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Abstract. Real algebraic numbers are the real numbers that are real
roots of univariate polynomials with integer coefficients. We study ex-
act algorithms, from a theoretical and an implementation point of view,
that are based on integer arithmetic of arbitrary precision, for compu-
tations with real algebraic numbers and applications of these algorithms
on problems and algorithms in non linear computational geometry.
In order to construct a real algebraic number we must solve in the reals
a univariate polynomial with integer coefficients. We unify and simplify
the theory behind the subdivision-based methods for real root isolation
and we improve the complexity of the algorithm that is based on the
continued fraction expansion of the real roots. The based known com-
plexity bound up today, namely eOB(d4

τ
2), where d is the degree of the

polynomial and τ the maximum coefficient bit size. is achieved using new
techniques. Moreover, we prove that the bound holds for non square-free
polynomials and that in the same complexity bound we can compute the
multiplicities of the real roots. We prove a new bound, namely eOB(d4

τ
2),

for the expected complexity of the algorithm based on continued frac-
tions. We generalize the real root isolation algorithms to bivariate poly-
nomial systems, where we present a complexity bound of eOB(d10

τ
2) that

improves the previously known by four factors. Our experimental analy-
sis proves the effectiveness of our methods.
The algorithms that we consider for computations with real algebraic
numbers are construction, comparison, sign evaluation and quantifier
elimination. If the degree of the polynomial is small, i.e. ≤ 4 in the uni-
variate case and ≤ 2 in the bivariate case, we propose special purpose
algorithms that have constant arithmetic complexity. For all the algo-
rithm we present a C++ implementation and experimental analysis.
In computational geometry we study the predicates needed by the algo-
rithms for the arrangement of elliptic arcs in the plane and computation
of the Voronoi diagram of ellipses, also in the plane. Finally, given a con-
vex lattice polygon we study algorithm for decomposing it to two other
convex lattice polygons, such that their Minkowski sum is the original
polygon. This problem is closely related to the factorization of bivariate
polynomials.
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1 Introduction

My PhD dissertation focuses on exact algorithms for real root isolation of inte-
ger polynomials of small and arbitrary degree, computations with real algebraic
numbers using Sturm-Habicht sequences, real solving of bivariate polynomial
systems and applications of these algorithms to non-linear computational geom-
etry as well as efficient C++ implementations following the generic programming
paradigm.

We have to mention that the stated references do not represent in any way
the related work on the problems that we consider. We were not able to provide
a detailed bibliography in this abstract due to reasons of space. We encourage
the interested reader to refer to the thesis for a more complete description of
related work.

In what follows, the notation OB refers to bit (Boolean) complexity and ÕB

means that we are ignoring logarithmic factors.

2 Algebraic algorithms

We focus on algorithms for real solving univariate integer polynomials and bi-
variate polynomial systems and on computations involving one and two real
algebraic numbers. We have implemented our algorithms in C++ and most of our
implementations are part of the synaps 1 [23] library, which is an open-source
C++ library for symbolic-numeric computations for polynomials and polynomial
systems. For a detailed description of our implementation approach and experi-
mental results, we encourage the reader to refer to the thesis.

2.1 Real solving arbitrary degree polynomials

Consider the polynomial

f(x) = ad xd + · · · + a1 x + a0,

where the coefficients are known exactly, i.e. they are rational numbers. We
consider only exact algorithms, i.e algorithms that involve computations with
rational numbers of arbitrary precision. Let d be the degree of f and τ = 1 +
maxi≤d{lg |ai|} be the maximum bit size of the coefficients.

Real root isolation consists of computing disjoint intervals with rational end-
points that contains one and only one real root of f and every real root is con-
tained in some interval. In addition we may also need to report the multiplicities
of the real roots.

For the problem of real root isolation of a univariate polynomial, we con-
sider the general concept of a subdivision solver, that mimics the binary search
algorithm. The algorithms, that follow this concept, consider an initial interval
that contains all the real roots of the polynomial and then repeatedly subdivide

1 www-sop.inria.fr/galaad/synaps



it until the tested interval contains 0 or 1 real root. The subdivision algorithms
differ in the way that they count the real roots of a polynomial in an inter-
val. The most well-known subdivision-based algorithms are sturm, descartes,
and bernstein (e.g. [25,4]). However, they count differently the number of real
roots of a polynomial in an interval. To be more specific, sturm counts exactly
the number of real roots, based on Sturm’s theorem and on the evaluation of
polynomial remainder sequences. On the other hand descartes and benrstein

provide an overestimation, based on Descartes’ rule of sign. Exploiting the fact
that Descartes’ rule of sign can not overestimate the number of real roots more
than the degree of the polynomial, all the algorithms can be put under the gen-
eral concept of the subdivision solver. Using exactly the same arguments we
can prove that they perform the same number of steps, that is O(dτ + d lg d).
The analysis that we present unifies and simplifies significantly the previous
approaches, (e.g [3,6,5,25]).

For all the subdivision-based algorithms we prove that we can isolate the real
roots of a polynomial f , not necessarily square-free, in ÕB(d4τ2) and that in the
same complexity bound we can also compute the multiplicities of the real roots.

The continued fraction algorithm, cf, differs from the subdivision-based al-
gorithms in that instead of bisecting a given initial interval it computes the
continued fraction expansion of the real roots of the polynomial. The previous
known bound for this algorithm was ÕB(d5τ3) [1]. Using results from the metric

theory of continued fractions, we proved that the number of steps of cf is Õ(dτ),

and that its expected complexity is ÕB(d4τ2). This holds for non square-free
polynomials and covers the cost of computing the multiplicities. As a byproduct
of our work in the cf algorithms we proved some results concerning bounds on
roots of a polynomial, that are interested on their own.

Part of our work in univariate real root isolation appeared in [27,9].

2.2 Real algebraic numbers and bivariate polynomial systems

A real algebraic number is a real root of an integer polynomial.
In order to represent real algebraic numbers we use a square-free polynomial

and an isolating interval. Evidently the unique real root of the polynomial in
the interval is the real algebraic number of interest. This representation is called
isolating interval representation, e.g. [29].

Evidently, real root isolation is an important ingredient for the construction
of algebraic numbers represented in isolating interval representation. Besides
construction, which is equivalent to univariate real root isolation, we analyze the
complexity of comparison, sign evaluation and simultaneous inequalities with
real algebraic numbers. Even though the algorithms for these operations are not
new, e.g. [3,11,26,29], the results from real solving and optimal algorithms for
polynomial remainder sequences allow us to improve the complexity of all the
algorithms, at least by a factor.

Our results extend directly to the bivariate case, i.e. real solving a bivariate
polynomial system, sign evaluation of a bivariate polynomial evaluated over two
algebraic numbers and simultaneous inequalities with two variables.



We consider the problem of exact real solving of well-constrained, bivariate
systems of relatively prime polynomials. The main problem is to compute all
common real roots in isolating interval representation, and to determine their
intersection multiplicities. We present two algorithms and analyze their asymp-
totic bit complexity, obtaining a bound of ÕB(d13τ), or ÕB(N14), for the purely

projection-based method, and ÕB(d10τ2), or ÕB(N12) for a subresultant-based
method, where d bounds the degree of the polynomials, τ bounds the maximum
coefficient bit size, and N = max{d, τ}. The previous record bound was ÕB(N16)
[18], using another representation of the real algebraic numbers, namely Thom’s
encoding. To the best of our knowledge the only known, up to the presentation
of this thesis, complexity bound for bivariate polynomial real solving, using the
the isolating interval representation was ÕB(N30) [2].

Our main tool is signed subresultant sequences, extended to several vari-
ables using the technique of binary segmentation. We exploit advances on the
complexity of univariate root isolation, and extend them to multipoint sign eval-
uation, sign evaluation of bivariate polynomials over two algebraic numbers. We
derive new bounds for the sign evaluation of bi- and multi-variate polynomials,
computation and evaluation of polynomial remainder sequences of multivariate
polynomials and real root counting over an extension field. Our algorithms apply
to the problem of simultaneous inequalities. Moreover, they allow us compute
the topology of real plane algebraic curves in ÕB(N12), whereas the previous

bound was ÕB(N16) [18].
Last, but not least, we present a complete C++ implementation of our algo-

rithms for bivariate real solving and computations with real algebraic numbers
and experimental results.

Part of our results appeared in [9,13,23].

2.3 Algebraic numbers and polynomials of small degree

For real algebraic numbers of degree up to 4 and polynomials in one variable
of arbitrary degree, or in 2 variables of degree ≤ 2, we propose algorithms with
constant arithmetic complexity for real solving and operations with real algebraic
numbers.

In order to decide the number of real roots and their multiplicity of a poly-
nomial of degree up to 4, we consider the coefficients as parameters and we use
the discrimination systems, first introduced by Yang [28]. In our approach, the
computation of such systems relies on Sturm-Habicht [19] sequences the coeffi-
cients of which are factorized by the use of minors of the Bézoutian matrix of
the polynomial and its derivative and by the use of invariants.

We represent a real algebraic number by a polynomial and an isolating in-
terval. We compute rational numbers that isolate the roots of every polynomial
of degree up to 4, which are computed as functions in the coefficients of the
polynomial.

In order to compare two algebraic numbers of degree up to 4, or to find
the sign of a polynomial of arbitrary degree, evaluated over such a number, we



use Sturm-based algorithms which rely on computations of the signs of certain
quantities. We precompute these quantities, we factorize them by the use of
invariants and/or by minors of the Bézoutian matrix; for our implementation,
this is done in an automated way. We developed programs that produce all
possible sign combinations of the tested quantities, so as to test as few quantities
as possible. Our algorithms, for algebraic numbers of degree up to 3, are optimal
with respect to the algebraic degree of the tested quantities since the degree
agrees with that of the resultant.

Additionally, we solve bivariate problems, such as the computation of the sign
of a bivariate polynomial of degree 2 evaluated over two algebraic numbers and
the solution of a system of two such polynomials. We tackle these problems by the
use of Sturm-Habicht sequences, where again certain quantities are precomputed
and factorized. To be more specific, we consider the resultants Rx, Ry, of the two
bivariate polynomials thus obtaining degree-4 polynomials in x and y. We solve
Rx, Ry and the isolating points of the computed algebraic numbers define a
grid of boxes. We can decide if a box is empty or if it contains a simple or a
multiple root of the system by computing the signs of f1 and f2 over these 2
algebraic numbers, that define the box. We do an optimization by noticing that
the intersections in a column (row) cannot exceed 2 nor the multiplicity of the
algebraic number and thus excluding various boxes. Our algorithm does not make
any assumption, such as that the boxes cannot contain any critical points of the
intersecting polynomials, hence there is no need for refinement. Moreover, we are
trying another approach, by considering the rational univariate representation
that can be obtained by the specialization of the subresultant chain.

Our work on small degree real algebraic numbers appeared in [11,10,24,14].

3 Geometric applications

Curved objects are becoming increasingly important in computational geometry;
one reason, is their wide range of applications, including those in solid modeling,
CAD, molecular biology, GIS. Our work is inscribed in a general effort to extend
current geometric software from linear to non-linear geometric objects. In partic-
ular, contributes in extending the cgal 2 library with a kernel for curved objects
and the related operations. It is clear that such a kernel relies heavily on real al-
gebraic numbers, polynomial equations and systems of polynomials of bounded
degree. Our ultimate goal is to propose a modular and efficient approach to
extend the cgal library to manipulate curved objects.

3.1 Arrangement of elliptic arcs in the plane

We have provided the tools for cgal to build arrangements, using both the in-
cremental and the vertical sweep line algorithms. The representations and pred-
icates below rely on computations with real algebraic numbers of small degree
[11], thus their arithmetic complexity is constant.

2 http://www.cgal.org



A conic curve is a curve, represented by a bivariate polynomial of total de-
gree 2, whose coefficients are integers. Two kinds of points —intersection points
and endpoints— are considered in the same way, thus allowing us to have a
unique representation. We call endpoint indifferently an endpoint of an arc or
an intersection. An endpoint is represented by the two intersecting conics and
its coordinates,

Representation: A conic arc is represented by a supporting conic, the two
delimiting endpoints and a boolean indicating whether it lies on the upper or
lower part The input of course allows for full curves as well as arbitrary arcs,
including non-monotone arcs. These are broken into x-monotone arcs by the
cgal arrangements algorithms that fix the choice of axes and orientation.

We studied the main predicates and constructions for conic arcs that are
required by the cgal arrangements and that are provided by the curved kernel.

make x monotone: It subdivides the given arc (which may be an entire
curve) into x-monotone arcs.

nearest intersection to right: Given an endpoint p and two x-monotone
arcs, find their first intersection to the right of p.

compare y to right: Given two x-monotone arcs supported by the conics
g1, g2, and one of their intersection points p = (px, py), such that the arcs are
defined to the right of p (i.e. for x larger than px), the predicate decides which
arc is above immediately to the right of p.

compare y at x: It decides whether a given arc is above or below a given
endpoint γ = (γx, γy).

Our work in this problem appeared in [7].

3.2 Voronoi diagram of ellipses

We study the Voronoi diagram of ellipses under the exact computation paradigm.
The distance of an exterior point to an ellipse is defined to be the minimum
Euclidean distance to any point of the ellipse. As is the case for almost all
problems in computational geometry for curved objects, the algorithm relies
heavily on predicates implemented by algebraic operations.

We design and implement exact and complete algorithms for the predicates
needed in the framework of abstract Voronoi diagrams and, more particularly,
for the incremental algorithm of Karavelas and Yvinec [20]. Our final goal is a
cgal software package for constructing the Voronoi diagram of ellipses, based
on the cgal implementation for circles [8], which uses the same incremental
algorithm. Hence the crucial question is to analyze and implement the predicates
for ellipses. Some of the presented predicates are also needed in computing the
visibility complex and the convex hull of ellipses.

We offer a full investigation of the problem dealing with both degenerate and
non-degenerate configurations. We study the case of non-intersecting ellipses,
which we expect to generalize to arbitrary ellipses and even pseudo-circles [20].
We assume that the input ellipses are given constructively in terms of their axes,
center and rotation, all being rational, or if they are given implicitly that we are
able to switch representation using only rational arithmetic.



Fig. 1. Voronoi diagram of five ellipses

The four predicates of the incremental algorithm [20] are:

(κ1) given two ellipses and a point outside of both, decide which is the ellipse
closest to the point.

(κ2) given two ellipses, decide the position of a third one relative to a specific
external bitangent of the first two.

(κ3) given three ellipses, decide the position of a fourth one relative to one (ex-
ternal tritangent) Voronoi circle of the first three; this is the InCircle pred-
icate.

(κ4) given four ellipses, compute the part of the bisector that changes due to the
insertion of a fifth ellipse.

Our first contribution are algorithms for κ1 and κ2 that are optimal in terms
of the degree of the algebraic numbers involved. In fact, for κ2, we compute and
characterize all bitangents of two ellipses using our own tools for dealing with
algebraic numbers of degree four. Both algorithms satisfy the requirements of
exact computation and are implemented in C++.

For the predicate κ3, using the implicit representation, we obtain the first
tight bound on the number of complex tritangent circles to three ellipses, namely
184. The number of real tritangent circles remains open. This approach does not
lead to an efficient algorithm by itself, however, it provides a nearly optimal
theoretical bound on the bit complexity of the problem.

Our work in this problem appeared in [16,15].



3.3 Minkowski decomposition

We study the decomposition of convex polygons with integral vertices (also called
lattice polygons) under the Minkowski sum, which is defined as follows:

Definition 1. For any two subsets A and B in Z
2, their Minkowski sum is

A ⊕ B = {a + b|a ∈ A, b ∈ B}. We call A and B the summands of A ⊕ B.

The definition of the Minkowski sum can be generalized to arbitrary dimension.
The decomposition problem has a great interest on its own. The recent work

on toric Bézier patches (e.g [21,22]), in geometric modelling, motivates several
questions around this problem, mainly testing whether a given lattice polygon
can be written as a Minkowski sum of two such polygons and, if so, finding one
or all such decompositions. One important application of general Minkowski de-
composition is bivariate (and, eventually, multivariate) polynomial factorization.
This is so because, given a bivariate (multivariate) polynomial, we can associate
with it its Newton polytope. As first observed by Ostrowski, if the polynomial
factors, then its Newton polytope decomposes.

First, we focus on Minkowski decompositions where at least one of the sum-
mands is of constant size, namely it is a line segment, a triangle or a quadran-
gle. We estimate the hardness, from an asymptotic complexity viewpoint, and
propose efficient algorithms for the case of constant-size summands. We relate
Minkowski decomposition to the k−sum problem, where an algorithm with time
complexity O(n⌈k/2⌉) or O(n⌈k/2⌉ lg n) exists but there are no matching lower
bounds. We have implemented these algorithms and illustrated them on all lat-
tice polygons with zero and one interior lattice points. Moreover, we performed
experiments on various data sets against the algorithm of Gao and Lauder ([17]),
which solves the general problem of Minkowski decomposition.

The decision problem of whether a lattice polygon admits a Minkowski de-
composition is NP-complete [17]. In the same paper, a pseudo-polynomial algo-
rithm is given with complexity in O((nDE)3), where n is the number of edges
in the polygon and DE is their maximum integer length. Note that DE is ex-
ponential with respect to the bit size of the input, which is O(n lg (DE)). We
express the general problem by means of standard and well-studied problems in
combinatorial optimization, such as the subset-sum problem. This leads to an
algorithm that improves the above bound by a factor of nD. Our approach also
leads immediately to approximation algorithms, to practical methods amenable
to fast implementations and to a probabilistic algorithm. The implementation
goes beyond the scope of the present paper.

A full description of our work can be found in [12].
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