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The scalability of learning algorithms has always been arabnoncern for Data Mining Researchers and nowadays, with
the rapid increase of data storage capacities and avajafi$ importance has grown further. To this end, sampliag
been studied by several researchers inféarteto derive stficiently accurate models using only small data fractionghis
paper we focus on SpectrelMeans, i.e. th&-Means approximation as derived by the spectral relaxaiod propose a
sequential sampling framework that iteratively enlardes gample size until thieMeans results (objective function and
cluster structure) become indistinguishable from the gwtit (infinite-data) output. In the proposed framework adept

a commonly applied principle in Data Mining research thaisiders the use of minimal assumptions concerning the data
generating distribution. This restriction imposes selveallenges mainly related to théieiency of the sequential sampling
procedure. These challenges are addressed using elerh&fdtria Perturbation Theory and Statistics. Moreoverailtgh

the main focus is on SpectrétMeans, we also demonstrate that the proposed frameworlbeaeneralized to handle
Spectral Clustering.

The proposed sequential sampling framework is consetyitaraployed for addressing the Distributed Clustering prob
lem, where the task is to construct a global model for datard#sde in distributed network nodes. The main challenge in
this context is related to the bandwidth constraints theicammonly imposed, thus requiring that the distributedteling
algorithm consumes a minimal amount of network load. Thissitates the applicability of the proposed approach as-it e
ables the determination of a minimal sample size that carsbd for constructing an accurate clustering model thailenta
the distributional characteristics of the data. As oppdséte relevant distributekkmeans approaches, our framework takes
into account the fact that the choice of the number of cleshas a crucial féect on the required amount of communica-
tion. More precisely, the proposed algorithm is able towder statistical estimation of the required relative sizesal
possible values df. This unique feature of our distributed clustering framewenables a network administrator to choose
an economic solution that identifies the crude cluster giracof a dataset and not devote excessive network resofmces
identifying all the “correct” detailed clusters.

Categories and Subject Descriptors: H.D&fabase Managemerjt Database Applications-Bata Mining 1.5.3 [Pattern
Recognition): Clustering—Algorithms

General Terms: Spectral, Clustering, Asymptotic Conuecge Sampling

Additional Key Words and Phrases: Matrix Perturbation TieBootstrapping, Distributed Clustering

1. INTRODUCTION

An important practical problem in Data Mining is related teetdetermination of the flicient
sample size that is required such that an accurate modeleftexts the distributional characteristics
of the data is constructed [Domingo et al. 2002; Provost aaliud 1999; Provost et al. 1999;
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Schefer and Wrobel 2003; Scholz 2005]. Depending on the natureeofiata (such as stream data,
dynamic data or static data) and the properties of the legraigorithms (such as asymptotically
convergent or inconsistent) various approaches have bepoged. However, albeit the importance
and significance of this problem, there exist certain papidsa mining paradigms, such as Spectral
Clustering [von Luxburg 2007] and Spectkaieans [Ding and He 2004; Zha et al. 2001; Gordon
and Henderson 1977] that have not been adequately analy#eid respect.

The relatively small attention that Spectiameans has received can be attributed to the fact
that the Lloyd’s standare M-style k-means algorithm [LIoyd 1982] presents dfi@ent and easy
to implement approach for approximating the minimum sumsapfares clustering problem. If
we attempt to make a high-level comparison between Spdctradans and Lloyd'&-means the
arguments will boil down to the standard dilemma betweemsfiaming the original clustering for-
mulation to an easy-to-solve, deterministic and conveinupation problem, as opposed to using
a heuristic, local-minima algorithm that requires certaining (such as the initialization of cluster
centers) but performs remarkably well in practice. Due toghpularity of Lloyd’s algorithm, sev-
eral éficient sampling strategies have been proposed in variodigafpn contexts (such as [Ailon
et al. 2009; Datta et al. 2009; Zhou et al. 2007; Bradley €1%03]).

These methods generally consider the desired number deddiksas input and aim to derive
a suficiently accurate estimation of the cluster centers or thetel objective. One issue that is
commonly overlooked is the fact that the choicekafan have a significantfiect on the required
sample size for approximating the cluster results. As wdyapan detail in Sections 7.2 and 7.3,
the discovery of the detailed cluster structure or even angichoice ofk that attempts to split a
dense cluster, can require large sample sizes, much ldrgenthenk is correctly configured to
identify the crude cluster structure of the data. Thus, ifoeasider that the data gathering process
is associated with a cost, it is natural to desire a mechatfisinis able to provide us with the
comparative sample size requirements for all possiblecelsadfk. As we analyze in Sections 7.2
and 7.3 the proposed framework has this property and cavedibiat the construction of a reliable
clustering fork clusters requires a smaller bandwidth than for and othereuof clusters.

The little attention that Spectral Clustering has receivétl respect to sflicient sample size de-
termination can be attributed to the fact that its asymptaghavior, i.e. its behavior as sample size
tends to infinity has only recently been characterized [vorturg et al. 2008]. The recent results
in [von Luxburg et al. 2008] demonstrate that Spectral @tisy is consistent, i.e. converges under
mild assumptions to a steady partition of the whole dataespifcis motivating the consideration
of algorithms that aim in determining the required sampte siuch that the clustering algorithm
approximates diiciently the asymptotic-infinite data cluster structure.

Sampling strategies have been extensively considere@iaghplication area of Distributed Data
Mining where the main task is to construct a reliable cluste(such as [Datta et al. 2009] and
references therein) of the available network data whilegisi minimal amount of bandwidth re-
sources. The consumption of bandwidth resources is negessae each network node has only a
certain portion of the available data and thus, the frageteimtformation needs to be accumulated
in order to construct a reliable cluster model that reflduésglobal distributional characteristics of
the network data. The role of a distributed clustering atfor is to ensure that the data accumu-
lation process will be performed in an economic manner, @wonsg a minimal amount of network
resources. This illustrates the direct applicability & groposed sequential sampling framework to
Distributed Clustering, since it allows for the determioatof the minimal sample size that needs
to be communicated such that a reliable clustering is cocisd.

It should be noted that although this work presents the fppt@ach that considers the problem
of Distributed Spectral Clustering and Distributed Spa&ldtrmeans, there exists a large body of
literature on Distributed Lloyd'&-means for several types of networks [Datta et al. 2009; Band
opadhyay et al. 2006; Datta et al. 2006; Forman and Zhang;20ilon and Modha 2000]. A

IThroughout the rest of this paper we will refer to the cortinsirelaxation approach for approximatiadyleans, as Spectral
k-Means.
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shortcoming of these approaches is that they are commdatadixed number of clusteksand do
not take into account thefect that the choice df has to the required bandwidth consumption. We
should note here that there exist some works that aim in tilegethe number of well separated
clusters in a distributed manner [Tasoulis and VrahatisA20@wever these approaches do not
quantitatively relate the “correct” number of clustershwiihe required sample size kimeans. As
we have stated earlier, the choicekafan have a significantiect on the sample size requirements,
and thus an inappropriakeselection can lead to excessive network load consumptiase®on this
observation it can be argued that a distributed clusteriggrizthm should have the ability to esti-
mate the relevant bandwidth requirements fokathus providing a network administrator with the
ability to select & that derives an economic crude cluster structure of a dafEise proposed Dis-
tributed Spectral Clustering and Distributed Spedtraieans approaches have this feature and in
fact this constitutes a distinct advantage they have oeerdlevant Lloyd-type Distributekkmeans
approaches.

Before we present the contributions of this work we will pdeva brief non-technical summary
of the proposed framework. The sequential sampling algorinitially considers as input a large
dataset that cannot be directly analyzed and randomlysspiih smaller samples. Consequently,
these samples are iteratively merged in a sequential mamtéiour theoretical analysis guarantees
that the desired approximation levels with respect to theative function and the cluster results are
reached. In the heart of the proposed approach liedtaneat Bootstrap-based methodology that
assesses at each sequential step whether the input apptmximequirements are achieved. The
efficiency of the proposed methodology is based on Matrix Peation Theory results that allow
us to relate the accuracy of the elements of the input dataxathe accuracy of its spectrum. We
also demonstrate that our framework can be generalizechidld&lormalized Spectral Clustering,
when the object-similarity (which is an input in Spectraugtering) is defined in the form of an
inner-product. Experiments demonstrate the convergdrber of the proposed framework and
also provide insights on the appropriate choice of the ipaumameters. More precisely, the exper-
imental results lead to the definition of an automated selegirocess for the input requirements
such that the quality of the sub-sample considered at timairiation of the sequential sampling
process tightly approximates the asymptotic classeserlperformance. Based on the automatic
tuning of the input-requirements, our approach can be densdl as a stand-alone algorithm that
automatically determines the required sample size sudhthikaclustering performance does not
further improve when larger data sizes are considered. Wiards to the application focus, we
conduct extensive experiments against distribltdteans approaches and demonstrate the superi-
ority of our approach with respect to bandwidth consumption

The contributions of this paper can be summarized in thevotig:

— A new perspective to sequential sampling k-meansiVe introduce a novel perspective to the
sequential sampling problem for Spectkaheans and demonstrate that it can be reduced to the
statistical estimation of the appropriate feature-tdifeasimilarities. This view is diierent than
most sampling approaches fomeans that aim in accurately estimating the relevantetusn-
ters or objective function. As we will analyze subsequeirilynore detail, this is an important
distinction and allows our framework to be independent add+hoc prior selection of parameter
k.

— Efficient statistical accuracy estimation of the appropriate giantities: In the proposed frame-
work, we do not make any assumptions regarding the dataggmgedistribution, thus a challenge
that arises is concerned with thieient computation of the appropriate statistical accuessy
timates. In this context we propose afii@ent bootstrap-based methodology that presents an
improvement in terms off&ciency over the direct application of Bootstrapping on thecsral
solution.

— Number of clusters and required sample sizeAnother novel feature of the proposed framework
is that it provides at each step of the sequential samplioggss an estimation of the required
relative sample sizes for all possible valueskof.e. based on our framework we can identify
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the number of clustersthat attains the smallest sample size requirements, an@mwelso draw
conclusions such as: “the reliable identifications of a éhckuster structure requires less data
than a two cluster structure but more data than a four clsstecture”. This is a unique feature
that, to the extend of our knowledge, is not provided by ote&vant sampling-based clustering
frameworks.

— Number of clusters and required bandwidth: In the context of Distributed clustering, our ap-
proach dfers the unique feature of providing a statistical estinmatb the relative bandwidth
requirements for all possible values kfThis is an important feature that provides a network
administrator with better control over the Distributed §&ring process.

2. DISTRIBUTED CLUSTERING AND SAMPLING APPROACHES

In the Data Mining literature, the term “Distributed Clustey” is largely overloaded and is em-
ployed to refer to diverse distributed data mining problentmus, in order to clarify the application
context of this work, we will initially provide a brief categization of the distributed clustering
literature and also present the central problems that amsidered. In this analysis we will also
highlight the relevance of sampling approaches and justify it is natural to consider the applica-
tion of distributed clustering to the proposed sequenéaigling framework.

An initial categorization of the Distributed Clusteringeliature can be made on the basis of the
type of distributed network that is considered. Severafribisted Clustering approaches have been
proposed for structured and unstructured Peer-to-Pewpriet (such as [Datta et al. 2009; Bandy-
opadhyay et al. 2006; Hammouda and Kamel 2007]) and Senseorkes (such as [Younis and
Fahmy 2004; Bandyopadhyay and Coyle 2003]). These netvepdsify several dierent require-
ments, for example in sensor networks, due to the low enespurces, itis required that a minimal
number of local (sensor level) computations are perforrAgdrt from the application specific ap-
proaches, there exist more generic works that define a segofrements for the structure of the
network or the data that are contained (such as [Datta e086;2Januzaj et al. 2004; Kargupta
et al. 2000; Klusch et al. 2003; Kriegel et al. 2005; Zhang.€2@08]) and then design distributed
clustering algorithms that satisfy these requirements.ditersity of distributed data mining meth-
ods can be observed even in specific application areas, suP2R networks, where there exist
several diferentiations between various types of P2P networks suctniagiged, unstructured or
semi-structured. Albeit the large diversity that existsequirement that is commonly imposed is
related to the minimization of the required bandwidth reses. This requirement highlights the
relevance of sequential sampling that allows for the deiteation of the minimal sample size that
needs to be communicated for constructing a representtistering model of the whole network.
The relevance of random sampling in distributed networksatao be illustrated by the fact that it
has been considered as a separate research problem (Aeaiiefal. 2007; Awan et al. 2006]).

Due to the large volume of work that exists in the topic ofrilistted clustering, prior to present-
ing the specific technical details of the proposed framewagkvill carefully identify the research
problems that still remain open in the area. An open problembe considered as the definition of
“distributed-versions” of centralized algorithms thavbanot yet been introduced. The “distributal-
ization” of centralized algorithms would enhance the tolodg networks administrations can employ
and possibly define new, or highlight the importance of okksgch problems in Distributed Data
Mining. Based on this observation we consider in this papesampling-based “distributalization”
of Spectrak-means and Spectral Clustering. To the extend of our knayelétere do not exist sam-
pling based distributed versions for these algorithms. dogosed framework introduces a novel
perspective to the Distributddmeans problems which is reduced to the statistical estimaf the
feature-to-feature similarities as opposed to the relelsiributedk-means approaches that focus
on the estimation of the respective cluster centers oralwdtjective. This introduces certain novel
insights and could lead to a development of network-spec@fiftmunication ficient algorithms
for feature-feature similarity estimations.

Another open problem that can be considered is related tarthlysis of the #ect of clustering
parameters to the required bandwidth consumption. Foaiogparameters, such as the number of
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clusters, it is known that clearly separated clusters redess dadandwidth for the statistical es-
timation of their cluster centers [Guha et al. 1998]. To tkieed of our knowledge, this qualitative
knowledge has not been quantitatively analyzed for spetigicibuted clustering algorithms. Based
on this observation, we consider in this paper a Distrib@kctering algorithm, that can automati-
cally assess the relative required sample sizes for alifgesshoices ok (number of clusters). This
is a “built-in” feature of the proposed framework and no extsources need to be devoted for this
estimation.

Now that we have presented the main open problems that witbbsidered in the application
area of Distributed Clustering, we can move on and providaed Imtroduction to the algorithms
we study, i.e. Spectr&means and Spectral Clustering. Their introduction wality the diferen-
tiations between Spectriklmeans and Lloyd'&-means that will eventually lead to the formulation
of the proposed sequential sampling framework.

3. K-MEANS, SPECTRAL K-MEANS AND SPECTRAL CLUSTERING

k-Means clustering, is one of the most popular methods fartifjéng groups in data. It considers
as input the numbek of clusters and aims in retrieving tlkeclusters that minimize the following
objective function.

k
Je= D0 > 1% =yl

j:l ieCy

wherex; are the input data ana, are the cluster centroids. The most well known heuristidor
Means is Lloyd’s algorithm [Lloyd 1982]. Due to its wide usedgpractical &ectiveness, Lloyd’s
algorithm is commonly referred to as tkeMeans algorithm.

Another approach that has been proposed, considers theapelaxation for approximating the
k-Means objective [Ding and He 2004; Zha et al. 2001; Gordahtdenderson 1977]. These ap-
proaches are based on the fact thatitiMdeans optimization problem is equivalent to the following
trace maximization problem.

miny(Tr (XXT) = Tr (YTXXTY)) = 1
max,(Tr (YTXXTY)) 1)

WhereX is theobjectx featurematrix? andY is a matrix with sizen x k (nis the number of objects
andk is the number of clustersY.is defined as:

L . . -
Y. =1 V= if object|_e e
0 otherwise

with || denoting the size of clustar. It can be observed that is an orthonormal matrix that
contains the discrete cluster assignments for the datatsbje

The formulation ofk-Means as a trace maximization problem makes apparent ldheanee of
spectral techniques, since if we relax matfito be any orthogonal matrix, the continuous relaxation
solution can be derived by thedominant eigenvectot®f the object-similarity matrix< X". More
precisely, the matriyy that maximizes the objective function (with the continuoeisixation and
the constrainty"Y = I,) contains thek dominant eigenvectors as columns. Since the results are
continuous, and do not correspond to crisp cluster assigtanan additional step is required for
discretizing the results. To this end several approaches haen proposed for discretizing the
continuous solutions ([von Luxburg 2007] and referencethinj, with the most popular choice
being Lloyd’'sk-Means.

2|n the context of this work we will always denokeas theobjectx featurematrix
3In the context of this work we will refer to thedominant eigenvectors as the eigenvectors that correspahek largest
eigenvalues
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Normalized Spectral clustering works in a similar manned aims in retrieving thé clusters
that minimize the Normalized Cut objective function (whistalsoNP-Hard):
k

NCUt(Ay, ..., A = Z %(qu)
i-1

wherecut(A, A) = Zienjea W(, ]), VOI(A) = ¥ica 2?:1 W(i, j), nis the number of objects aM(i, j)
is the similarity between objectand]j.

This problem can also be stated as a Trace minimization @nolpShi and Malik 2000] in the
form:

minyTr (YT (I - D~Y2WDY/2)Y) (2)

whereW is the object similarity matrixD is the degree matrix as inducedWyandY is the orthog-
onal matrix with sizen x k (n number of objects ankithe number of clusters) defined in a similar
manner as above. Essentialfycontains the discrete cluster assignments for the datatsbjéwe
relax the matrixy to be any orthogonal matrix, the continuous relaxationtsmbucan be derived
by the k eigenvectors that correspond to tkemallest eigenvalues of the normalized Laplacian
L = | - D-Y2wWD Y2, It should be noted that in the case of 2-way clustering, thereector that
corresponds to the second smallest eigenvalue should beysdp

4. SPECTRAL LEARNING BASED ON FEATURE-SIMILARITY MATRICES
4.1. Spectral k-Means

It can be observed that both Spectral Clustering and Spéelf@ans are based @bjectx object
matrices. More precisely, SpectiaMeans is based on the object inner-product similarity ixatr
XX and (normalized) Spectral Clustering is based orothjectx object“distance” matrixL. As
the sample size grows, the sizes of these matrices changedawgly, thus enhardening the study
of the asymptotic clustering behavior.

In order to facilitate the study of SpectiaMeans with growing sample sizes we make the obser-
vation that the algorithm'’s output can be derived by a fesagimilarity matrix that remains constant
in size as the sample size grows. More precisely, we canwbfeat if 4; andu; is an eigenvalue-
eigenvector pair of the feature inner-product similaritatrix XTX, then; and Xu/[|Xu]|, is an
eigenvalue-eigenvector pair of the object inner-prodircilarity matrix. This observation illus-
trates that we can derive the cluster solutions by simpljegptmg the data matriX onto the eigen-
vectors of the feature inner-product similarity matrix.igts a crucial observation and allows us to
confine our study to the constant in size feature similarigfrir.

It can be observed that as the sample size grows, the olgdatiction ofk-Means becomes
larger, not converging to a constant value. In order to asitftes issue, we consider the normalized
feature inner-product similarity matri#XTX (n is the number of objects), that produces exactly
the same eigenvectors (and thus continuous solutions) XsAs we will analyze in section 6, the
factor% can guarantee the convergence of the objective functidmercontext of the law of large
numbers ag — oo. Based on these considerations we can state the Spledtiedns optimization
problem as:

max (Tr (Y[ % XTX]Y)) (3)

The connection between SpectkaMeans and the spectrum of feature similarity matrices was
also taken into account in the work of [Ding and He 2004], vettbe authors have demonstrated that
by conducting an appropriate continuous relaxation to tiggral clustering problem, the solution
of k-Means can be derived by the projections of the data orkth@rincipal vectors. Their main
result is summarized in the following theorem.
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Tueorem 4.1 ([Ding anp He 2004]). When optimizing the k-Means objective function, the con-
tinuous solution for the transformed discrete cluster mersibip indicator vectorsare given by
(1, ..., Vk-1), Where y = %Xcui. Thed; and y,i=1,....k—1are the k- 1 largest eigenvalues and
the respective eigenvectors of the input covariance madnx X is the centered object feature
data matrix.

It can be observed in the above theorem that the authors grhpld (and notk) eigenvectors
for solving thek-Means clustering problem, and also that they employ theife@ovariance matrix
(which can be considered as a centered inner-product sityifar the features) and not the fea-
ture inner-product similarity. The reason is that the raton is performed on a slightly fierent
objective function.

max, Tr (YTXXTY) — Tr (X X]) = @)
max, Tr (YTX.XTY)

whereY is an orthogonah x (k — 1) matrix andX. is the centered data matrix. For details on the
derivation, the interested reader can refer to [Ding and B4R As it will become apparent in the
subsequent sections, our methodological approach canuadyegpplied to both spectrétMeans
formulations.

4.2. Normalized Spectral Clustering

Similar results can be derived for the normalized Laplacigren the instance-similarity matrig/
can be expressed as an inner product matrix at a fixed fegtace sBy using the word “fixed” we
refer to a feature space that remains constant as the saimg@gews, i.e. Gaussian and Polynomial
Kernels do not fall into this category. Examples of valtchoices include the simple inner product
W = XX and other inner-product variations W such as the normalized inner-prodWt =
XDy*XT (with Dy being a diagonal matrix an@y(j, j) = ¥ X(i, j)).

In order to demonstrate that the Spectral Clustering resalt be derived by a feature-similarity
matrix whenW = X X', we define the weighted feature-similarity maffierms imas:

TermSim= (X"'D71X) (5)

whereD is the graph degree matrix as derived by matvixNow if we consider; andu;, i = 1,...,n

to be the eigenvalues and the respective eigenvectors dféhaS immatrix, then it can be easily
shown that 1- A' is an eigenvalue and - (D~Y2X)u' the respective eigenvector of normalized
LaplacianL, wherec is a constant that guarantees that the norm of the eigemisatgqual to 1.
Similar results can be derived for other inner-productioeisof W.

Based on the above, we have established the direct conndmtitsveen the eigenvectors of
TermSimand the eigenvectors of normalized LaplaclanTaking into account this observation
we can study the behavior of the clustering results as th@leasize grows, using the fixed size
feature similarity matrixir ermS im

5. QUALITY MEASURES: OBJECTIVE FUNCTION AND CLUSTER RESULT S
5.1. Objective Function

Recall that the Spectr&dMeans and the Spectral Clustering optimization problerasstated as
trace maximization problems (equations 2,3,4) and the dantieigenvectors of the respective
feature similarity matrices are employed for deriving tlemtinuous cluster solutions. Thus, the
appropriate objective function can be derived by the sunhefdigenvalues that correspond to
eigenvectors employed for the (continuous) clusteringtgmh. More precisely we can state the fol-
lowing three observations that are a direct consequencegopalar theorem of Ky Fan (theorem
3.2in [Ding and He 2004]).

4The theorem refers to the continuous relaxation defined ingBnd He 2004]
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OsservaTioN 1 (SPECTRAL K-MEANS, BASED ON EQ. 3). Given an input object-feature data matrix
X, the objective function for the continuous relaxation pfimization problem 3 is derived by
Z!‘Zl A, whered;, i = 1,..., k are the k dominant eigenvalues of the feature-similariyrin X X.

OsservATION 2 (SPECTRAL K-MEANS, BASED ON EQ. 4). Given an input object-feature data matrix
X, the objective function for the continuous relaxation pfimization problem 4 is derived by
Z!‘;ll Ai, where;, i = 1,...,k— 1 are the k— 1 dominant eigenvalues of the feature-covariance
matrix.

OsservaTioN 3 (SPECTRAL CLUSTERING, BASED ON EQ. 2). Given an input object-feature data ma-
trix X, and W = XXT, the objective function for the continuous relaxation o thptimization
problem 2 for k> 2 clusters is derived bE!‘:l Ai, whered;, i = 1, ..., k are the k dominant eigenval-
ues of the TermSim X" D~1X matrix. When k= 2 the objective is derived by, whereA, is the
second largest eigenvalue of matrix TermSim.

Based on the above, it is evident that in order to measure dpe@totic (infinite-limit data)
approximation level for the objective function of Speckalleans and Normalized Spectral Clus-
tering, one should measure the proximity of the sample<ba&genvalues to the asymptotic ones.
Statistics provides us with a formal framework for studyihg proximity of the sample-based esti-
mates to their expected value results. More precisely,cbasestatistical accuracy and asymptotic
analysis we can derive that a sample size ii@ent for producing adequately accurate estimations
with high confidence i.e. if we draw fiierent samples (of the same size) from the data generating
distribution the approximation requirement will hold witigh probability (i.e. in 95% of experi-
ments). This is an extensively studied issue in the stediditerature, and depending on the assump-
tions that one can make concerning the data generatingodistn, there exist several approaches
for deriving the statistical accuracy and asymptotic props of the sample eigenvalues (a literature
review for certain types of random matrices can be found & [E999]).

5.2. Clustering Results

In the afore subsection, we have demonstrated that thetiMgjéenction approximation can be cast
as an eigenvalue estimation problem. Since, the (contsjudustering results are derived by the
appropriate eigenvectors, one can analogously considgprithlem of measuring the asymptotic
(infinite-limit data) approximation level of the clustegimesults as an eigenvector estimation prob-
lem. However, this a slightly harder problem than one need®lve, since the continuous results
actually depend on the space spanned by the employed edersjgather than the eigenvectors
themselves. This is because the cluster results are ddswpdbjecting the original data onto the
estimated eigenvectors, thus any basis of the space thmnaed by these eigenvectors would suf-
fice to produceexactly the same distances between the projected objeutsEuclidean distances
between the projected data is employed by many authors fasirtpthe discrete cluster solutions
([von Luxburg 2007] and references therein), thus presgrttie same distances in the projected
space would sfice to produce the same clustering results.

In order to illustrate the problematic nature of studying tiehavior of eigenvectors, consider
a feature similarity matrix that converges (asymptotigab a matrix whose largest eigenvalae
has algebraic multiplicity 2 (i.e. the largest eigenvaloeresponds to two eigenvectaugr). It
can be easily observed that any basis of the space that isepdayu andu’, produces a valid
pair of eigenvectors that correspond to eigenvaluélthough the eigenvectors in this case are
highly unstable, the projection of a data matrix to theiregigpace produces constant distances,
independent of the basis chosen for the projection. Thimelaillustrates that there can be cases
where the eigenvectors do not converge to a stable solutiuiig the eigenspaces exhibit a coherent
behavior.

This observation allows us to cast the problem of approxitgahe asymptotic cluster results as
a statistical-estimation problem of the appropriate esgee (i.e. the space spanned by the eigen-
vectors that take part in the clustering solution). Basetheranalysis presented we can elaborate
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on the original research goals.
Original Goal:

— Find a sufficiently large sub-sample of the dataset such that the diegpproximation thresholds
are achieved with high confidence.

Equivalent Goals:

— Find a stficiently large sub-sample of the dataset such that the apptegample-based eigen-
values approximate the asymptotic eigenvalues with higifidence.

—Find a stficiently large sub-sample of the dataset such that the apptepsample-based
eigenspace approximates the asymptotic eigenspace ghicbinfidence.

6. APPROXIMATING THE ASYMPTOTIC RESULTS
6.1. Objective Function

We will now present the proposed methodological approachdoving the sample-based approx-
imations to the asymptotic Objective function, which aslgred in the previous section, can be
cast as an eigenvalue estimation problem. The issue ddtitatiestimation of sample eigenvalues
has been extensively studied and several methodologipabaphes and algorithms have been pro-
posed. However, in the context of this work we assume thatavead have any knowledge of the
data generating distribution, thus severely reducingdinge of methods that can be employed.

A popular approach for measuring the accuracy of statististmates without making unnec-
essary distributional assumptions is Bootstrapping [E®ad Tibshirani 1993]. Given a random
sample, generated by an unknown probability distributiod a statistic of interest, the bootstrap-
ping procedure generates several independent bootstrgpesaby sampling with replacement and
consequently computes the appropriate standard errorscanfidence intervals based on the varia-
tion exhibited by the statistic of interest. The theordtjgstification for Bootstrapping relies on the
Glivenko-Cantelli theorem (can be found in [Chung 1974attin the context of an iid sample, as-
serts that the empirical distribution, as derived by sangplith replacement, converges uniformly
with probability 1 to the unknown data generating distribot Moreover, a smoothness condition
on the function used for estimating the statistic is requ#ech that the convergence to the asymp-
totic results is guaranteed.

Bootstrapping has been previously used for computing thisstal accuracy of eigenvalues
[Efron and Tibshirani 1993]. However, it is evident that tBeotstrapping approach would im-
pose a significant computational overhead as it would reghie computation of the eigenvalue-
decomposition multiple times (1000-2000 bootstrap samate commonly required for construct-
ing confidence intervals). In order to address this issuesmgloy Matrix Perturbation Theory that
allows us to relate the statistical accuracy of the elemefdismatrix to its eigenvalues.

TueoreM 6.1 (WEYL's THEOREM [STEWART AND SuN 1990]). Let A be a symmetric matrix with
eigenvalueq; > 1, > ... > 1, and E a symmetric perturbation with eigenvaluges e > ... > &,.
Then fori= 1, ..., nthe eigenvalues of A+ E will lie in the interval[A; + &y, Ai + €1].

In the context of this world is the appropriate feature similarity matrix that is usedcfamputing
the objective function. Weyl's theorem allows us to iniffadvaluate the statistical accuracy of the
elements of the input matrix (as encoded by error-mdf)ixand consequently assess thteet
of error matrixE to the eigenvalues. In order to compute matEixwe can consider the task of
estimating the statistical accuracy of all the featureiairty pairs (i.e. all the elements of the
feature-similarity matrix), by means of confidence intésvRecall that confidence intervals present
us with a standard approach for determining the range ofgadustatistic of interest will assume
around its expected value, with high confidence. Having agetpthe confidence intervals, we can
defineE in the same manner as in [Mavroeidis and Vazirgiannis 200&yrvkidis and Bingham
2008; 2010], i.e. as the maximumfi@dirence between the feature similarities and the endpaints o
the corresponding confidence interval. Thus, high valuesl@&nents of matri will correspond to
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wide confidence intervals, while small values will corresgao highly accurate estimates. Having
definedE, we can employ Weyl's theorem and directly assess ffezieof the (in)-accuracy of the
input matrix elements to its eigenvalues. The size of thereiglues of matriE will determine the
upper bound on the objective function estimation. It is enicthat this process avoids the multiple
eigenvalue computations, thus significantly reducing th@putational overhead imposed by the
bootstrap process.

6.2. Clustering Results

We will now present the proposed methodological approactiéaving the sample-based approxi-
mations to the asymptotic Clustering results, which asyaeal in the previous section, can be cast
as an eigenspace estimation problem. It can be observed tvater to measure the approximation
to the asymptotic eigenspace, the definition of a distan@esare between subspaces is required. In
the context of this work we employ the normfi@rence between the respective projection operators
that is a popular measure for evaluating the distance betselespaces. As in the case of eigen-
values, bootstrapping directly the eigenspaces would sagosignificant computational overhead
since it would require the computation of the eigenvectraimposition multiple times. In order
to address this issue, we employ Strewart’s theorem on therpation of invariant subspaces.
The subsequent theorem presents a slightly modified vedditire original Stewart’s theorem, as
presented in [Papadimitriou et al. 1998]:

THEOREM 6.2 (StEWART'S THEOREM [STEWART AND SUN 1990]). Let A and A-E be nxn symmetric
matrices and let \&= [V; V;] be an orthogonal matrix, with e d x n and \4 € (n —d) x n, where
rangg(V) is an invariant subspace for A. Partition the matrice5A¥ and VVEV as follows:

Tay_ | Q O
VAV—[O Qz]

Ein E
VT EV = 11 12
[ E21 B2z

0 = Amin — Umax— ||E11ll2 = l|E22ll2 > O

whereAmin is the smallest eigenvalue ofi @nd umax is the largest eigenvalue of and||E12ll2 <
6/2, then there exists a matrix B (n — d) x d with ||P|> < §||E21||2, such that the columns of

Vi = (Vi +V2P)(I + PTP)% form an orthonormal space that is invariant for4AE. Moreover,
concerning the distance between the projection operatongsponding to Yand V, we have that

2
IPv, = Py;ll2 < 5“E21”2

Given matricesA andE, Stewart’s upper bound requires the computatioVef:Va, Amin fmax
Ei1, Exz andE;s. In Spectrak-means the solution is derived by thelominant eigenvectors of the
input matrix, thusv; is defined by the toj-eigenvectors oA (as columns) ant, is defined by the
restn — k eigenvectors. Based on these definitionsvipandV, we will have thatlyin = Ay, i.e. the
k" largest eigenvalue of matrik andumax = Ak.1, i.€. thek + 1 largest eigenvalue of matri The
above specifications clarify how Stewart’s upper bound @aodmputed given the input matricAs
andE.

We will also derive here two simplified expressions of Steétwdround. One simplified bound
includes only termsly, Ax;1 and Ez;, while the other includes solely, Ax.1 and E. In order to
derive these bounds we need to make a stronger assumptitimefeize of the eigengap than the
one employed in Stewart’'s theorem. The eigengap requireimeStewart’s theorem is expressed
in the formulad = Amin — tmax — [IE11ll2 — l|E22ll2 > 0, which translates in our context ak —
Ak+1 — ||E11ll2 = I|E22l2 > 0. If we now impose a stronger assumption for the size of thergjap,
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Ak — A1 > 2(|E1all2 + ||E22l]2) we can derive for the upper bound employed in Stewart'srémao
that§||E21||2 < %. Thus,% can serve as an upper bound to the continuous results. Notice
that this bound can be computed using solely the approfEigtenatrix and the eigenvalues &f
If we further observe thaEzll> < [|E|l2 then we can derive thafEale < AL thys 48 can
also serve as an upper bound to the continuous results.

MatricesA andE that are required as input for computing Stewart's uppendare derived in
a similar manner as in [Mavroeidis and Vazirgiannis 2007yMaidis and Bingham 2008; 2010]
using the following procedure:

— Employ Bootstrapping (of objects) and compute confidentervals for the elements of the ap-
propriate feature-similarity matrig.

— Define perturbation matrik such thag(i, j) contains the maximum fierence between t1&i, j)
and the endpoints of the respective confidence interval.

— Compute an upper bound on thefdrence of the eigenvalues betwegrand S + E based on
Weyl's theorem.

— Compute an upper bound on thdfdrence of the eigenspaces betw&eandS + E based on
Stewart’s theorem.

The dficiency of this procedure is based on Matrix Perturbationofheesults that allows us
to perform the bootstrap process on the elements of the ppate feature-similarity matrix and
consequently measure thffext of the variability of the matrix elements to the matrigfsectrum.
Thus, this method does not require the computation of thenettecomposition o as opposed to
the naive application of Bootstrapping that would requid®d-2000 such computations. Although
this approach provides us with affieient Bootstrap-based proximity estimation of the sample-
based spectrum to its expectation, it can be argued thanibtipractically dicient in the cases
where a large number of features is used. This is becausedjuestial sampling procedure would
require the bootstrap-estimation of all the feature-titiee confidence intervals multiple times until
convergence. In Section 7.1 we address this issue and emttameficiency of this procedure by
demonstrating that the desired bound can be derived by ciimgpat each sequential stép m
confidence intervalsk(is the number of clusters amdthe number of features), insteadrof that
are computed by the aforementioned approach.

It is evident that the afore approximation bounds are ddrfee the continuous cluster results,
thus itis natural to inquire as to whether these bounds extethe discrete cluster solutions. Based
on the favorable empirical performance of Spectral Clusgeand Spectrak-means, also reported
in the experimental section of this paper, it can be arguatlithpractice the spectral clustering
output can serve as a good approximation to the discreteeclhesults. From the theoretical point
of view, recent results [Huang et al. 2009] have demonsitrttat under certain assumption the
norm-distance between the continuous solutions can serae apper bound for theftiérence in
the discrete cluster results. Thus, there exist empiricdltheoretical evidence, that justify the use
continuous bounds for measuring the proximity between exsal solutions.

7. THE SEQUENTIAL SAMPLING ALGORITHM
7.1. The Algorithm

We will now formally define the sequential sampling procdes terminates when the theoretical
analysis, as described in the previous section, guaratitaethe required approximation levels are
reached. This procedure consists of two components, ormuating for the sequential sampling
process and the other accounting for tifeceent computation of the Bootstrap confidence intervals.
In the first component there are several practical issuésted to be resolved. One such issue is
related to the sequential sampling scheduling, i.e. therdehation of the initial sample size as well
as the specification of the increase of the sample size atssaplential step. Several approaches
have been proposed in the relevant literature for addrg#isese issues [Guha et al. 1998; Banerjee
and Ghosh 2002; Domingos and Hulten 2001; Provost et al.]198@se approaches employ the
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popular Hoéding and Chernfd inequalities for determining the initial (or directly thequired)
sample size and also consider sophisticated samplinggieat such as the geometric increase of
the sample size at each sequential step.

In the context of this work, we do not utilize Hfding or Cherné type bounds for estimating the
initial (or required) sample size since these are wors¢-tasinds and commonly overestimate the
required sample size. Moreover, with respect to the samgltheduling mechanism, we consider a
simple sampling procedure that enlarges linearly the saisipke until the convergence criteria are
met. In relevant approaches, there exist more sophisticapling scheduling mechanisms, such
as geometrical sampling [Provost et al. 1999], however thpigcal evidence in the experiments
section suggests that linear samplin¢fises to achieve a quick converge to the asymptotic results.

The sequential sampling algorithm is illustrated in Alglomh 1, while the Bootstrap-based accu-
racy estimation process, described in the previous se@isnommarized in Algorithm 2. We should
stress here that there exist various Bootstrap procedorggherating the desired confidence inter-
vals[Efron and Tibshirani 1993] but this choice does rtget the general intuitions of the proposed
approach.

With regards to the time complexity of Algorithm 1, each sewfial sampling step requires
O(m?® + P - n) time, wheremis the number of features ands the number of objects. The® factor
refers to the required eigendecomposition for computirglitbunds based on Weyl and Stewart
Theorems, whilar? - n refers to the computation of the feature similarity matndahe cost of
constructing the confidence intervals. It is evident thas@n as the number of objects becomes
larger than the number of features, ine> m, the component that dominates the time complexity
is m? - n. A hidden computational burden that is not apparent inQHeased analysis is related to
the estimation of the bootstrap confidence intervals. Thiseicause it is generally accepted that
1000-2000 bootstrap samples are required for computingbtel confidence intervals[Efron and
Tibshirani 1993]. Thus, the bootstrap process requires1000— 2000 estimations of the feature
similarity matrix, resulting in a total o8 - m? - n such computations. It should be noted that the time
complexity of both Bias Corrected and accelerated (BCaljidence intervals as well as percentile
intervals (that are consecutively employed in the expemis)as dominated by the multiple com-
putations of the feature similarities. For details and thprapriate formulas for computing these
confidence intervals the interested reader can refer tofEfnd Tibshirani 1993].

It can be observed that a large portion of the computatiomaldn for deriving Stewart’s upper
bound is associated with the Bootstrap confidence interValis is due to the fact that bootstrap
confidence intervals have to be computed for all featuriedddre similarities repeatedly (1000-
2000 times at each sequential sampling step). Thus, it wioelldesirable if one could avoid this
burden and compute solely an “informative” subset of thesgfidence intervals. This potential
arises if we observe that one of the simplified bounds derimetie previous paragraplj‘!ffflkk
employs matrixE,; which is smaller in size matrix thal. The use of this bound does not attain
any direct advantages sinEe; is a submatrix o/TEV and notE, thus it requires the prior com-
putation of the fullE matrix. However, as we will demonstrate subsequently, tirenrof E»; can
be approximated using a submatrixefthus requiring in the computation of solely a subset of the
feature-feature similarities.

In order to achieve this goal we will firstly make some obstoves regarding matriceB and
VTEV. In the context of our work/ contains as columns the eigenvectors of the appropriaigréea
similarity matrix, thus the matrice8 andVTEV are similar, in the linear algebra sense, i.e. they
have exactly the same eigenvalues and thus also the samenkrsland spectral norms. Moreover,
Gerschgorin’s theorem [Stewart and Sun 1990] (commonbyrrefl to as Gerschgorin’s disks) as-
serts that each eigenvalueof E andVTEV is bounded by the sum of the absolute value of the
elements of a certain line (or column), ilg| < };|&;|. Based on these three observations, i.e.
eigenvalue equality, Frobenius norm equality (which ataplies the equality of the element-wise
squared sums), and also Gerschgorin’s theorem, we carn #sstidhe submatrices & andV'EV
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will have a similar structure and™ EV will not tend to overconcentrate the valuestbfn certain
submatrices.

Based on the above observations, we consider the use of apaiape submatrix of the original
E matrix and not of the transformed' EV for estimating the desired bound. This would enhance
the eficiency of the bootstrap process, since we would avoid coimgatl then? feature-similarity
confidence intervals, and concentrate solelyrox (k — 1) intervals. One issue that is immediately
raised is concerned with the choice of the appropatesubmatrix (of the originaE matrix). Since
each row and column @& corresponds to a specific feature, this question is esigmékated to the
selection of the appropriate features that will be utilimethe computation oE;. In the context of
this work we employ thek(— 1) features that exhibit the highest variance. The justificeof this
choice is based on the relationship between the samplingnee of a covariance estimate and the
variance of the individual features, that asserts thatfeatwith high variance are expected to have
larger confidence intervals. Thus, selectinglthel features with the highest variance follows the
general intuition of selecting a worst-case submatrix efdriginalE matrix.

The proposedfécient computation of Stewart’s bound is illustrated in Adgfam 3. It should
be noted that Algorithm 3 does not compute the filinatrix, thus it cannot derive Weyl's upper
bound on the objective function. Albeit the theoreticatifications of the icient Bootstrap-based
computation of the cluster approximation bounds, it is éagypnstruct counter examples where the
appropriate submatrix of the origin@lmatrix will underestimate the norm of the respective subma-
trix of VTEV. This illustrates the need for extensive experimentaleatiin. The empirical results,
presented in Section 9 demonstrate that the propd&edkat approach (illustrated in Algorithm 3)
can provide us with reliable estimates of the convergenteg@symptotic cluster results and also
enhance substantially théieiency of the sequential sampling framework.

ALGORITHM 1: Sequential Sampling SpecttaMeans
1: Input:

2: Training dataD generated by unknown probability distribution.
3: Required Approximation Level for Objective FunctidmresObj
4: Required Approximation Level for Cluster ResulteresClust

5. Cardinality of sequential sampling step
6
7
8

. Algorithm:
. Generate a random sequence of sub-sanigled,, ...,d,}, withd, Cc Dand #;, = ¢
. step= 0;dataset= 0

9: repeat

10: stepe« step+1

11: dataset— datasetU dgiep

12:  convergee(Efficient)BootCheck(dataset, ThresObj, ThresClust)

13: until ( Covergeé=True OR step=n)

7.2. Factors that affect Convergence

Since the sequential sampling process terminates wherpfir@xdmation requirements are met,

a question that naturally arises is related to the conditiomder which termination is achievable

(i.e. the algorithm does converge as the sample size gromwghis section we demonstrate that

the algorithm converges both with respect to the objectivetion, as well as to the cluster results

under quite general assumptions. It is also demonstraggdtia convergence of cluster results is
harder and depends on the existence of a cluster structthie olataset under study. The existence
of a clear cluster structure will result in fast convergefaethe algorithm, while the absence of a

cluster structure will result in slow convergence or everedjence.
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ALGORITHM 2: BootCheck
1: Input:
. Training data sampld.
. Threshold for Objective FunctiofhhresObj
: Threshold for Cluster Resul®hresClust
. Algorithm:
. Compute feature-similarity matri.
: Compute Bootstrap confidence intervals for elements.of
. Compute error-perturbation matrix
: Compute upper bound on the Objective Function based on Sviadbrem.
10: Compute upper bound on Cluster Results based on Stewartisctm.
11: if Thresholds are achieveden
12:  Return True.
13: else
14: Return False.
15: end if

0~NO O WN

(o]

ALGORITHM 3: EfficientBootCheck
1: Input:
. Training data sampld.
: Threshold for Cluster Resul®hresClust
. Algorithm:
: Compute feature-similarity matrig.
. Compute the&k — 1 features with highest variance.
: Compute Bootstrap confidence intervals for khe 1 features with alin features.
. Compute error-perturbation matrige; .
Compute upper bound on Cluster Results based on Stewastisstim.
10: if Thresholds are achieveden
11:  Return True.
12: else
13:  Return False.
14: end if

0~NO O WN

©

7.2.1. Convergence of Objective Function. Recall that the upper bound that quantifies the diver-
gence of the sample-based Objective Function is based onMatrix E, as derived by the lengths
of the feature-similarity confidence intervals. Lafgeralue entries signify highly inaccurate sim-
ilarity estimations, while small values indicate that timitarities have almost converged to their
expectations. It is evident that if the feature-simil@stindeed converge as the sample size grows,
the lengths of the respective confidence intervals will beesmaller at each sequential step even-
tually converging to zero. This means that the eigenvaldigs matrix will also be decreased in

absolute value, until they also converge to zero. We can sanmethese observations in the fol-
lowing corollary:

CororLary 7.1. Algorithm 1 will achieve the input requirements relatedtie Dbjective Func-
tion with a finite data sample if the theoretical assumptiohBootstrapping hold and the elements
of the appropriate Feature-Similarity Matrix converge agytotically to their “true values”.

Recall that in the case of optimization problem 3 we consﬂuiematrixr—l] XTX whereX is theob-
jectx feature and in the case of the optimization problem 4 the featuragamce matrix. Since the
elements of both matrices are averageahye. the number of objects, the convergence to the “true
feature-similarities” is guaranteed under mild assunmstiby the Law of Large Numbers. Similar
considerations have to be taken into accounflfermS imin the case of normalized clustering. It
should be noted that for compl&¥ and T ermS imdefinitions we can use the sequential sampling
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Fig. 1: Relevant Eigengap vs. Cluster centroid Distance

process to determine whether the Feature-similaritieserge to their “true values”. An indicator
for divergence would be that the values of the feature-sirtiés change as the sample size grows,
while the sizes of the confidence intervals get smaller.

7.2.2. Convergence of Cluster Results. In an analogous manner we can state that the convergence
of the eigenspaces (i.e. cluster results) is achieved wieegléments of the feature-similarity matrix
converge to their expectations and tieéevant eigengapgonverges to a non-zero number. We use
the termrelevant eigengapo refer to the minimum dierence between the eigenvalues employed
in the spectral solution with the rest. Thus tieéevant eigengajn the case of Spectr&Means,
as derived by optimization problem 3, is théfdience between theand thek + 1 eigenvalues;
while in Spectrak-Means, as derived by optimization problem 4, takevant eigengafs the dif-
ference between the— 1 and thek eigenvalue (eigenvalues shorted in decreasing orderydero
to understand why we need the relevant eigengap to conveaypasitive number, one should ob-
serve that in the prerequisites of Stewart’s theorem, tlevaat eigengap is required to be strictly
larger than some expression of the norm of the error-peatimb matrix. Thus, if the eigengap is 0
then the prerequisites of Stewart’s theorem will not bes§iati for any error-perturbation matrix
Moreover, when the eigengap is small, larger samples woellcequired such that the confidence
intervals become small enough to satisfy the prerequisft&sewart’s theorem.

The size of theelevant eigengapalso provides us with a measure of the cluster structurebexhi
ited in the dataset. More precisely, if the dataset has dendevell separated clusters, then small
perturbations will not fiect the cluster structure. On the other hand, a SpectrateZing solution
with a largerelevant eigengapwill also not be severelyfiected from small perturbations of the
input (this is a direct derivation of Stewart’s theorem)ughif the Spectral Clustering algorithm
indeed succeeds in identifying the correct cluster strnactilnen the size of the eigengaps can be
employed as a heuristic for measuring the cluster struexinéited in the dataset.

In order to demonstrate this behavior empirically we havesitered a two-cluster scenario
where the data is generated by a mixture of two Gaussianspwiith 1/2 each. It is evident that in
this context the cluster structure depends on the distastvecen the two cluster centers. In Figure
1 we report theelevant eigengapf Spectrak-Means as the distance between the two clusters be-
comes larger. As expected, the enlargement of the clustemdies increases the relevant eigengap.
We can summarize the discussion of this subsection in thaafimig corollary:

CororLary 7.2. Algorithm 1 will achieve the input requirements related he tluster results
with a finite data sample if the theoretical assumptions adtBwapping hold, the elements of the
appropriate Feature-Similarity Matrix converge their tie values” and also if the relevant eigen-
gap does not converge to 0.
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Fig. 2: Relevant Eigengap vs. Separated Cluster Distance

7.3. Number of Clusters and Sample Size/Bandwidth Requirem  ents

In Stewart’'s theorem we can observe that a requirement fiavidg a stable solution is that the
relevant eigengap is larger than some expression of the obthe E perturbation matrix. As we
have analyzed earlier, the normBfwill be reduced as sample size becomes larger because of the
increase in the accuracy of the feature-similarity estamal hus, one can consider selecting the
appropriatek that maximizes the relevant eigengap, since a large rel@gengap will require a
smaller sample to converge to the asymptotic infinite-datation. In the data mining literature
the heuristic of selecting the number of clusters that maéasthe relevant eigengap has been
employed by several authors (see [von Luxburg 2007] andeeées therein). These approaches
are commonly justified based on perturbation theory or gthpbretic arguments. To the extend of
our knowledge sample size arguments in the context of Sgéetneans, have not been employed
in the discussion of this heuristic.

Based on the analysis of the sample size requirements, weocesider that the goal should not
be to identify of the “correct” number of clusters, but rathe select among a set of plausible
clusterings the one that is easier to model. In order totidds the notion of multiple plausible
clusterings and their relation to the relevant eigengammeide the following example for Spectral
k-means in Figure 2. In this example, we have generated thdém@&nsional gaussian clusters each
containing 1000 objects, projected in 2-dimensional sgacehe needs of visualization. In the
left part of Figure 2 we report the position change of thedtuleisters that shifts from an initially
observable 2 cluster structure in the upper-left image (&tel centers initially overlap) to finally
reach a clear 3 cluster structure in the bottom-right imagéhe right side of Figure 2 we report
the evolution of the relevant eigengap for= 2 andk = 3. It can be observed that in the cases
where the 2 clusters are very close to each other, the eigdagk = 2 dominates. This illustrates
that a smaller sample size is required for constructingialrel 2-cluster model for the data. This
clustering solution would group together the two clustbed aire situated closely together. On the
other hand, as the two clusters become well-separated lthant eigengap fok = 3 dominates
and a smaller sample size is required for modeling the thhester structure.

An interesting observation in Figure 2 is that the relevageegap folk = 2 not only becomes at
some point smaller than the relevant eigengagkfer 3 but reaches almost a zero value. This can
be justified if we observe that in the bottom right clusteritige cluster centers lie on the vertices
of an equilateral triangle. Thus, settikg= 2 would force the Spectr&tmeans to group two of the
three clusters together. However, due to the symmetricsitipning of the clusters, this grouping
would be highly unstable as there does not exist a pair oftaisighat are closer together and
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different samples will produceftirent groupings due to the smalfféirences in each sample. Since
a fully symmetrical dataset cannot be constructed (andsis lailghly unlikely to exist in practical
applications), the 2-cluster solution would eventuallywerge to the asymptotic solution, but it
would require a very large data sample.

8. RELATED WORK

We will now summarize the research work that is relevant eopgitoposed framework. The related
work section is divided in two subsections: The first suisagbresents the recent developments
on the characterization of the asymptotic behavior of Spe€iustering and also also summarizes
the relevant sequential sampling approaches, while trensgaresents the relevant distributed PCA
andk-Means approaches. Although the latter are not conceptaddited to the proposed framework
their summarization is required, since we compare agdiesh tin the experimental section.

8.1. Sequential Sampling and Asymptotic Behavior

Although, Spectral Clustering algorithms have receiveghificant attention from data mining re-
searchers, only recently has their asymptotic behaviar blearacterized [von Luxburg et al. 2008].
In the work of von Luxburg et al. the infinite-limit data belavof Normalized and Unormalized
Spectral Clustering is studied and the convergence regeinés are analyzed. Interestingly it is de-
rived that Normalized Spectral Clustering converges unaae general conditions than unormal-
ized spectral clustering, thus providing a theoreticallstified preference for Normalized Spectral
Clustering. To the extend of our knowledge there have beeattempts to define sequential sam-
pling algorithms that aim in achieving a pre-defined appration to the asymptotic behavior of
Spectrak-Means. Such sequential sampling algorithms have beeropedifor several other data
mining paradigms [Domingos and Hulten 2001; Provost et@99] Banerjee and Ghosh 2002].
Although not directly relevant, there exist severfilagent sampling strategies for Lloydls
means in various application contexts (such as [Ailon eR@09; Datta et al. 2009; Zhou et al.
2007; Bradley et al. 1998]), that provide rigorous appraadion guarantees to the clustering objec-
tive. A key difference of the proposed approach is that we take advantabe 8uilt-in” feature
of Spectrak-means (and Spectral Clustering) that can provide, threliglappropriate eigengap,
an estimation of the relevant sample size requirementslif@oasible values ok. Naturally, we
could consider patching Lloydlsmeans with a preprocessing step that selects (based otamcer
objective) the appropriate number of clusters. Howevés,would impose an extra computational
cost and we are not aware of any such approach that explaitlg in specifying the number of
clusters that can be reliably modeled with a small sample $itoreover, we are not aware of any
such approach that can quantitatively assess the relexapis size requirements for &lvalues.
We should also clarify that there exists a vast bibliographysampling and Mstrom approx-
imation methods (such as [Fowlkes et al. 2004; Drineas et%9]) that aim in approximating
the a fixed size matrix and not the asymptotic infinite-dasalts. However, these approaches are
conceptually dierent than the problem we address in this work.

8.2. Distributed k-Means and PCA

As we have stated in the introductory section, to the extémdioknowledge there do not exist any
relevant Distributed Spectrédmeans and Distributed Spectral Clustering algorithmss high-
lights that a contribution of this work can be considerednas‘tlistributalization” of an algorithm
that has not been introduced in this application conteshdiuld be noted though that with respect
the popular Lloyd'sk-means algorithm and other clustering algorithms therstg» large body
of literature for a diverse range of distributed networkgfta et al. 2009; Bandyopadhyay et al.
2006; Hammouda and Kamel 2007; Younis and Fahmy 2004; Zhiaalg 2008; Bandyopadhyay
and Coyle 2003; Datta et al. 2006; Januzaj et al. 2004; Kaagetpal. 2000; Klusch et al. 2003;
Kriegel et al. 2005].

As compared to these approaches, a kéfedknce is that our framework is able to derive the
relative bandwidth requirements for all possible valuek. dtis allows for the selection of the ap-
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propriatek-value that requires the minimal bandwidth. Naturally, ooeld consider employing as a
preprocessing step the distributed selection of the apatepyumber of clusters [Tasoulis and Vra-
hatis 2004]. However, the use of such algorithms would megthie consumption of bandwidth and
moreover, these are not specifically tailored for identifythe number of clusters that minimizes
the required bandwidth consumption of a clustering algarit

In order to demonstrate the appropriateness of samplingeidistributed Clustering framework,
we will compare our approach against certain Distributemy/tls typek-Means algorithms. These
algorithms consider the task of computing the cluster stinecof a dataset that is distributed among
nodes in a network. That is, each node contains a fractioneoflataset and the goal is to approxi-
mate the full-data solution, while minimizing the amountiata that needs to be transmitted across
the network. Since, to the extend of our knowledge, no istad Spectral Clustering algorithms
have been proposed, we will compare against Lloyd's typé&ribigedk-Means approaches.

A prominent approach in this context was proposed by [Dattale2006] (P2PKMeans).
P2PKMeans is an adaptation of the clagsMeans algorithm especially designed for application in
peer-to-peer networks. Each network node apiibteans iteratively on its dataset and combines
the resulting centroids with the centroids of other peehe @lgorithm halts when all nodes have
reached a stable state (i.e. the computed centroids iniiteriaare the same as thoseiof 1 or
exhibit insignificant distortion).

Since we employ PCA to derive the continudeigleans solution we will also refer to distributed
PCA approaches. The intuition behind most distributed P@pgr@aches is based on the aggrega-
tion of a fragmented covariance matrix. A prominent disttédal PCA approach is Collective PCA
(CPCA [Kargupta et al. 2000]). In CPCA, each network nodeveods a sample of its projected
dataset together with its set of local eigenvectors to ameggor node. Afterwards the aggregator
combines the projected data from all sites and calculateglitbal eigenvectors. CPCA was also
employed as an integral step of the distributed clusteriathodology, described in [Kargupta et al.

2000]. CPCA requires O¢ff)? + X.1°%%d;k; + skr) network load ¢ is the overall sample sizé; the

sample size of location k; the number of principal components retained in saed f = 3%

the dimensionality of the aggregated array).

One significant drawback of CPCA is that it is only applicaibleertically distributed datasets.
Global PCA (GPCA [Qi et al. 2004]) addresses this issue byidiog a simple covariance ag-
gregation scheme for the horizontal case. GPCA assumesredridata (i.e. meai®), and derives
that if u is an eigenvector of matrix{ — 1)couX) + (p — 1)coUY), thenu is also an eigenvector
of (m+ p — 1)coy[XTYT]T) (herecovdenotes the covariance matrix,andY are the data ma-
trices contained in each peer amdand p the respective cardinalities). Based on this observation,
each pair of peers can combine their eignevectors and dagddcally global set of eigenvectors.
By iteratively applying this procedure a network wide glbet of eigenvectors can be defined and
communicated to all nodes. GPCA requiressD{ + skr) network resources, whesds the number
of nodesk the number of retained eigenvectors arttie number of dimensions.

It is evident that the aforementioned distributed PCA &xideans approaches aim in approxi-
mating the full-data solution that is contained in a disttédl network. Thus, their scalability de-
pends crucially on the size of the network as well as the ditieeodata collection. Moreover, there
are issues related to the required model updates for dyndaéc In the experimental section we
will demonstrate that the proposed sampling-based appratobtain high quality solutions with
significantly lower bandwidth consumption. Since the pisgzbframework relies on Bootstrap con-
fidence intervals we should also note that there exist seakgarithms for accumulating uniform
data samples in distributed networks with irregular degjaeconnectivity and dierent data sizes
(such as [Arai et al. 2007]).

9. EXPERIMENTS

In order to validate and assess the quality of our approadiewe conducted a series of experiments
on a set of large, real life and artificial datasets. The aithisfprocess is threefold:
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(1) Demonstrate the convergentbehavior and theiency of the Sequential Sampling Framework.

(2) Consider automated tuning strategies of input paramete

(3) Show the virtues of sampling in a distributed setup, whesstrictions are imposed on the
amount of data that can be communicated.

In order to demonstrate the convergence behavior of theesgiglisampling framework as the
sample size grows, we used benchmark datasets that enjagtareld structure. As we have ana-
lyzed theoretically in section 7.2, if the datasets arerbledustered, it is expected that the algorithm
will converge rapidly to the required approximation levdlkis behavior is indeed demonstrated in
the experimental results of Section 9.3. In Section 9.3 e aport the execution time of our
algorithm that empirically certifies thefiency claims made earlier in this paper.

In order to illustrate the need for automatically tuning thput parameters, recall that the ap-
proximation requirement for the cluster results is prodidy means of an upper bound on the
difference between the respective projection operators. \tideet that this measure is related to
the continuous results and does not provide us with a dikedtiation of the approximation to the
asymptotic discrete cluster assignments. Thus, in subse2#4, we empirically assess how small
this upper bound should be such that the clustering perfocmapproximates ficiently the dis-
crete asymptotic cluster results. Interestingly, basetherderived parameter tuning process, it is
demonstrated that datasets with millions of instancesiregolely a few thousand for converging
to the asymptotic cluster results. This signifies that thesateration of larger data samples does
not further improve the clustering performance. It can b&eobed that with the automatic tuning of
the input parameter (as derived by subsection 9.4), ouoagprcan be considered as a stand-alone
algorithm that automatically determines the required darsize for approximating the asymptotic
cluster results.

Based on the observation that our algorithm converges witilysa small fraction of the avail-
able data, we consider in subsection 9.5 the problem of ibig&d Clustering. In this context it
is commonly assumed that a large dataset is distributed @modes in a network and the task is
to derive a global data model (such as clustering) of the dataset. The naive approach would
be to collect all the data centrally (to a network node), havehis is usually not possible due to
bandwidth limitations, that allow only a small fraction dfet available data to be communicated.
The imposed limitations make apparent the relevance of pproach to Distributed Clustering
problems. As we have analyzed earlier in this paper, a didéature of the proposed framework as
compared to the relevant distributed clustering appragdbhehat is is able to estimate the relative
sample size requirements for all possible valuels. éfowever, in the experiments we consider the
correct number of clusters as input and compare our frameagainst relevant approaches that
attempt to approximate the full-datameans model. The experiments demonstrate the superiority
of our approach with respect to bandwidth consumption.

9.1. Datasets and Clustering Quality Measures

We have experimented with four real world and artificial data. Three of them were acquired from
the UCI Machine Learning Repositotyand one was acquired from the Large Scale Challenge that
took place in ICML 2008. All of them contained a large number of instances, a feahatenabled

us to highlight both the theoretic and practical merits ef pinoposed approach. The first dataset is
the MAGIC Gamma Telescope Data Set that contains the sigtitetidings of a Gamma Telescope.
The dataset contains two classes, one corresponding toahamd the other to noise readings.
The second and third dataset were generated by the Wavefatab&se Generator. These datasets
contain three classes corresponding to three types of wBased on the Waveform generator
we have produced two noiseless dataset of 10000 and 10008@Mdes respectively. The fourth

Shttpy/archive.ics.uci.edml/
bhttpy/largescale.first.fraunhofer tdout
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Table I: Datasets used in the evaluation

Dataset Objects | Features | Classes Description
Waveform 10000 21 3 Artificial dataset
Waveform1M || 1000000 21 3 Artificial dataset
Magic 19020 10 2 Gamma telescope readings
delta 500000 500 2 Large Scale Challenge ICML 0§

dataset is the delta dataset that was employed in the Lagje Shallenge. The datasets along with
a brief description are summarized in Table I.

The assessment &fmeans clustering results can be performed using varioabtgumeasures
(such as F-measure, Mutual Information etc.). Althougltetemeasures are generally regarded by
practitioners as more appropriate, the issue of adaptmgght measures fd-means clustering is
still considered an interesting research topic, with ameoglevant publication appearing on ACM
KDD 2009 [Wu et al. 2009]. In their conclusions, the authdrf/du et al. 2009] identify the “best”
measures that can successfully evaluate the clusterioljsesen under “extreme” situations (such
as imbalanced cluster sizes, lack of knowledge of corresthar of clusters etc.). In our experi-
mental setup all the datasets (with the exception of MAGIGskat) have balanced cluster sizes and
the correct number of clusters is provided as input. Basdtissetup, we have employed the mea-
sures: Purity P), Normalized Mutual InformationNMI) and F-measurey,) that are commonly
used by researchers and practitioners for evaluating-theans clustering performance.

Purity considers the mapping of a clus@tf = 1...k) to a class §;,i = 1..K) based on the
highest observed overlap. The quality of this assignmentaasured by counting the number of
correctly classified instances and dividing by the total banof instances). Normalized Mutual
Information on the other hand attempts to quantify the imfation gain by the assignment of an
instance belonging to clas} to clusterC; wherei, j = 1..k. Finally, F-measure is the weighted
harmonic mean of precision and recall. TaB®provides an overview of these metrics. In the case

of NMI, 1(C, S) = xf_, “tlogigrst, H(C) = - 2K, Hllogldl andH(S) = - 2, Hlog.
For F-measure,

_ TruePositives feinn— TruePrositives
Recall= TruePositivesﬁFaIseNegativesandPreCISlon_ TruePositivesFalsePositive$

Table II: Clustering Quality Evaluation Metrics

Abbreviation Name Definition
P Purity % 2z max|Ci N Sj))
NMI Normalized Mutual Information H%)CHS('JS)
o F-measure i Ly

Before we move on to analyze the empirical results of the @sed sequential sampling frame-
work, we present some experiments that compare the penfmenaf Spectrak-means (SKM),
Spectral Clustering (SC) and Lloydismeans (KM). In these experimental results all three algo-
rithms have almost identical performance on all four datase have employed.

9.2. Sampling Approximation Quality Measures

In order to assess the quality of the approximation of theisetial sampling process, we have
defined a set of evaluation metrics. These measures areylmigfined in Table 1V.

The first quality measure we employ is tBéability Factor(SF). SFis based on the size of the
relevant eigengas well as the norm of the error-perturbation matixFormally, concerning

Spectrak-Means as derived by optimization problemSF is defined asiﬁllT’”*;, wheredy_1 — Ak

ACM Journal Name, Vol. V, No. N, Article A, Publication datéanuary YYYY.



A:21

Table Ill: Comparison of Loyd'&-Means (KM) with Spectral Cluster-
ing (SC) and Spectrdd-Means (SKM).

(a) Comparison of KM, SC and SKM wit(h) Comparison of KM, SC and SKM
Magic with Waveform

| [ KM | SC | SKM | | [ KM [ SC [ SKM |
Fm | 058 | 051 | 056 | [ Fy | 051] 0.51] 0.50
Pur || 0.65 | 0.60 | 0.63 | | Pur | 0.39 0.39 0.39
NMT | 0.012| 0.015] 0.014] [ NMI | 0.37| 0.37 | 0.37

(c) Comparison of KM, SC and SKNH) Comparison of KM, SC and SKM with

with Waveform 1M Delta

| [ KM [ SC [ SKM | | [ KM [ DPCA'SKM |
Fm 0.50| 0.50| 0.50 Fm 0.50 0.50
Pur | 0.39| 0.39| 0.39 Pur 0.50 0.50
NMI || 0.37| 0.37| 0.37 NMI || 4%10° 5%107°

Table 1V: Evaluations Metrics

Abbreviation Name Definition
SFn Mean Stability Factor S Fin = averag§( =gt ]
ESFn Mean Hficient Stability Factor ES R, = averagé( re'e"jﬁ‘é;'liengay.
Fub Objective Function's Mean Upper Bound  Fp? = averagg(#eigs- A%)i]
APOp, Projection Operators’ Mean Berence | APOy, = averagg||PO — POfd”z]

is the relevant eigengap artlis the respective error-perturbation matrix. In the contexour
experiments, in order to deri&F;, for a fixed sample size, we draw 10 random sub-samples of
sizemand compute the avera@ability factor Formally,S Fm is defined as:

- A
4 IIEII 0l

where %). denotes th& F as derived in th&" sample. In order to understand the semantics of

SFone should observe that the prerequisites of Stewart'sé¢nedold when”;”lT””k > 1 [Mavroei-
dis and Vazirgiannis 2007] and moreover, as the fractiomines larger, the upper bound on the
sample eigenspace becomes tighter. It should also be r@tethis quantity has been employed by
[Mavroeidis and Bingham 2008; 2010] to study the stabilitgigenspaces.

In the experiments we have also employed tff&cient version of the stability factor that is

described in Section 7.1. Recall that the formula for conmguthe dficient stability factor is:

SFn= averag¢(

relevant elgengaf)]
4-11E2ll2
whereE,; does not contain all the confidence interval lengths, but solely a subset of them thus
enhancing theféiciency of the bootstrap-process.
Another metric, directly derived by Weyl's theorem, is thgextive function’s upper bound. The
latter is defined a§'" = #eigs- (/lf) where #igsis the number of eigenvectors employed in the

cluster solution and/l@ is the largest eigenvalue of the error-perturbation magriF " is defined
for a fixed sample sizm and is also calculated as the average of multiple runs.

Fub = averagétteigs- (A5)i]

ES R, = averagé(
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The diterence of projection operatond®O computes the dlierence between the sample-based
projection operator and the full-data solution. It is defi@sAPO = ||POs— POxgll2 wherePs is the
projection operator of the sample aRg is the projection operator of the full-data solution. The
projection operator is defined by the eigenvectors emplayeide cluster solution, i.e. in Spectral
k-Means, based on equation 3, the projection operator isetebyVV', where the columns of
contain thek dominant eigenvectors of the respective feature simylamatrix. This metric aims
in demonstrating the convergence of the projection opesatthe full-data solution. Although,
we have stated that the aim of this work is to guarantee cgevier the asymptotic solution, the
convergence to the full-data solution can be achieved aspadguct when convergence takes place
for a sub-sample of the original dataset.

In order to derive the meanftitrence of projection operatofrd® Oy, for a fixed sample sizen,
we draw 10 random sub-samples of sizeand compute for each the correspondiiRO value.

APOy, = averagg||PO — POx4ll2]

whereP; is the projection operator in thH# sample of sizen andPyq is the projection operator of
the full-data solution.

9.3. Convergent Behavior and Efficiency

In order to study the convergence behavior of the propoggatithm we present the evolution of
the upper bounds on the objective function and the clugieasults, i.eS Fy ES Ry andFY. In
Figure 3 we illustrate the evolution & R, of Spectralk-means with respect to the data sample.
Sample size steps were configured to depict the rate of cgpemnee of the clustering algorithm in
each dataset. Consequently in the case of the Waveformettag sampling step was set to 200
instances and in the case of Magic 100 instances. With regafiF,, we employ solely the three
UCI datasets that possess a small number of features.

In Figure 7 we report the evolution of théieient stability factolES R, of Spectrak-means with
respect to the data sample for all four datasets. It can berodd that the behavior &S Ry, is
similar to S F,, and the convergence rates are very similar. Tifieiency enhancements &S F,
are consecutively illustrated in Figure 8, where we repuettbtal time that is required for a single
step of the sequential sampling process. The time requirtesaee reported for an Intel Core 2 Duo,
2Ghz, 4GB RAM running Ubuntu 9.10.

Inthe Spectrak-Means experiments we relied on optimization problem 4.@dwer the appropri-
ate error perturbation matric&were derived by Bias Corrected and accelerated (BCa) cordi@e
intervals [Efron and Tibshirani 1993], based on 1000 boapssamples. In Spectral Clustering the
confidence intervals were derived by the percentile mettsirtjualso 1000 bootstrap samples. Fi-
nally the coverage in all experiments was seb®.

In Figure 4 we depict the evolution & of Spectrak-means with respect to the data sample
size. We can observe th&t? is influenced by the evolution & F,,. More precisely, we notice
the minimization of the objective function’s mean upper hadwvhen the stability factor value is
maximized. In parallel, fluctuations, due to sampling vaci, in the stability factor evolution are
also observable in the behavior BfP. The same conclusions are drawn by observing the graphs
derived by the application of our sequential sampling fraomé on Normalized Spectral Clustering.
Figures 5,6 depict the corresponding results.

9.4. Automated Tuning of input parameters

Recall that the approximation requirement for the clusésults is provided by means of an up-
per bound for the dierence between the respective projection operators. édtinat has been
demonstrated that under certain assumption a bound on ttimgous results can be meaningful
for bounding the dference in the discrete cluster assignments [Huang et a@] 2@0this section
we will seek to verify this claim empirically. Moreover, weilivexplore how tight the continuous
bound should be such that the asymptotic discrete clustertste is stficiently approximated. In
all experiments we have observed that if we require 8¥a = 1, then the resulting cluster quality
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does not further improve when larger samples are considbreitively, since the Stability Factor
depends on both the coherence of cluster structure (as editydhe relevant eigengap), as well as
the approximation accuracy of the sample feature-sinigariwe can derive th& F,, = 1 achieves
the correct balance between the accuracy of the featur&asitieis and the cluster structure. A co-
herent cluster structure (large eigengap) requires lesgraie feature-similarity estimations while
in the absence of a clear cluster structure highly accueateife-similarities must be derived. With
respect toES Ry, experiments illustrate that a value BS Rk, = 2 is required. In order observe
this phenomenon we report in Figures 9, 10 ARO,, measures for all four datasets for Spectral
k-means and for the Magic and Waveform for Spectral Cluggerin

The evolution ofAPQy, and its relation tcS F, is depicted in all Figures, however it is more
evident in the 9(c) when evaluated together with 3(c). Theimization rate oAPQO,, is decreased
as soon a$ Fy, exceeds 1 (when sample size reaches 2000) and continuesréaske at a constant
rate as sample continues to grows. The same analysis holg#Sfg, = 2.

Additionally we measured the evolution of clustering qtyathroughout the sampling procedure.
In each sampling step we used the derived projection opsratal acquired the projection of the
dataset on the corresponding space. Afterwards we digecketine solution using Lloydk-Means.
Figure 11 presents the results for speckraheans. The derived box-and-whisker plots highlight
the variance in the clustering results. The red line hidttighe maximum value exhibited in each
sample iteration (the largest exhibited cluster qualitiygan the 10 iterations of sample sing),
the green line the minimum value while the blue line the mesloe: In the cases where we simply
report the average values, the variance was negligible frenmitial sample. In certain figures we
can observe that initially the variance of clustering resigl high and is decreased with the addition
of more data samples, un8lF, > 1 (orES R, > 2) is satisfied. The latter is clearly demonstrated
in the case of the Magic dataset. In all Figures it is depithedS F, = 1 can be considered as a
sufficient condition for the convergence of the clustering dualin the Waveform case it is shown
that this is not a necessary condition since convergenahis\aed even befor8 K, = 1. The same
experiments are also reported for Spectral Clusteringgniiei 12. Again in this case we notice the
same behavior that verify the validity of automaticallyinmS F,, = 1 (or ES R, = 2) as an input
approximation requirement.

It can be observed that the quality of the converged clustgrut for the delta dataset in terms of
NMIl is very low. This can be explained by the fact that even mtiee whole dataset is employed for
deriving a cluster solution, the performance of all the &tms considered in this paper remains
very low (as illustrated in Table IIl). Thus, the low clustguality can be attributed to the poor
performance ok-means on the whole dataset. This can be verified if one itspégure 9(d). This
Figure illustrates that the projection operator employgthie sequential sampling process quickly
becomes very similar to the projection operator of the fatbdmnatrix. Thus, the low cluster quality
can be attributed to the poor performancéaneans on the whole dataset.

9.5. Distributed Clustering

Based on the observation that our algorithm converges wilysa small fraction of the avail-
able data, we consider the problem of Distributed Clusterin order to execute these experi-
ments we assumed that a large dataset is distributed amengpties of a peer-to-peer network
and the task was to derive the global clustering model witltommunicating the whole dataset.
Both Sequential Sampling SpectkaMeans 63K M) and Sequential Sampling Distributed Spectral
Clustering 6°DC) methods have been experimentally validated againsilliséd clustering and
distributed PCA approaches that aim in approximating thedfata solutions. The methodS{K M)
and G°DC) exploit the automated tuning methodology analyzed in tleeipus section and termi-
nate the network sampling process as soon as they 8&Bgl+= 1. Moreover, in order to validate the
utility the efficient stability factolES K, we have also experimented with terminating the sampling
procedure as soon &S F, = 2. When theES F;, termination criterion is used we will denote our
algorithms asSEKM andSEDC.
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(a) Clustering quality and network requirements for Madletwork of 500 peers
| [ KM | SC [P2PKM[ S°KM | S2KM | S°DC [ SZDC | DPCA/'SKM |

Fm 0.58 | 0.51 0.59 0.60 0.60 0.55 0.54 0.56
Pur 0.65 | 0.60 0.62 0.63 0.63 0.60 0.53 0.63
NMI 0.012| 0.015| 0.015 0.015 | 0.015 | 0.015| 0.014 0.014
NLvg N/A N/A 1.71 0.5 0.35 1.48 | 1.00° 0.42
(b) Clustering quality and network requirements for WawefoNetwork of 500 peers
| [ KM | SC [ P2PKM| S°KM | S2KM | S°DC | SEDC | DPCA/SKM |
Fm 051|051 0.54 0.51 0.51 0.51 0.51 0.50
Pur 0.39| 0.39 0.60 0.39 0.39 0.40 0.40 0.39
NMI || 0.37 | 0.37 0.37 0.37 0.37 0.38 0.38 0.37
NLwvg || N/A | N/A 3.61 0.09 0.30 1.50° 0.34 1.84
(c) Clustering quality and network requirements for Wamefd M. Network of 5000 peers
| [ KM | SC [ P2PKM | S°KM | S2KM | S°DC | SIDC | DPCASKM |
Fm 0.50| 0.50 0.53 0.51 0.51 0.51 0.50 0.50
Pur 0.39| 0.39 0.60 0.40 0.40 0.41 0.39 0.39
NMI || 0.37| 0.37 0.37 0.37 0.37 0.38 0.37 0.37
NLwve || N/A | N/A 508.7 0.09 1.81 3.35° 1.76 20.14
(d) Clustering quality and network requirements for Del&etwork of 5000
peers
| [ KM | P2PKM | SIKM | DPCA'SKM |
Fm 0.50 0.51 0.50 0.50
Pur 0.50 0.50 0.50 0.50
NMI 45x10° | 35%«10° | 1.6% 10 5% 107
NLvg N/A 771+ 10° 38 955 10°

Table V: Clustering quality and network requirements asioletd from
the experimentsS®KM corresponds to Sequential Sampling Spectral
k-Means whileS®DC to Sequential Sampling Spectral k-Means. Sub-
scriptF identifies their fast vast version. Superscssignifies that al-
though the experiment was not conclud€dH< 1 or ESF < 2) the
behavior of the sampling procedure indicated that appratety this
value would appear.

As a first evaluation benchmark we used the clustering quafithe algorithms executed cen-
trally on the whole datasets. Given the distributed nattdireus approach we also evaluated our
algorithms against P2PKMeans and GPCA. Unfortunately, £AR®ot directly comparable to our
approach since it is specifically designed and tuned to addw@ses of vertically distributed datasets
while we focus on the horizontal case.

All experiments took place in a simulated peer-to-peer remvnent where topology was ran-
domly generated with nodes being connected with 5% proibabit the case of the two largest
datasets we have created a network of 5000 nodes while ftwthemaller sets we have used 500
nodes. It should be stressed out at this point that all therteg results are averaged over 10 exe-
cutions. All algorithms, except from P2PKMeans, assumeettistence of a star overlay network,
where each peer communicates its sample (or result) to aegatgr node that undertakes the task
of performing any subsequent computations. Finally, thgregator node forwards the final result

to all peers.
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In Tables 1V(a), IV(b),IV(c), IV(d) we present the resultsall experiments. The Network Load
is reported in MegabytedN(Lyg). Apart from the network requirements we report the clugteal-
ity in terms of F-measure, Purity and NMI. It can be obseryed GPCA provides results of equal
quality to that of centralizel-Means while exhibiting low bandwidth requiremer8$K M always
produces the same clustering quality results but with anitly lower (in two out of three exper-
iments) bandwidth consumption. It worths noting the faett th the case of Waveform1/83KM
requires a couple of KBs while GPCA requirements are in tlieoof MBs. AlthoughS®DC re-
quires additional resources compared#K M, it is still in an acceptable level, and in two out of
three experiments requires less resources than GPCA.tBéspéxcellence in cluster performance,
P2PKMeans exhibits excessively larger requirements imgesf network bandwidth. It is worth
noting that although only centroids are communicated dutire P2PKMeans execution, the ex-
hibited network load marginally reaches the size of thes#taself. In Tables 1V(a), 1V(b),IV(c),
IV(d) bold values signify the minimum exhibited network tba

We should stress here that in these experiments we have albtagd the full extent of the
capabilities of the proposed distributed spectral clusteframework. This is because we have
provided all our algorithms with the correct number of céustas input. As opposed to the relevant
distributedk-means approaches, our algorithm would not have the darfggnsuming a large
bandwidth due to an inapproprigdieénput. This is achieved by its “built-in” ability to estimathe
appropriateness of ea&through the computation of the relevant eigengap. We shredall here
that these arguments apply when the goal is to derive a ggmebemation of the cluster results
and not when the target is to derive a good approximation lefysthe objective function. As we
have analyzed in Section 7.2 the former depends on the clststesture of the dataset while the
latter does not.

10. CONCLUSIONS AND FURTHER WORK

In conclusion, we have proposed a sequential sampling framefor Spectrak-Means that ter-
minates when the algorithm'’s output is indistinguishabénf the asymptotic results. In order to
formulate our approach we assume that the data is genenataal lonknown probability distribu-
tion and consequently employ afiieient-bootstrap based methodology for assessing the conve
gence of the cluster results. Extensive experiments haveustrated the convergent behavior of
the proposed approach and also promote our approach asla s@ddtion to distributed clustering
problems where bandwidth restrictions commonly imposétditions on the amount of data that
can be communicated.

Concerning further work, we aim to extend the proposed agpprdo handle Kernd-Means as
well as Spectral Clustering based on Kernel object-siitigs: Moreover, we will investigate the
potential of defining sequential sampling Clustering althons for Time Series and stream data,
where the dependence structure enhardens the applicAtbootstrapping.
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