
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

A cloud-based Farm Management System: Architecture
and implementation

Alexandros Kaloxylos a,⇑, Aggelos Groumas b, Vassilis Sarris b, Lampros Katsikas b, Panagis Magdalinos b,
Eleni Antoniou c, Zoi Politopoulou c, Sjaak Wolfert d, Christopher Brewster e, Robert Eigenmann f,
Carlos Maestre Terol g

a Department of Informatics and Telecommunications, University of Peloponnese, Tripolis, Greece
b Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
c OPEKEPE, Domokou 5, Athens, Greece
d LEI and Information Technology Group, Part of Wageningen UR, Wageningen, The Netherlands
e Aston Business School, Aston University, Birmingham, UK
f Huawei Technologies Duesseldorf GmbH, Germany
g Sector of Manufacturing and Retail, ATOS Research & Innovation, Spain

a r t i c l e i n f o

Article history:
Received 26 May 2013
Received in revised form 16 November 2013
Accepted 27 November 2013

Keywords:
Farm Management System
Future Internet
Generic enablers
Services’ marketplace

a b s t r a c t

Recent technological advances have paved the way for developing and offering advanced services for the
stakeholders in the agricultural sector. A paradigm shift is underway from proprietary and monolithic
tools to Internet-based, cloud hosted, open systems that will enable more effective collaboration between
stakeholders. This new paradigm includes the technological support of application developers to create
specialized services that will seamlessly interoperate, thus creating a sophisticated and customisable
working environment for the end users. We present the implementation of an open architecture that
instantiates such an approach, based on a set of domain independent software tools called ‘‘generic ena-
blers’’ that have been developed in the context of the FI-WARE project. The implementation is used to
validate a number of innovative concepts for the agricultural sector such as the notion of a services’ mar-
ket place and the system’s adaptation to network failures. During the design and implementation phase,
the system has been evaluated by end users, offering us valuable feedback. The results of the evaluation
process validate the acceptance of such a system and the need of farmers to have access to sophisticated
services at affordable prices. A summary of this evaluation process is also presented in this paper.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is not long ago that farmers started using information systems
to organize their financial data and keep track of their transactions
with third parties (Batte, 2005). In developed countries, it is now
commonplace for farmers to use sophisticated systems to monitor
their crops. Data is collected from locally installed hardware (which
may provide temperature, humidity, soil moisture, luminosity mea-
surements, etc.) or from third parties such as meteorological services
(Wang et al., 2006). A number of proprietary systems are used to pro-
cess these data and assist farmers to manage and even control their
farms in an efficient manner (Allen and Wolfert, 2011; Nikkilä et al.,
2010; Wolfert et al., 2010). These systems are called Farm Manage-
ment Information Systems (FMISs) – (Robbemond and Kruize,

2012). A FMIS is a system used for collecting and processing data
to execute the operations of a farm. These operations include strate-
gic, tactical and operational planning; implementation and docu-
mentation; assessment and optimization of the work performed in
the fields or on the farms. To improve the execution of these func-
tions, various management systems, databases, software architec-
tures and decision models have been proposed to serve these
purposes (Beck, 2001; Nikkilä et al., 2010; Sørensen et al., 2011;
Fountas et al., 2006).

Existing and future systems in general, operate under a specific
business model (Teye, 2011; Sørensen et al., 2010). Their main goal
is to provide or collect information to/from farmers, process it and
provide a number of intelligent services. These services are usually
tightly integrated with the system. Existing systems are proprie-
tary solutions that use closed specifications. This imposes a con-
straint on farmers since they do not have the freedom to
enhance or tailor their systems according to their needs. They
are, consequently, forced to use only the functionalities from the
commercial products they have purchased. Furthermore, external

0168-1699/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.compag.2013.11.014

⇑ Corresponding author. Address: Department of Informatics and Telecommuni-
cations, University of Peloponnese, 22100 Tripolis, Greece. Tel.: +30 2710372205;
fax: +30 2710372242.

E-mail address: kaloxyl@uop.gr (A. Kaloxylos).

Computers and Electronics in Agriculture 100 (2014) 168–179

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier .com/locate /compag



Author's personal copy

service providers cannot develop new services and make them
interoperate with existing systems since these do not provide the
necessary means such as Application Programming Interfaces –
APIs (Kruize et al., in press). The creation of a marketplace of appli-
cations developed by independent service providers and which end
users can choose to use by giving them access, in a secure way, to
their data could alleviate the aforementioned problems.

In Kaloxylos et al. (2012) we presented the notion of a Farm
Management System (FMS) as a framework that can accommodate
modular services and enable their interoperation. The services can
be either simple ones (e.g., a meteorological service) or even
complex ones like an existing FMIS. In this way a marketplace of
services and applications offered by different providers can be
created. While this idea is similar to Google Play and Apple’s App
Store, the main difference is that the services are not executed
independently, but rather they can interact by having access to
the same data sets in the cloud and even exchange information
through the FMS.

In this paper, we present a proof of concept implementation
that was developed in the context of the SmartAgrifood Project.1

Our implementation assisted us to identify the technical issues of
a cloud-based system that could serve as a marketplace for services
for the farmers. The implementation of this architecture as well
some of the supported services has been based on a set of domain
independent software tools called Generic Enablers (GEs) that have
been developed in the context of the FI-WARE Project.2 The purpose
of these tools is to provide to software developers the means to de-
velop in a fast and reliable manner a variety of cloud-based services
for the Future Internet.

The FMS has been designed from a usage-driven perspective. This
means that end-users’ needs were identified and user requirements
were formulated as central design goals. Recurrent design work-
shops and repeated end-user evaluations during the entire develop-
ment process have been undertaken. The process of a usage-driven
design and evaluation process were based on a seven step design ap-
proach (Nurkka et al., 2007; Brewster et al., 2012) by which research
and design efforts were combined to deliver a gradually maturing de-
sign output. During these steps, we organized national panels with
farmers and ICT experts, performed interviews with end users, cre-
ated mock-up GUIs and videos, and asked users to fill-in electronic
questionnaires. For our use case, we focused on developing a number
of modular services related to greenhouses. The final system has
been installed and used by a greenhouse in Crete, Greece over a per-
iod of nine months where the system was evaluated.

The rest of this paper is organized as follows. First, we briefly
describe the FMS architecture and provide an operational example.
In Section 3, we provide the system specification and discuss
implementation details. We also discuss how the GEs have been
used and provide some insight into their usefulness during the
development phase. Section 4 presents the evaluation results from
the end users and finally, Section 5 concludes the paper and pre-
sents our future plans.

2. FMS architecture

As described in Kaloxylos et al. (2012), the overall FMS architec-
ture consists of two main entities i.e., the Cloud FMS and the Local
FMS (Fig. 1). The Cloud FMS is equipped with a number of GEs that
are used to support operations related to the management of a
greenhouse. It contains a services’ repository so that developers
of services can upload their services for users to discover and use
them. The Cloud FMS also contains a module called ‘‘FMS Control-
ler’’ that consists of a number of sub-modules concerned with data

collection, statistical analysis of data, coordination of activities, and
the creation of notifications and commands to be executed by
farming equipment. The ‘‘Management Functions’’ module pro-
vides information about the underlying network infrastructure,
so as to fine-tune the operation of the overall system according
to the current networking conditions. This module also contains
functionality for recording any activity between services and users
so as to apply specific charging schemes. All services that are deliv-
ered and, cooperating through the Cloud FMS, are able to access the
same data sets stored in the FMS controller. The services access
these data in a secure way. Appropriate permissions are granted
to a service when a user registers with it. This communication is
realized through a Service Oriented Architecture – SOA layer that
sets the communication links between the core modules of the
FMS and any specific service.

The Local FMS is located with the end-users (for example inside
a greenhouse) and is mainly used to aggregate sensors’ and possi-
bly machinery data and forward them to the Cloud FMS. Also it
contains some of the FMS Controller functionality that is used
when there is no Internet connectivity.

3. Operational example

Fig. 2 illustrates an operational example using a representation
produced by the Archimate (2013) tool. On the business layer level,
a farmer needs to monitor the crop and machinery, and in case
there are some out of the ordinary events, there is a need to come
up with a correction plan and implement appropriate actions (see
Figs. 3 and 4).

On the service level, data are collected from a plethora of de-
vices and machinery and are transferred through the Local FMS
to the monitoring service of the Cloud FMS. These data are then
analyzed and when any abnormal situation is detected, then
appropriate alerts are produced. At the same time, the coordination
module communicates with the appropriate services (e.g., an ex-
pert system such as an e-agriculturist, a task scheduling service,
or a meteorological service) and communicates their recommenda-
tions and reports either to the farmer or directly to systems in-
stalled on the farm so as to be automatically executed if the
farmer has configured the system to do so. All these steps and ac-
tions can be recorded by the FMS database. The type and the
amount of information to be used by these external services is con-
figurable by the farmer by giving appropriate permissions to the
services. The access from external services to a farmer’s informa-
tion can be configured in way similar to the one used by Android
and Apple applications (e.g., grant permission to collect automati-
cally the location information, acceptance to access specific data
like sensor values, etc.).

4. System specification: the case for a greenhouse

In this section we present in detail an instantiation of the FMS
architecture that has been developed and used for the manage-
ment of a greenhouse. The Greenhouse Management prototype is
a Future Internet (FI) compliant framework that takes into account
real data from sensors and provides them to a Farm Management
System (FMS) in order to take smart decisions regarding actions
that need to be taken. External services have access to the real data
collected and produce recommendations and reports related to the
smart management of the greenhouse. Notifications and alerts
about the current situation and actions are forwarded to the farm-
er. A farmer is thus able to have total surveillance and manage-
ment of his farm using services developed by different service
providers. Our prototype has been implemented in order to inte-
grate a number of innovative concepts. In particular:

1 http://www.smartagrifood.eu/.
2 http://catalogue.fi-ware.eu/enablers.

A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179 169



Author's personal copy

� Lower investment cost since the intelligence of the system is
located in the cloud and only sensors, actuators and low end
computing components are needed in the greenhouse.
� Automatic communication of the system with any equipment

or external service using a Service Oriented Architecture (SOA)
approach.

� Storage of raw data and guaranteeing user-independence from
any service provider.
� Service adaptation according to user preferences and end-

device capabilities.
� One-stop market place facilitating the end-user in his everyday

needs.

Fig. 1. Simplified FMS architecture.

Fig. 2. An archimate model representation of an operation example.

170 A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179



Author's personal copy

� Integration of domain specific services (e.g., advisory services).
� Learning schemes focusing on improving operations through

exploitation of accumulated data.
� Plug and Play with IoT solutions.
� Context aware networking that allows the system to adapt to

different networking conditions (e.g., link failures).

The Greenhouse Pilot has been deployed in an actual greenhouse
in Crete (Local FMS) and within the University of Athens premises
(Cloud FMS). The greenhouse is approximately 10.000 m2, having
an almost rectangular shape. Inside the greenhouse we have de-
ployed wireless sensor nodes. All data and information are presented
through a simple web frontend, the Greenhouse Management web
application. The user interacts with a web application without get-
ting involved with the underlying complexity of the system. The de-
ployed wireless nodes send their measurements periodically to the
gateway, which is deployed on a Raspberry Pi3 located at the farmer’s
office. The information is transmitted to the university premises. The
processed information and the knowledge extracted are subsequently
presented to the farmer via web-based portal.

Before describing the technical details of the implementation,
we briefly present the GEs developed by FI-WARE and the capabil-
ities that they offer. FI-WARE defines six large areas for which gen-
eric enablers are provided. Some of these are so fundamental that
they will be applicable for a diverse set of tasks. Other enablers are
adapted and fine-tuned for the agricultural case and thus, they pro-
vide advanced domain specific capabilities. These six areas are
namely: Cloud hosting, Data and Context Management, Applica-
tions/Services Ecosystem and Delivery, Internet of Things, Interface
to Network and Devices and Security. A detailed description for the
GEs developed by FI-WARE can be found in FI-WARE MediaWiki
(2013).

From these six categories we used a number GEs that were inte-
grated in the pilot. A short description found in (FI-WARE GE Cat-
alogue, 2013) about their functionality appears in the list below:

� Cloud Edge: Sort of a ‘‘Super Gateway’’, located at the edge
between the WAN/Cloud and the LAN and able to locally exe-
cute applications.
� Repository SAP-RI: A service and application description

repository.
� Publish Subscribe context broker (SAMSON broker): Imple-

mentation of the Publish/Subscribe Context Broker GE, provid-
ing interfaces with which clients can do several operations
like (a) register applications producing contextual data, such
as a temperature sensor within a room, (b) update contextual
information, for example send updates of temperature, (c)
receive notifications when changes on contextual information
take place or with a given frequency (e.g. get the temperature
each minute).
� Mediator TI: A middleware application responsible for provid-

ing interoperability among different communication protocols
and among different data models.
� Service Composition and Application Mashup: These two GEs

offer a composition editor and execution engine that allows end
users to create and run composite web applications.
� IaaS Data Center Resource Management: This GE offers the

facilities to provide virtual machines, as well as associated com-
puting, storage and network resources.

The abovementioned GEs have been used in three evaluation
scenarios. In the first one, a service provider registers a service.
All details required are provided in order to properly index and
store his service (keywords, charging profile, etc.). The service
description is formulated and transmitted in linked-USDL format.
Minutes later, the farmer checks the marketplace in his end-user
application, notices the new service and registers. The usage of
the service is constantly monitored; the application provider can
validate the logs and based on the actions performed charge the
user (GEs validated: repository, mediator).

In the second scenario the user has deployed the Local FMS in his
greenhouse. The devices constantly transmit information to the
cloud. Information, before being stored, is assessed by the FMS Con-
troller (statistical analysis sub-module). The latter, upon identifica-
tion of a problematic situation, triggers a notification action that is
forwarded to the farmer through any appropriate communication
channel (GEs validated: Data Center, Publish Subscribe, Cloud Edge).

In the third scenario, the Service Composition and Application
Mashing GE has been integrated and validated in the GUI frontend
of the Greenhouse Pilot. It can be used to provide graphic mashups
that exploit the capabilities of the widgets provided by the Mashup
Factory (e.g. email). In the background, these widgets/services
compose a new one in a service composition manner.

4.1. Implementation details

As mentioned in the previous sections, the deployed hardware
is divided in two entities, the Cloud FMS (University premises)
and the Local FMS part (greenhouse).

Fig. 4. Ranges.

Fig. 3. Fuzzy logic approach.

3 http://www.raspberrypi.org/.

A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179 171



Author's personal copy

In the greenhouse, 5 WaspMote (Libelium, 2013) boards (ATme-
ga1281 microcontroller, 128 KB Flash, 8 KB SRAM and 2 GB SD
Card, Battery capacity 6600 mAh) each equipped with a 2 W Solar
Panel4 (80 � 100 mm) are deployed. Information is exchanged using
a communication gateway, connected over a USB cable to the device
implementing the concept of the local FMS and the Cloud Proxy GE.
The gateway is an XBee-ZB (Xbee, 2013) module, implementing the
Zigbee-Pro protocol. Four nodes are equipped with identical agricul-
tural boards (Libelium sensors, 2013) and support the monitoring of
temperature, relative humidity and soil moisture. The fifth one has a
Libelium gases and monitors PH and CO2 levels. Finally, in the farm-
er’s office, a Raspberry Pi is deployed, for hosting the Cloud Proxy,
with 256 MB RAM, an ARM1176JZF-S core CPU @ 700 MHz.

In the University premises, the server hosting the Liferay portal,
has an Intel(R) Core(TM) i5–2320 CPU @ 3.00 GHz CPU, 4 GB RAM,
and is running Ubuntu server 10.04, Linux kernel 2.6.32–38-gener-
ic with MySQL 5.1.41 and Tomcat 7.0.23. The server hosting the
FMS controller, has an Intel(R) Core(TM)2 Quad CPU Q9400 @
2.66 GHz CPU, with 4 GB RAM, running server 10.04 Linux kernel
2.6.32–38-generic with MySQL 5.1.41.

4.2. Software design

In order to meet the technological requirements based on the
users’ comments, we opted for several web-oriented technologies.
The following programming/scripting languages are used in the
current implementation: Java (J2SE, J2EE and JSP), HTML, CSS, Java-
Script, and C/C++ for programming the sensors. Regarding the
Graphical User Interface (GUI), the front-end is designed following
the concept of a ‘web-based portal’. The main reason for such an
implementation option was the extensibility of the application to
numerous types of devices. Additionally, it is also a more user-
friendly way to support the marketplace GEs (e.g. each user could
be registered with different services dynamically according to their
needs). The portlets used in the context of the portal provide the
user the required personalized experience. Each portlet is dynamic,
supporting AJAX5 and Javascript6/jQuery7 combined with CSS3 and
ALLOY UI (a UI meta-framework that incorporates all three afore-
mentioned design languages8). As far as the localization of the sys-
tem, Liferay provides a build-in way to localize the user interface.
Liferay uses language keys for each language the administrator of
the portal wishes to support. The user just selects his preferred lan-
guage and the portal dynamically chooses the appropriate keys for
each language. Those language keys are stored into property files.

Each portlet in the portal GUI is responsible for a sub-service of
the whole system. The main point of this architecture is to have
each service (portlet) totally independent from the other services.
So, each portlet handles internally the information that should be
represented to the user having access to the appropriate interfaces.
Each portlet also uses a wide variety of design and scripting lan-
guages to represent it. HTML 5 coexist in the same JSP files for
the representation of the web pages and jQuery/Javascript and AL-
LOY scripts are used to handle the events triggered from the user
interaction with the screen. The modules of the Greenhouse Pilot
at the backend are independently implemented as REST-ful web
services (using Jersey9). External services are deployed in an OSGi10

runtime environment (Apache Karaf11) and exchange data with the

backend system with the assistance of the ESB architecture (Mule12).
Authorization and authentication is accomplished with the use of
Apache Shiro.13

As far as data exchanged between different sub-modules or
subsystems is concerned, a thorough research regarding standard-
ized XML schemata related to agricultural applications was made.
The standardized XML schemata that we have used are the Senso-
rML,14 the agroXML15 and the Observations and Measurements stan-
dard.16 Data management in the Greenhouse Pilot is done using
traditional Relation Database Management Systems (RDBMS). From
a methodological point of view, we mapped the SensorML, agroXML
and Observations and Measurements standards (all in XSD) to En-
tity-Relation (ER) schemata. Data management (access, updates
and deletions) is therefore accomplished through SQL. Specifically,
we have used MySQL ver. 14.14 distribution 5.1.61 for debian-li-
nux-gnu for the Cloud FMS.

The reasons we opted for a traditional RDBMS were essentially
(i) the ease of use, (ii) the maturity of the available solutions and
(iii) re-usability (the Data Collector DB schema is essentially an
extension of the Local Data Collector DB). Additionally, a light-
weight RDBMS seems more suitable for a low-end computing com-
ponent like the one envisaged for the Local FMS. This is why, for
the Local FMS we have used SQLite (version 3.7.16) that is a serv-
erless, self-contained database engine that is lightweight and
widely used today by many software vendors.

4.3. Description of interfaces

In this subsection we describe at an abstract level, an indicative
list of messages exchanged through the interfaces illustrated in
Fig. 1. The messages that are exchanged in all interfaces are follow-
ing the request–response pattern. For simplicity, we will indicate
the request message and the corresponding response (see Table 1).

The interface between the Local FMS and the Cloud FMS mainly
functions to receive sensor data created by the sensors at a farm.
Problems regarding the operation of sensors can be detected and
the Cloud FMS can be informed about them. This interface allows
the monitoring of the Internet connection between Local FMS
and Cloud FMS and identifying when communication failures oc-
cur. Furthermore, the Cloud FMS can request a remote update of
the firmware of the sensor motes (see Table 2).

The User to Cloud FMS interface offers the user various capabil-
ities. At a first level a farmer is able to monitor the conditions that
appear on his/her farm in detail. In addition the farmer can be in-
formed about results produced by the processing of these condi-
tions, either by services or the FMS itself, in the form of
notifications or alerts. Moreover, the user can have access to all
kind of services, subscribe to them so that services can have access
to user’s data (see Table 3).

A service provider can register its service in the Cloud FMS by
providing the details of the service and the relevant interfaces of
the service so that its functionality can be integrated with the
Cloud FMS functionalities. The service details can be altered and
modified. A service provider can also see a list of all the services
he/she uploaded and have an overview of them (see Table 4).

Services can communicate with the Cloud FMS and have access
to the farm’s data or the users’ data. This can be done either by
requesting the relevant information or by subscribing to specific
channels where this information is published. In addition, services
can upload data to the Cloud FMS such as notifications regarding

4 www.seedstudio.com.
5 Asynchronous Javascript and XML, http://www.w3schools.com/ajax/default.asp.
6 Javascript standard: http://www.w3.org/standards/webdesign/script.html.
7 jQuery: http://jquery.com/.
8 ALLOU UI: http://www.liferay.com/community/liferay-projects/alloy-ui/

overview.
9 JSR 311 implementation/Jersey Framework: http://jersey.java.net/.

10 OSGi Alliance: http://www.osgi.org/Main/HomePage.
11 Apache Karaf: http://projects.apache.org/projects/karaf.html.

12 Mule ESB: http://www.mulesoft.org/.
13 Apache Shiro: http://projects.apache.org/projects/shiro.html.
14 Sensor Model Language, http://www.opengeospatial.org/standards/sensorml.
15 AgroXML, http://www.agroxml.de/.
16 Observations and Measurements, http://www.opengeospatial.org/standards/om.

172 A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179



Author's personal copy

the user so that the user can have access to it independently (see
Table 5).

This interface allows the Local FMS to obtain the sensor values
that are transmitted by the nodes to the gateway, by monitoring
the serial port that the gateway is attached to (see Table 6).

Finally, a user can have direct access to the local FMS directly.
This is rather important when the Internet link between Local
and Cloud FMS is broken.

4.4. Services

In this subsection, we describe the implementation of the ser-
vices we have developed as examples to be used in our pilot dem-
onstration that are using the FMS core functionalities. Most
services function in two layers; the front-end layer, and the back-
end layer which incorporates all the business logic that produce
the results. The front-end layer is a portlet that depicts the
notifications produced by the backend. The backend layer uses

the interfaces provided by the SOA layer which enable connectivity
to the FMS controller. Specifically, in the backend layer, a service
can fetch data from the FMS that could be, for example, sensor data
or products data, and according to its functionality inform the
farmer. Examples of such services, already deployed on the pilot,
are the following:

4.4.1. E-agriculturist service
This service processes sensor data from the farm (in the back-

end) and produces notifications (in the front-end) that inform the
farmer of actions he should take. Using an expert system, and taking
into account the current crops being cultivated, the service decides
whether sensor data indicate appropriate conditions for the farm’s
crop and whether the farmer should implement any actions. This
information is provided through the RESTful interfaces to the front
end. The system provides the user sufficient functionality to delete,
show and read the notification messages. Those notifications can
also be sent with an E-mail. The implementation follows a

Table 1
Local FMS–Cloud FMS.

From To Message Parameters Response

Local FMS Cloud FMS Send_sensor_data Sensorvalue list Success or failure
Local FMS Cloud FMS Fault_of_sensor Mote id, value type, value Success or failure
Local FMS Cloud FMS Keep_connection_alive Local FMS id, timestamp Acknowledge
Local FMS Cloud FMS Internet_connection_back Local FMS id, timestamp Acknowledge
Cloud FMS Local FMS Firmware_update Mote id Firmware data, status

Table 2
User – Cloud FMS interface.

From To Message Parameters Response

User Cloud FMS Login Username, password Authentication token
User Cloud FMS Logout Username, AuthToken Success or failure
User Cloud FMS Show_farm_plan User id Farm sensors values
User Cloud FMS Show_notifications User id Notifications
User Cloud FMS Show_alerts User id Alerts
User Cloud FMS Show_my_services User id Services information
User Cloud FMS Update_my_location User id, longitude, latitude Success or failure
User Cloud FMS Subscribe_to_service User id, service id. Success or failure
User Cloud FMS Rate_service Service id, user id, rating Success or failure

Table 3
Service provider – Cloud FMS.

From To Message Parameters Response

Service provider Cloud FMS Login Username, password Authentication token
Service provider Cloud FMS Logout Username, AuthToken Success or failure
Service provider Cloud FMS Register_service Image, service name,

service type, webpage,
company name, city,
address, telephone,
email, country price
explanation, price
value, price currency,
interaction interface,
terms of use, user id

Success of failure

Service provider Cloud FMS Update_service_details Image, service name,
service type, webpage,
company name, city,
address, telephone,
email, country price
explanation, price
value, price currency,
interaction interface,
terms of use, user id

Success or failure

Service provider Cloud FMS Delete_service Service id, user id Success or failure
Service provider Cloud FMS Show_my_services User id Services details list

A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179 173



Author's personal copy

combination of the Fuzzy Rules methodology and Nearest-Neigh-
bor approach (Hart et al., 2000; Ross, 2010) (Fig. 3).

For simplification it was decided to use a sigmoid mapping of
the real-valued input data:

0 := low
0.5 := normal
1 := high
<empty> := do not care

The sigmoid mapping allows any value in-between the interval
(0 . . .1), thus a value of e.g. 0.6 indicates a state between ‘‘normal’’
and ‘‘high’’, with trend to be ‘‘normal’’. Thus, a ranking of best-
matching rules can be achieved.

For each input value, an ‘‘expected range’’ is specified with a
lower threshold and a higher threshold, e.g. for the temperature
the normal range could be [22 �C . . .29 �C].

A set of rules has been created, mapping the sensor data to a set
of recommended actions identified by a unique number. This ser-
vice was a simple implementation that we developed to test in
practice the concepts of the cloud and local FMS. The specific ser-
vice though rather simple could be used for example, in the local
FMS to execute actions whenever an Internet link failure occurs.
In such a situation there is no connectivity to the Cloud FMS and
thus no connectivity to more sophisticated expert systems.

4.4.2. Disease actions and alerts service
The current service processes the data from sensors on the farm

in the backend layer. It takes into account various diseases and it
applies a Naive Bayes classifier so as to produce the best possible
result concerning a disease alert and an associated action for the
current crop. This produces a notification for the result in the front-
end. The system uses input that is similar to the input of the E-agri-
culturist. However, in contrast to the latter, this implementation is
able to learn and update its knowledge base thus adapting to the
micro-climate of the environment or to the requirements of a
farmer. The design and implementation is based on a Naive Bayes
classifier. In spite of their apparently over-simplified assumptions,
Naive Bayes classifiers have worked quite well in many real-world
situations, such as document classification and spam filtering

(Metsi et al., 2006). They require a small amount of training data
to estimate the necessary parameters. Naive Bayes learners and
classifiers can be extremely fast compared to more sophisticated
methods. The decoupling of the class conditional feature distribu-
tions means that each distribution can be independently estimated
as a one dimensional distribution. This in turn helps to alleviate
problems stemming from the curse of dimensionality.

The implementation of the system comprises 3 phases, (i)
knowledge base preparation, (ii) training of the classifier, (iii) clas-
sifier update. Throughout the phases we use the Weka17 data min-
ing and machine learning software. At first, we retrieve the
categorization of the various parameters as well as the scenarios,
associated actions and alerts like for the previous service.

Based on the scenarios, we have artificially generated a large
number of tuples which follow the scenarios. Simply stated, each
rule/scenario is replicated N times. Afterwards, we broke the input
into two training sets, the Actions set and the Alerts set. Finally,
using these sets, we train two classifiers which are subsequently
used for classifying all incoming tuples. Applying this method the
system is able to learn and evolve through time. The user can pro-
vide his input; the latter is accommodated in the knowledge base
and all subsequent decisions are directly influenced by the new
observation.

4.4.3. Weather service
The weather service takes into account the location of the farm-

er, and searches for relevant weather information at his area for
the current and next days. A user has the ability to retrieve weather
information also for any other place simply by typing the location
name into the input box provided by the portlet. The weather ser-
vice – by default – provides weather information for the current
day and also a forecast for the next two days. Temperature, wind
information, humidity all form a part of the information repre-
sented together with an appropriate image according to the weath-
er. When the user uses the Weather Service the request is
processed by the SOA interface. We have used the online free
API18 of the weather2 website with the user’s query about the se-
lected place and it returns the weather results of the selected place
in XML format. These results are passed back through the GUI to the
user.

4.4.4. E-prices service
A simple service enabling the farmer to consult the market in

real time in order to decide the best price to sell his goods. The
front end is a simple GUI that enables the user to enter the query.
In the backend, the system queries stock-markets and web-hubs in
order to retrieve the required information. In our implementation,
as an example, the system sends the user’s query to the Google
Shopping web service19 to retrieve the required information. This
REST api allows querying for a product using free text search. The de-
fault response is returning the most relevant products descriptions

Table 4
Services – Cloud FMS interface.

From To Message Parameters Response

Services Cloud FMS Request_farm_data Service id, sensor id, mote id. Sensor values list
Services Cloud FMS Subscribe_for_farm_data Service id, sensor id, mote id, duration Sensor values list
Services Cloud FMS Request_user_data Service id, user id, type of data Data, status
Services Cloud FMS Subscribe_for_user_data Service id, user id, type of data Data, status
Services Cloud FMS Upload_service_data Service id, data, type of data Success or failure

Table 5
Local FMS – sensor interface.

From To Message Parameters Response

Local
FMS

Sensor
gateway

Read_serial_data Serial_Port Sensor
values

Table 6
Local FMS – user interface.

From To Message Parameters Response

User Local FMS Show_farm_plan User id Farm Sensors values
User Local FMS Show_notifications User id Notifications
User Local FMS Show_alerts User id Alerts

17 http://www.cs.waikato.ac.nz/ml/weka/.
18 www.myweather2.com.
19 http://www.google.com/shopping.

174 A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179



Author's personal copy

according to the search query in JSON format and is shown to the
user though the GUI.

4.5. GUI

The end user application is a simple web frontend, the Green-
house Management web application. Thus, the user faces a user-
friendly web application and can easily interact with the system
without getting involved with the underlying complexity. A video
presenting the GUI and some usage scenarios can be found at
http://www.youtube.com/watch?v=dDq4RQYNiNs.

4.6. Usage scenarios

In this section, we provide a set of scenarios that exemplify the
exploitation of the designed prototype. We identified eight distinct
use cases which exploit the full set of classes, highlight the merits
of the prototype and involve all GEs integrated in the pilot. It
should be noted that the pilot itself supports a great variety of
use cases, however due to space limitations we present only a
small subset.

The system enables the user to visually assess the state of the
farm’s sensors by checking the user interface. In case an error
has occurred, it is highlighted via a change in the color code
(gre20en = everything is ok, gray = not used, red = problem). Fig. 5
depicts this situation.

The identification of such problems requires the exchange of a
set of messages presented in Fig. 6. The local module, that is used
for reading information from the serial port of a sensor forwards
the extracted values to the Local Configuration and Communica-
tion component located in the Local FMS asking for validation.
The latter is accomplished by the Error Detector module (part of
the Local FMS) that signifies the existence of a faulty value in the
data. The states together with the values are forwarded to the

FMS Controller in the Cloud FMS via its Configuration and Commu-
nication component. The following procedure is similar to the a
typical sensor values monitoring procedure with the distinct addi-
tion of the final alert message that is issued by the Notifier (part of
the Cloud FMS) and sent to the user.

In case where a firmware update of the sensor can solve the
problem a user can download and install new firmware in the
faulty sensor node. For this to happen, a request is triggered by
the user, using the web portal, and is captured by the FMS Control-
ler (Cloud FMS). The latter provides the necessary file to the Local
Configuration and Communication module (located in the Local
FMS) that finally installs the firmware on the sensors.

In the following scenario we present how the system reacts to a
network connection failure. Note that in the following figure, the
Local Configuration and Communication module is part of the Local
FMS while all other modules are part of the Cloud FMS. In this sce-
nario, when a network connection failure occurs, the local FMS is
able to identify the problem and trigger remedy actions. More spe-
cifically, a ‘‘local mode operation’’ is triggered, where all decision
and actions are taken locally (i.e., by the Local FMS). Although,
the Local FMS has less functionality than its cloud counterpart, it
can still support simple operations (like collecting sensor values,
use a simple advisory system). The network connection problem
identification procedure is bi-directional in the sense that both
the Local FMS as well as the FMS Controller of the Cloud FMS, both
monitor the link quality. Therefore, when a network problem oc-
curs, the Cloud FMS is aware and network status statistics are
stored in the database. These statistics can be exploited by a third
party, like a network provider in order to identify the root cause of
the problem.

When the connection is up again, both edges are set to cloud
mode and all values collected during failure time are transmitted
to the FMS Controller. The entire process is depicted in Fig. 7.

When the user exploits the functionalities provided by an exter-
nal service, their actions are logged with the use of the Mediator
GE. The latter acts as a medium between the user and the service
and logs all actions (e.g., http requests) which are in turn exploited
by the FMS management functions. These logged actions are used

Fig. 5. Identification of a problem in one of the sensors – user interface.

20 For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.

A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179 175



Author's personal copy

for charging and billing the user according the tariff model pro-
vided by the service provider. This procedure is depicted in Fig. 8
for a scenario of a weather service usage.

5. Users evaluation of the FMS system

The FMS has been designed based on the user-centric design
model referred to above so that end users were involved in all
stages of the design and implementation process: concept specifi-
cation, design of system functionality and software development.
The evaluation process was continuous and adjustments were
based on feedback collected from the following user groups: farm-
ers, agriculturists, agronomists, ICT experts. Users involved in each
group were selected based on several criteria such as the type of
their activity (70% farmers, 10% agriculturists, 20% other special-
ists), the location, their age (13% less than 30, 57% is aged between
30 and 40, 20% between 40 and 50, 10% over 50), the infrastructure
used on their farm, their familiarity with new technologies (40%
have no or small experience, while 60% have a good knowledge
of new technologies) or their intention to use them and their will-
ingness to explore new business opportunities. In total 100 users
were involved operating all over Greece (Attica, Crete, Pelopon-
nese, North Greece, and Central Greece) with different levels of
expertise in FMS systems and new technologies.

The method used for system evaluation was adapted to meet
the following objectives: (i) introduce users to the use cases used
to describe concepts identified in order to derive the main func-
tional and non-functional requirements of the Smart Farming Eco-
system, (ii) identify real user needs and propose new concepts, (iii)
obtain user feedback and reaction to the UI of the FMS and (iv)
incorporate any changes that facilitate users’ access and use of
such a system in order to improve their daily work.

The user involvement employed a number of methods that in-
cluded: interviews, electronic questionnaires and workshops.
Semi-structured interviews (Wood, 1997) were used in the first
phase of evaluation in order to assess the concepts of the FMS.

They were used to gather the subjective perspectives from a differ-
ent set of users. The second method was the online questionnaires
(Nielsen and Molich, 1990) including both closed-ended and open-
ended questions. The questionnaires were answered by individual
users and focus groups (Mazza and Berre, 2007) set up in work-
shops. Four national discussion panels and a workshop were orga-
nized to evaluate the FMS functionalities and the graphical
interface. The discussion panels where conducted during the eval-
uation process and included a team of 20 users involving represen-
tatives from ICT sector, farmers, logistics sector and service
providers in the agricultural sector.

The evaluation took place in three phases. The objective of the
first phase was to assess the use cases that described different
usage scenarios. The users were introduced to the innovative ideas
of Future Internet and Internet of Things and were provided with
suggestions concerning how to use existing infrastructure more
effectively. A group of 19 persons consisting of farmers, civil ser-
vants and representatives from farmer unions were involved. The
participants’ ideas and discussions led to alterations, modifications
of these use cases and the suggestions of new ones such as the pre-
sentation of the products’ prices and the traceability of the product
across the market chain, a marketplace for purchasing the appro-
priate fertilizers after processing data from agro-soil environmen-
tal expert system.

Once this process was completed, a mock-up was implemented
to present the functionalities of the FMS. At this stage 24 people
(agriculturists, ICT experts, agronomists and farmers) were in-
volved, evaluated the GUI and proposed new functionalities. Some
of the questions asked referred to the technical solutions adopted,
other applicable solutions that could be envisaged, and the applica-
bility of the services developed. The observations of users’ interac-
tions resulted in data concerning errors, performance time and
insights into the ease or difficulty of the tasks, the look and feel
of the system and the user experience. Most of the proposed mod-
ifications were adopted during the implementation of the FMS.

The third phase concerned the evaluation of the functionalities
developed after the refinements had been taken into account. The

Fig. 6. Identification of a problem in one of the sensors.

176 A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179



Author's personal copy

Fig. 7. Network connection failure and associated actions after restoring.

Fig. 8. Monitoring of service consumption via the Mediator GE.

A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179 177



Author's personal copy

majority of the participants (65%) stated that the use of the FMS
will facilitate information sharing between the stakeholders and
decrease the complexity in their daily processes. On the other
hand, the low educational level of stakeholders is an impediment
to the adoption of corresponding systems. Additional mechanisms,
furthermore, need to be implemented to deal with confidentiality,
integrity and availability of data.

The comments received from the evaluation process indicated a
strong support for the concepts that were introduced and the of-
fered services. 80% of the respondents believe that the system is
useful and they can use it to complete some of their daily tasks.
About 60% of the farmers are already using some kind of individual
smart systems to support basic activities such as the temperature
and humidity measurement or the irrigation of their fields. Most
of the farmers lack access to an integrated expert system for deci-
sion support. This is due to (a) the lack of knowledge of this kind of
systems (40% of the farmers have a low education level and about
60% have no or little experience with the Internet) and (b) the lack
of trust in experts. The vast majority of farmers (88%) believe that
such a system could reduce the cost of their work since it may con-
tain adequate information for the farmer and is easy to use (90%).

Some of the functionalities that were found very interesting
were the day-to-day calendar of the cultivation plan and the pos-
sibility to have an overall control of the farm through the Internet.
In addition, farmers have the ability to monitor the sensed data and
make decisions based on the solutions proposed by the system.
Based on the users’ comments new functionalities were added
e.g. the presentation of the products’ prices and the inventory of
available products and supplies. A number of concerns were ex-
pressed for the following issues: cost of investment for sensors,
cameras and other equipment and ownership of the data handled.
60% of farmers can invest about 1000–1500€ to install sensors or
other expert systems while some of them are willing to invest even
larger amounts of money if they are subsidized by the state.

The importance of data ownership and control was apparent.
The FMS handles and processes various types of data. These data
may originate from data collected by sensors installed in the farm-
er’s farm, external services e.g. news/weather, data provided by ex-
perts that are stored in the FMS database or ‘‘new’’ data produced
as a result of data processing. All these data have different owner-
ship though many ‘‘actors’’ have access to other people’s data that
they can also process. Issues of copyright and ownership need to be
taken into consideration especially for services generated from
composition. A typical example of composition is the one that
combines data collected from the sensors, an e-agricultural service
and a meteorological service.

Regarding the ICT experts, all agreed that the most important
innovations of the FMS are the creation of a market place for ser-
vices developed from different providers and the incorporation of
Future Internet technologies to easily deploy applications. Users
pointed out that the FMS could extend its functionality in order
to include more players along the food chain. Another issue that
has been discussed was about the learning mechanisms of the sys-
tem. It has been discussed that for the mechanism to be fairly eval-
uated more data from different crops is required.

6. Conclusions and future work

In this paper we have presented the implementation of a cloud-
based FMS that allows the interconnection among services devel-
oped by different service providers. This creates a marketplace of
services and applications that can be used by farmers. Thus, we
have managed to create a more open system that is flexible enough
so as to be tailor cut to the needs of every farmer. Also, by accom-
modating the main intelligence of the system in the cloud the

requirements for the local installation are kept to a minimum
resulting to cheaper solutions for the farmers. The FMS is validat-
ing a number of GEs developed by FI-WARE and adapted to support
agricultural related tasks. During the design and implementation
of the overall system we have also introduced a number of innova-
tive concepts like the notion of a services’ market place, network
awareness in order for the system to adapt in malfunctioning Inter-
net links, identification of malfunctioning sensor components, etc.

In order to turn into reality the concept of a market place of ser-
vices developed by independent providers for the farmers, we be-
lieve that the most crucial issue is the one of open and
standardized interfaces for the Cloud FMS. If the service developers
have access to such interfaces, a farmer will be able to compose a
working environment from interoperating services. Such concepts
are currently under investigation in the context of the FI-PPP ‘‘FI-
space’’ project that aims to create a platform for business to busi-
ness collaboration among stakeholders in the food and product
supply chain.

Acknowledgments

This work was performed in project SmartAgriFood that has re-
ceived research funding from the Community’s Seventh Frame-
work program. The SmartAgriFood project is part of the Future
Internet Public-Private Partnership (FI-PPP) program. This paper
reflects only the authors’ views and the Community is not liable
for any use that may be made of the information contained therein.
The contributions from colleagues of the SmartAgriFood consor-
tium are hereby acknowledged.

References

Allen, J., Wolfert, J., 2011. Farming for the future: towards better information-based
decision-making and communication – Phase I: Australasian stocktake of farm
management tools used by farmers and rural professionals. New Zealand Centre
of Excellence in Farm Business Management, Palmerston North <http://
edepot.wur.nl/194811>.

Archimate <http://archi.cetis.ac.uk/> (7.04.13).
Batte, M., 2005. Changing computer use in agriculture: evidence from Ohio.

Comput. Electron. Agric. 47 (1), 1–13.
Beck, H., 2001. Agricultural enterprise information management using object

databases, Java, and COBRA. Comput. Electron. Agric. 32 (2), 119–147.
Brewster, C., Wolfert, S., Sundmaeker, H., 2012. Identifying the ICT challenges of the

Agri-Food sector to define the Architectural Requirements for a Future Internet
Core Platform. In: Proceeding of the Challenges Conference, Lisbon, Portugal.

FI-WARE MediaWiki, 2013: Materializing the FI-WARE Vision <http://forge.fi-
ware.eu/plugins/mediawiki/wiki/fiware/index.php/Materializing_the_FI-
WARE_Vision>.

Fountas, S., Wulfsohn, D., Blackmore, S., Jacobsen, H.L., Pedersen, S.M., 2006. A
model of decision making and information flows for information-intensive
agriculture. Agric. Syst. 87, 192–210.

Hart, P.E., Stork, D.G., Duda, R.O., 2000. Pattern Classification, second ed. Wiley,
ISBN 978-0-471-05669-0.

Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank, C.,
Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Huether, N.,
Floerchinger, T., Alonistioti, N., Kormentzas, G., 2012. Farm management
systems and the Future Internet era. Els. Comput. Electron. Agric. 89, 130–144.

Kruize, J.W., Robbemond, R.M., Scholten, H., Wolfert, J., Beulens, A.J.M., 2013.
Improving arable farm enterprise integration – review of existing technologies
and practices from a farmer’s perspective. Comput. Electron. Agric. (in press).

Libelium motes. <www.libelium.com/waspmote/> (7.04.13).
Libelium Sensors, 2013. <http://www.libelium.com/products/waspmote/sensors>.
Mazza, R., Berre, A., 2007. Focus group methodology for evaluating information. In:

11th International Conference Visualization Techniques and Tools, Information
Visualization, vol. IV, 2007, pp. 74–80.

Metsi, V., Androutsopoulos, I., Paliouras, G., 2006. Spam filtering with Naive Bayes –
Which Naive Bayes?. In: Proceedings of Third Conference on Email and Anti-
Spam, July 27–28, 2006, Mountain View, California USA.

Nielsen, J., Molich, R., 1990. Heuristic evaluation of user interfaces. In: Proceeding
CHI ‘90 Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (1990), pp. 249–256.

Nikkilä, R., Seilonen, I., Koskinen, K., 2010. Software architecture for farm
management information systems in precision agriculture. Comput. Electron.
Agric. 70 (2), 328–336.

178 A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179



Author's personal copy

Nurkka, P., Norros, L., Pesonen, L., 2007. Improving usability of and user acceptance
of ICT systems in farming. EFITA/WCCA Joint Congress in IT in Agriculture,
Edinburgh.

Robbemond, R., Kruize, J.W. 2012. Data standards used for data-exchange of FMIS
<https://sites.google.com/site/agrilabreferences/> (7.04.13).

Ross, T., 2010. Fuzzy Logic with Engineering Applications. John Wiley & Sons.
Sørensen, C.G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S.M., Basso, B.,

Blackmore, S.B., 2010. Conceptual model of a future farm management
information system. Comput. Electron. Agric. 72 (1), 37–47. http://dx.doi.org/
10.1016/j.compag.2010.02.003.

Sørensen, C.G., Pesonen, L., Bochtisc, D.D., Vougioukas, S.G., Suomi, P., 2011.
Functional requirements for a future farm management information system.
Comput. Electron. Agric. 76 (2011), 266–276.

Teye, F., 2011. A conceptual model for collaboration – based management
information systems, Master Thesis, Helsinki, Metropolia University of
Applied Science.

Wang, N., Zhang, N., Wang, M., 2006. Wireless sensors and food industry – recent
development and future perspective. Comput. Electron. Agric. 50, 1–16.

Wolfert, J., Verdouw, C.N., Verloop, C.M., Beulens, A.J.M., 2010. Organizing
information integration in agri-food – a method based on a service-oriented
architecture and living lab approach. Comput. Electron. Agric. 70, 389–405.

Wood, L., 1997. Semi-structured interviewing for user-centered design. Interactions
4 (2), 48–61.

xBee <http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-
rf-modules/zigbee-mesh-module/> (7.04.13).

A. Kaloxylos et al. / Computers and Electronics in Agriculture 100 (2014) 168–179 179


