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Abstract. Computational analysis of DNA sequences can distinguish
areas within the genome according to their characteristics and recognize
or forecast the functionality of such areas. Following this approach, the
present Thesis focuses on the statistical analysis of DNA sequences at
different scales, by developing biocomputational algorithms. At the DNA
base level, oligonucleotides were used to calculate statistical properties
in order to create a homogeneity map, with the power of prediction for
coding and non-coding areas. At the chromosomal level, various statis-
tical parameters were calculated, based on the distances of homologous
oligonucleotides. Calculation of the oligonucleotide distributions inside a
chromosome and characterization of their functional behavior through-
out the chromosome were performed. At the population level, the focus
was on calculating statistical attributes of DNA areas, and creating a
Small Tandem Repeats (STR) database. The computational results have
been cross checked with experimental biological data. The algorithms are
open source under the GNU GPL.

1 Introduction

In recent years new revolutionary experimental methods in molecular biology
have been developed. It is now possible to sequence DNA macromolecules with
increased speed and accuracy. This has resulted in an explosive growth of the
amount of biological data being stored in biological databases (such as NCBI,
EMBL and DDBJ). We now have complete genomic sequences for many organ-
isms, even for organisms with extensive genomes, such as human (Homo sapiens)
and mouse (Mus musculus).

At today’s rates, the amount of data inserted into biological databases will
double every 18 months. It is clear that this tremendous amount of data is of no
value, unless there exist tools for effectively searching and manipulating it. For
this reason various biological packages have been developed, such as BLAST [1],
FASTA [2], CLUSTAL [3], while other numerical approaches and algorithms are
presented in references [4–9].

Despite the increasing number of available tools, the problem of categorizing
oligonucleotides based on their statistical properties is still open. Following this
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path, we have developed biocomputational algorithms which calculate statistical
properties of sequenced DNA chromosomes in different levels of abstraction; at
the base level, at the chromosomal level and at the population level.

In order to understand the basic characteristics of the proposed algorithms,
it is important to describe the fundamental functional structure of the DNA.
Although the main operation of the DNA is to code for proteins, it is known
that, in higher eukaryotic organisms, only a small percentage of the DNA is
translated in order to produce proteins. These areas are called coding areas. The
rest of the DNA has more structural than functional role and such areas are
called non-coding areas. In order for the coding areas to be distinguishable by
the enzyme which promotes the transcription (like RNA polymerase II), usually
in the beginning of the coding regions there is a special DNA sequence called the
promoter. Promoters have a length of hundreds of bases. Between two successive
appearances of a promoter there are at least one coding and one non-coding
sequence. Inside each promoter there are small oligonucleotides of length m =
2− 10, which are steadily present, called consensus sequences. Known consensus
sequences in eukaryotes are, among others, the CG and the TATA sequences.

In the next section we describe the SHMap algorithm, which calculates a
homogeneity map of a chromosome and which has power of prediction of func-
tionality of DNA. In section 3 we discuss analysis at the chromosomal level, by
calculating statistical properties of oligonucleotide combinations. In section 3.3
we approach the analysis of oligonucleotides by a two-parameter description of
size distribution. In section 4 we perform analysis at the population level, by
constructing and validating a STR database and in section 5 we present the
conclusions and discuss some open problems.

2 Analysis at the base level

The aim of this approach was to search for specific areas in the chromosomes, to
find areas with different characteristics and to annotate unknown DNA areas.
For this reason we have developed a distributed system which is able to execute
algorithms in order to statistically manipulate a chromosome. We have also con-
structed an algorithm able to “map” areas inside the chromosome according to
their statistical behavior. We thus consider another biological observation; the
lack of homogeneity within eukaryotic chromosomes. Each eukaryotic chromo-
some consists of areas with different composition. Some areas can be described
as “random” from the statistical point of view, whereas other areas have more
“stable” consistency [9].

The proposed algorithm (Statistical Homogeneity Map - SHMap) [10] marks
areas of the chromosome according to their “randomness”. As a base measure
we employ all possible oligonucleotides of length m. We distinguish the areas
which are rich in different oligonucleotides, and those which consist of only a
few oligonucleotides. The biological meaning of these areas and their numeric
values is as follows:



– a lower value implies that the distances between oligonucleotides in this area
are generally smaller than the given threshold. Having short distances means
that the possibility of finding any given combination, starting from any po-
sition inside this area is high, or in other words, that most combinations
are present and mixed in this area. Since this kind of behavior resembles
“random” distribution, it is also expected that these areas include mostly
coding DNA sequences.

– a higher value implies long distances between oligonucleotides (above the
given threshold). Having long distances means that it is less probable to find
the next occurrence of a certain oligonucleotide inside this area. Since we do
not consider extensive DNA gaps in this implementation of the algorithm,
but there is a contiguous coverage of bases, the reason for the long distances
is the over-representation of few specific oligonucleotide combinations in this
area, forcing the remaining majority of the oligonucleotides to be under-
represented. This behavior is common in non-coding DNA sequences, where
the presence of structures like poly-A (long sequences consisting only of
adenine) are common.

Fig. 1. Statistical Homogeneity Map (SHMap) for the annotated chromosome 17 of
Mus musculus. The visible region is between the bases 12040000 − 12070000. The size
of oligonucleotides is m = 6. The lower the value on the vertical axis, the higher the
homogeneity (and thus high possibility for coding sequences) and vice versa. Red color
marks “CDS” areas, as found in the GeneBank genome file, green marks non-coding
areas and blue marks areas with both coding and non-coding parts.

Using this algorithm it is possible to distinguish areas which are rich in
oligonucleotide combinations (lower value) from those which are poorer (higher
values). Since the coding regions appear to be richer in oligonucleotide combi-
nations, we expect them to be inside the areas with the lower values. Since this



approach is statistical and not biochemical, there is less accuracy in the posi-
tioning of the exons and introns. It can be used as a tool to point to DNA areas
which need to be further investigated by traditional biochemical methods.

Since the execution time of this algorithm was rather long, we parallelized
it under the GRID environment using MPICH. This achieves significant speed-
up compared to the sequential version of the algorithm. The tests have been
performed on machines with 1, 2, 4 and 8 processors. We have found that the
speed-up increases monotonically, as expected, while the parallel cost appears
almost constant, independent of the number of processors.

In order to test the validity of the produced results of Mus musculus chromo-
some 17, we compare them to the actual biological information gathered from
a biological database. The annotated chromosome 17 of Mus musculus from
NCBI database has been used. Figure 1 shows such a comparison for the area
12040000 − 12070000. We show the produced SHMap of this chromosome to-
gether with the coding sequence areas (CDS) on the same graph. The higher
the values on the vertical axis the lower the homogeneity of the corresponding
area of the chromosome. Red color denotes CDS and green color the rest of the
chromosome, as obtained from the GeneBank file. We note that this approach
does not produce a detailed distinction between coding and non-coding regions,
but it can be used to focus the researcher on areas which have a high probability
of being CDS. It is thus able to highlight areas of potential importance, since
the structure and statistical characteristics of the DNA sequence are related to
its functionality.

3 Analysis at the chromosomal level

3.1 Methodology

Recently, a common pattern was investigated in the size distribution of coding
and non-coding regions of DNA [11, 9]. For higher organisms (eukaryotes) it was
shown that the size distribution of coding sequences follows short range distribu-
tions, such as Gaussian or exponential, while the size distribution P (Snon−cod)
of non-coding sequences follows long range laws:

P (Snon−cod) ∼ S
−1−µ
non−cod, where 0 ≤ µ ≤ 2 (1)

where Snon−cod is the size of the non-coding sequence in a large DNA strand
and the value of µ is called the power law (or critical) exponent.

Since in evolutionary recent eukaryotes the majority of DNA is non-coding
[12], coding DNA may be considered as 1-dimensional small “islands” (segments)
floating in an 1-dimensional “ocean” (medium) of non-coding DNA. Promoters
indicate the beginning of coding regions and it is evident that between two
promoters exists at least one coding and one non-coding region (see Figure 1).
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(m)
non−cod (2)



where SP is the distance between two consecutive promoters, S
(i)
cod is the size

of the ith exon and S
(j)
non−cod is the size of the jth non-coding region between

the two adjacent promoters. n and m are the numbers of exons and non-coding
regions (including introns), respectively. Since in general in eukaryotes

Snon−cod ≫ Scod (3)

it is expected that

SP ≃ S
(max)
non−cod (4)

i.e. the distance between two consequent promoters is proportional to the
size of the maximum internal non-coding region. Consequently, the distribution
of separations between occurrences of the same promoter, P (SP ), will have sim-
ilar statistical characteristics with the size distribution of non-coding regions
P (Snon−cod). We thus expect that:

P (SP ) ∼ S
−1−µ
P , where 0 ≤ µ ≤ 2 (5)

Under this aspect, we have explored the statistical properties of the distances
S between oligonucleotides in different organisms [13, 14]. Since some of these
oligomers are consensus sequences, by observing their distance distributions, we
expect that their statistics may reflect the biological meaning of these sequences
and specifically they should present long range characteristics. Such an observa-
tion will bring together a theoretical approach (calculation of statistical proper-
ties between oligonucleotides), with experimental results (existence of consensus
sequences). For this analysis we have chosen to study the following representa-
tive eukaryotes with long sequenced genome or even entire chromosomes: Homo

sapiens, Mus musculus, Saccharomyces cereviciae, Oryza sativa and Arabidopsis

thaliana.

3.2 Statistical parameters

An algorithmic tool was developed, which was able to calculate distances between
oligonucleotides and various statistical parameters, such as average distance,
distance deviation and distance size distribution. In the produced histograms,
short scales represent the appearance of the oligonucleotide within genes, while
long scales represent the separation of intergenic regions. For this reason we
concentrate on the power law exponent −µ extracted from the tails of the size
distribution, which is usually between the bounds 1 ≤ ln[P (S)] ≤ 6 (in double
logarithmic scale). Sometimes these bounds vary, accordingly to the size, content
and origin of a given chromosome. At the end, the oligonucleotides are sorted
according to their value of µ.

The general conclusion is that sequences which have the lowest values of |µ|,
are those which are consensus sequences of the RNA polymerase II promoter, and
this holds for all organisms studied. This is consistent with the hypothesis that
the inter-distance distribution between promoters is a power law distribution



and has long range correlations. This is also in accordance with the hypothesis
that the size distribution of the non-coding areas follows a power law, since in
higher organisms the separation between promoters consists mainly of intergenic
non-coding regions.

Although the results are common for the majority of the organisms tested
with oligonucleotides having the CG combination, it is interesting to focus on A.

thaliana, which stands out of line. The sequences of A. thaliana that have the
smallest value of |µ| are different from the corresponding sequences found in all
other organisms tested in this work. The quadruplet with the smallest value of
|µ| is the TATA sequence, followed mostly by point mutations of the TATA pattern.
This result fits well with our original hypothesis, since this sequence is one of the
consensus sequences (boxes) of RNA polymerase II. In this situation the most
dominant consensus sequence, in statistical terms, seems to be TATA and not the
CG pattern, which usually appears in all other cases.

Sequences which appear to have the largest values of |µ|, are those which are
rich in adenine or thymine. This is obvious mostly in organisms like S. cereviciae

and O. sativa, and not in mammals, where these sequences have a more random
composition. It is rather a consequence of the poly-A sequences (long sequences
consisting only of adenine) which might affect the order.

3.3 Two parameter description of size distribution

Although special care was taken, so that only the linear regions in the double
logarithmic plots are taken into account, in some cases when computing the
power law exponent µ this approach is not optimal [15]. For this reason it is
interesting to perform parametric curve fitting over the size distribution. The
equation which was chosen was:

y(x) = Ax−1−me−kx (6)

Three fitting parameters are used, A, m and k. Parameter m corresponds to
the intermediate scales, parameter k to the large scales, while A is a normali-
sation parameter. Parameters m and k appear in the exponent and thus show
the statistical tendencies of the distribution. The value of m corresponds also to
the critical exponent, similar to µ in Equation 5. Using a combined Levenberg-
Marquardt with Gauss-Newton method, the three parameters (A,−1 − m,−k)
are calculated.

In a graph with axes −k and −1−m we denote by X the positions of oligonu-
cleotides containing at least once the promoter signature CG, while all other
oligonucleotides are denoted by circles.

This anlysis has been performed on mammalian DNA (Homo sapiens, Pan

troglodytes, Mus musculus, Rattus norvegicus), on a bird (Gallus gallus), on an
insect (Drosophila melanogaster), on a nematode (Caenorhabditis elegans) and
on a dicot plant DNA (Arabidopsis thaliana).

In evolutionary recent organisms (mammals and birds) we can distinguish
two areas clearly separated (Figure 2). The lower/right part consists of oligonu-
cleotides in which the CG sequence appears at least once (X symbol - group α),
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Fig. 2. Two dimensional plot of (−1 − m) against −k in human chromosome 21 for
quintuplets and hexaplets. Every point corresponds to one oligonucleotide combination.
The combinations which consist of at least one occurrence of the CG sequence appear in
the plot with the X symbol (red color), whereas the oligonucleotides which do not have
this pattern appear with the O symbol (green color). The points (oligonucleotides)
are divided into two groups/clusters in a claviform shape: the first consists only of
oligonucleotides with at least one occurrence of CG sequence (lower right), while the
second contains exclusively all other oligonucleotides.



whereas in the upper/left part there are oligonucleotides which do not have the
CG sequence (O symbol - group β). It is interesting that there is a clear sepa-
ration of these two groups; if an oligonucleotide has the CG sequence it belongs
to the α group, whereas if it does not have the CG sequence it belongs to the β

group.

This is in accordance with the observation that CG plays an important role as
a consensus sequence in a promoter. If we focus on the position of the two areas
within the graph, we note that the α areas have the smallest values of −1 − m

and the value of −k is around zero. This means that for these sequences the
influence of the exponential part is very small, i.e. the distributions of sequences
having the CG signature have almost pure long range nature. The other sequences
have values of −k which are away from zero, meaning that the influence of the
polynomial part is much stronger. The difference between these two types of
distributions might reflect the special biological meaning of CG, as an important
part of a promoter.

The other organisms, namely D. melanogaster, C. elegans and A. thaliana,
do not present the same behaviour. The distinction between the α and β areas
is not clear. Still, the values of the parameters have the same meaning, as in the
previous organisms. Again, the sequences that include the CG sub-sequence have
the smallest values of −1 − m and the value of −k is around zero.

4 Analysis at the population level

The analysis described above can not be used to calculate statistical properties of
populations. The biochemical methods used to perform the DNA sequencing of
a chromosome, consist of very expensive and time consuming procedures. There
are also other reasons, such as mutations, which make statistical manipulation
of the whole genome pool of a population an impossible task with present-day
tools.

For this reason we have followed a different approach, in order to statisti-
cally treat a large population. We have looked at specific sequences with known
polymorphism, precise position in the chromosomes and hereditary character.
In Homo sapiens, areas found to have these properties are Restriction Frag-
ment Length Polymorphism (RFLM) and STR (Short Tandem Repeats). In this
Thesis, we have looked at STR sequences.

We have taken into account a random population of 200 subjects and created
a STR database for this population. In order to check the validity of the database
we have used forensic statistical indices, such as Heterozygocity, Homozygocity,
Hex, Probability Match, Power of Discrimination and Power of Information

Content. We have developed a multi-platform environment, able to calculate the
statistics of the STR database of this population and the genotype probability
factor of an unknown subject. This database has been cross examined with
published databases from the bibliography.



5 Conclusions and open problems

We present a set of algorithms for the statistical analysis of DNA data at different
levels. Namely, at the base level we have created the SHMap algorith with pre-
dictive power on the funcitonality (coding versus non-coding) of non-annotated
DNA sequences. At the chromosomal level we have proposed statistical measures
and algorithms which bring forward the special properties of the CG doublet, as
well as other sequences which promote RNA transcription. At the level of pop-
ulation we propose algorithms which compute the genotype probability factors.

All our algorithms extract functionality properties using mathematical and
statistical characteristics. Although the approach was completely based on math-
ematical terms, the sequences which stand out are those which have specific bio-
logical meaning (e.g. consensus sequences of promoters). This is significant, not
only because it is extra proof for the special function of these sequences, but also
because they could be used on organisms for which we have the DNA sequence
but do not know much about the functionality of their genome.

In future studies other statistical properties will be considered. Among them
is the effect of repeat sequences, special treatment for complementary oligonu-
cleotides, taking into account punctuation marks etc. It would even be possible
to define a phylogenetic tree based on the values of the power law exponent µ

or similar statistical characteristics. In this tree, one could determine the evolu-
tionary distance between organisms in terms of changes in the RNA polymerase
itself or in the corresponding consensus sequences.

Analysis at the base level could also be enhanced by taking into account
biological information, such as promoters and consensus sequences, punctuation
marks, reading frame and polymerase reading direction. Thus, the prediction
power of the algorithm in determining coding and non-coding areas, or in general
areas with characteristics similar to coding DNA, could be enhanced.

It will be interesting to examine at which point in the evolutionary scale
the clustering properties discussed on section 3.3 disappear. For this task it is
necessary to obtain more data on the DNA structure of organisms between birds
and insects. With this approach it would be possible to check when long range
laws in inter-promoter distances appeared and how they are preserved.

The algorithms developed in this Thesis can be downloaded from our website
http://www.bioinfo.gr/ and are under the GNU GPL licence.
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