlink (DL) Throughput (i.e. the total

throughput for the uplink and downlink respectively, for the en-

tire simulation) and Number of Handovers (i.e. the total handovers

performed during the entire simulation). The latter, i.e. Number of

Handovers , is directly linked to QoS: the more handovers are re-

alized, the higher the degradation of the respective on-going ser-

vice performance, due to the handover signaling overhead increase,

data lost during the handover duration, re-transmission timeouts,

etc. The overall experimentation methodology is depicted in Fig. 7 .

Although there are numerous schemes for RAT selection that

-in their majority- improve the network-related KPIs, when com-

paring to the baseline LTE systems it was not straightforward to

select the most representative ones so as to perform a comparative

assessment of the CEPE-induced added value, since different pro-

posed mechanisms focus on different KPIs. In addition, diverse ap-

proaches are followed (utility functions, neural networks, MADM,

etc.); last but not least different simulation set-ups and tools are

being chosen by each researcher thus making a direct comparison

even less straightforward. So we compare the aforementioned KPIs

before and after the application of CEPE. 

We employed two simulation models: Low Background Traffic,

where during experiments current traffic was augmented by a + 5%

UL and DL and Medium Background Traffic, where current traffic

was augmented by + 20% UL and DL. The duration of each sim-

ulation equals 20 real-life minutes and we logged measurements

every second. We considered 40 users, using the discussed ser-

vice types (5 types), mobility patterns (3 patterns), device types (3

types) and charging categories (3 categories). Every scenario was

executed 5 times thus all reported values in the rest of the section

comprise the mean results of these executions. 
. Results 

The application of the supervised CEPE resulted in a model,

hich attains an F-measure of 0.984 (e.g. the derived rules from

D3 can correctly classify 98.4% of observations). The background

raffic did not affect the classification ability of the models. The

nsupervised CEPE was more laborious since it entailed the ini-

ial application of Spectral Clustering. Specifically, we used a fully

onnected graph and the Gaussian kernel with σ= 3. 3 Spectral

lustering managed to attain an F-measure of 0.90 (e.g. identified

he correct number of clusters and correctly classified 90% of the

nstances). The application of the decision trees on the labeling

cheme of the spectral clustering produced an F-measure of 0.95.

able 11 provides the aforementioned results both holistically but

lso per entity (e.g. device entities only). Since it is easier to build

 good model for Devices but it gets more difficult when the device

lasses are combined with the various mobility types and services

e decided to present the dynamic information (i.e. mobility data)

eparately. 4 

The experiments showcase a clear superiority of the supervised

ase, constantly exhibiting a better F-measure. In fact, when the

nsupervised CEPE was evaluated against the ground truth label-

ng scheme, the F-measure was marginally equal to 0.90 giving the

upervised case a clear precedence of almost 10%. 

It is also worth noting that in the supervised case, classification

esults and associated rules are derived faster. The latter is due to

he complexity of the employed approach; spectral clustering ne-

essitates O(| X | 2 ) memory and O(| X | 3 ) processing time contrary to

(| X |) memory and O((n| X |) 2 ) time required by decision trees -n is

he number of features. 

This evaluation also indirectly assesses the capability of CEPE

o identify behavioral changes and adapt (i.e. identify that a sub-

criber suddenly changes mobility pattern); this is captured in the

verall results. Finally, the lower quality was anticipated due to the

nsupervised nature of the algorithm. Thus, in the remainder of

he section we focus on supervised CEPE. 

Using the methodology of Section 3 and exploiting the derived

lasses-graph we extracted a number of rules. We used the semi

upervised approach where we extracted the full rule-set from the

raph, ranked it according to the sum of weights and selected the

ules which we deemed more suitable for ameliorating the KPIs.

he selection we performed was based on the following assump-

ions / considerations: 

• Gold users should have the highest possible quality of experi-

ence. 

• High mobility users shall be served by macro-cells to minimize

the number of handovers. 

• Calls of higher duration by moving users shall be served by

macro-cells since the probability of a handover during the life-

time of the call is higher than for short calls. 

• Voice Services shall be served by a second/third generation

technology so that resources in 4G systems are allocated to

high data users. 

• Low-end devices that cannot support advanced services should

be served by a Second or Third Generation technology (e.g.,

GSM). 

• Low Battery level devices shall use short-range wireless tech-
5 
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Table 11 

Unsupervised and supervised CEPE results -knowledge discovery capability assessment w.r.t F- 

measure. 

CEPE KDD evaluation Unsupervised Supervised 

Spectral clustering Decision trees Decision trees 

Low background traffic Device 0.97 1 1 

Mobility 0.89 0.951 0.981 

User 0.95 1 1 

Service 0.91 0.934 0.973 

All 0.90 0.95 0.984 

Medium background traffic Device 0.97 1 1 

Mobility 0.89 0.951 0.981 

User 0.95 1 1 

Service 0.91 0.934 0.973 

All 0.90 0.95 0.984 

Fig. 8. Number of handovers per RAT type - low background traffic experiments. 

 

a  

t  

w

4

 

t  

i  

a  

b

 

d  

R  

t  

d  

b  

d  

f  

u  

M

w

e

c

t

i

m

c

Fig. 9. Number of handovers per RAT type - medium background traffic experi- 

ments. 

Fig. 10. Experienced throughput per RAT - low background traffic experiments. 

r  
These rules are used in conjunction with the A2A4 handover

lgorithm. Each rule selects the most appropriate RAT (e.g., Fem-

oCell), and A2A4 undertakes the selection of the best FemtoCell

here a UE should be handed over, based on RSRQ. 

.1. Performance evaluation per RAT 

Our first evaluation depicts the results in relation to the RAT of

he UE. Essentially, for every employed KPI we attempt to quantify

t on a holistic level (e.g. how the packet loss was affected by CEPE)

s well as on RAT level (how the packet loss in GSM was affected

y CEPE). Towards this end we provide Figs. 8 –11 . 

The four initial figures illustrate the overall number of han-

overs per RAT type, as well as the experienced throughput per

AT, both for medium and low background traffic. The graphs show

hat the application of CEPE reduces the overall number of han-

overs in both cases; in fact, the realized handovers are minimized

y 15 – 20%. Looking closer, we observe that the femto-femto han-

over type dominates the overall picture. The reasoning for this

act is primarily related to the Ultra Dense Environment of the sim-

lation topology that has been selected, and not the specific policy
AC protocol specification, Rx and Tx radio frequency components (RF), cell band- 

idth, discontinuous reception (DRX), etc. In our experimental configuration how- 

ver and due to several NS3 simulator’s limitations, we decided to apply some spe- 

ific battery consumption models (e.g. Table 9 , [86–88] ) which primarily assume 

hat the UE needs to boost its transmission power towards interference mitigation 

n cases of wide-range access points. According to our assumptions, such require- 

ent becomes even more impelling in an ultra dense environment with multiple 

o-existing femto cells in a limited geographical area. 

t  

m  

t

 

r  

v  

o  

p  

F  
ules that were applied. There is a big number of femto cells inside

he interior of the shopping mall, very close to which the UEs are

oving. This results to high RSRP/RSRQ values, boosting as a result

he femtos’ selection. 

Despite this fact, however, CEPE seems to considerably amelio-

ate the ping-pong effects and the often handovers – even in the

ery frequent event of femto to femto handover-; this is on the

ne hand due to the policy rule that high mobility users are never

laced in femto cells (thus these users never participate in FEMTO-

EMTO handovers); on the other hand, the rule, which places the
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Fig. 11. Experienced throughput per RAT - medium background traffic experiments. 

Fig. 12. Number of handovers per mobility type- low background traffic experi- 

ments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Number of handovers per mobility type - medium background traffic ex- 

periments. 

Fig. 14. Experienced throughput per mobility type- low background traffic experi- 

ments. 

Fig. 15. Experienced throughput per mobility type - medium background traffic ex- 

periments. 
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Voice Service UEs in the macro cells also decreases the possibil-

ity for UEs to need to realize a handover between adjacent FEMTO

cells. 

It is worth mentioning the fact that we observed additional ad-

vantages in the ul/dl packet loss and delay (although we are not

employing them as assessment KPIs). In the CEPE-enabled case the

packet loss for the downlink, which accounts for ∼90% of the traf-

fic, was decreased by more than 4%. Moreover in the CEPE-enabled

handover scheme the delay for the downlink was also decreased

by almost 10%. Similarly to the throughput results’ analysis, down-

link delay was decreased for the LTE macro cells and femto cells

since CEPE allocated each Service to the appropriate RAT consider-

ing QoS requirements and mobility type. The downlink delay was

increased for the GSM BS (i.e. Voice calls) due to the increased dis-

tance and the different configuration of GSM comparing to other

LTE technologies; still however, it is in the acceptable limits (i.e.,

below 200 ms). 

4.2. Performance evaluation per mobility type 

The second evaluation perspective illustrates the simulation

outcomes in relation to the type of UEs mobility. Similarly to the

previous paragraph, we provide all the results in Figs. 12 –15 , pre-

senting the overall number of realized handovers and experienced

throughput, both for low, as well as for medium traffic experi-

ments. 

The CEPE-enabled network manages to decrease the overall

number of handovers in both scenarios and for all mobility type
ases. Only the stationary users in the medium traffic scenario

xperience the same number of handovers. The minimization of

he overall handovers is achieved by the rules tendency to place

ach user to the optimal RAT according to the profile, which has

een extracted and avoid consecutive handovers, based only on the

SRQ metric. 
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Fig. 16. Number of handovers per service type- low background traffic experiments. 

Fig. 17. Number of handovers per service type - medium background traffic exper- 

iments. 
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Fig. 18. Experienced throughput per service type- low background traffic experi- 

ments. 

Fig. 19. Experienced throughput per service type - medium background traffic ex- 

periments. 
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The experienced throughput in the CEPE-enabled handover

cheme case is also improved in both traffic scenarios. The most

ignificant gain is observed in the case of stationary users; in the

ow background traffic scenario the average gain for CEPE is equal

o 33%, while in the medium background traffic it is slightly over

9%. Note that the CEPE-enabled scheme shows similar perfor-

ance to the standard scheme in almost all other cases. In addi-

ion, we observe that the mobility is inversely correlated with the

hroughput gain; the lower the mobility the higher the through-

ut gains. This is mainly associated with the rule that switches all

tationary users with high throughput Services (e.g., Web or FTP)

o femto cells. In the case of uplink, a slight decrease (i.e., 2–6%,

epending on the case) is observed in all mobility types, mainly

ue to the interference. The latter is the result of the fact that the

umber of users that are associated to a macro cell in the CEPE

xperiment is four times higher when comparing to the standard. 

.3. Performance evaluation per service type 

During the simulations, diverse types of services were deployed

n the UEs. The possible service types were discussed in Table 9 .

imilarly to the previous paragraphs, we provide all the results in

igs. 16 –19 . 

By studying the graphs one will notice that voice traffic is on

EMTO while it could have been served by GSM. The latter is due

o the fact that our rules operate in conjunction with the A2A4

SRQ handover algorithm. This means that the first prerequisite for
ealizing a handover is that the candidate target cell satisfies the

2A4 algorithm requirements and thresholds; the described rules

pply at the second step. During our simulations, when the A2A4

SRQ requirements were met, several voice traffic handovers took

lace towards a GSM. In all the other cases (i.e., when only FEMTO

ells are satisfying the RSRQ thresholds), a voice traffic handover

o an optimal FEMTO cell is realized as well. 

The first KPI, which is illustrated in the figures, is the overall

umber of handovers that took place per Service type. The lat-

er is decreased for all service types when deploying the CEPE-

nabled handover scheme, apart from the Web type of service

ase, in which the CEPE scheme realizes equal number of han-

overs with the standard scheme. The CEPE-enabled handover

echanism shows an overall enhancement in both traffic scenarios

n the downlink case, while regarding the uplink one, the perfor-

ance of the two schemes is almost identical with a minor de-

rease in the low and medium traffic cases. It should be noted

hat the higher gain for the CEPE-enabled scheme is observed in

he Web and the Video service types. The observed amelioration in

he throughput KPI per Service is due to the enhanced allocation

f the users to the respective RATs based on the Services proper-

ies and requirements. Note that the Voice/VoIP are practically the

ame whereas for the more demanding ones we have more bene-

ts. 
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5. Conclusion 

In the context of this paper we proposed the derivation and

dynamic update of a knowledge base and a rule-set catering for

the optimization of network operation by means of an overarch-

ing knowledge discovery framework, namely CEPE. CEPE collects

and subsequently processes the information monitored through

the lifetime of a network and opens new horizons on how to create

automatically the profile of users and use it to enhance the perfor-

mance of network control functions and subsequently the overall

performance of the network. Through a comprehensive literature

review we demonstrated the need for such a framework. There-

inafter we provided an instantiation of CEPE using well known

data mining and machine learning solutions. By means of an ex-

tensive experimentation effort, we assessed the validity and viabil-

ity of our proposal in a close-to-real-world environment. 

Our future research efforts will focus on advancing CEPE; we

intend to perform further experiments in order to assess the appli-

cability of the unsupervised CEPE flavor, the automatic rule extrac-

tion mechanism and the associated network requirements. In par-

allel, we will also extend the scenarios to accommodate CAC and

cell-(re)selection aspects. In the same context, we will investigate

the necessary implementation technologies (e.g. real-time process-

ing software, big data solutions etc), architectures and their map-

ping on network elements so as to render CEPE as a possible real-

life solution. Lastly, we will study the theoretic properties of the

framework, including a proof of convergence for the rules evalua-

tion approach and assess its application on related network prob-

lems like traffic engineering. 
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