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Abstract. In this dissertation, coupled resonator optical waveguides are 
analyzed and a new analytical model to study their spectral properties is 
developed. Coupled mode theory and plane wave expansion are employed in 
order to study the spectral properties of CROWs and a new semi-analytical 
model is derived. This semi-analytical model is used for the derivation of an 
analytical solution for the device’s resonant frequencies. The model not only 
provides a useful tool in the design of CROW based devices but also presents a 
useful physical insight for the device under investigation. The semi-analytical 
model is also used in several types of coupled cavity devices, as is a SCISSOR, 
and is compared with other methods, such as FDTD, in order to test the validity 
and accuracy of the results. All approximations and assumptions that lead to a 
simplification of the model are being discussed. Furthermore the relation 
between fabrication imperfections and the performance of photonic crystal 
CROWs is examined based on our semi-analytical model. A statistical study of 
such imperfections is enabled owing to the calculation of the coupling 
coefficients derivatives. The model is used to study the spectral influence of 
imperfections of different strengths and types on various coupled cavity 
devices. 

Keywords: Photonic crystal waveguide, CROW, SCISSOR, Coupled mode 
theory, FDTD, frequency response, geometric perturbations. 

1 Dissertation Summary 

In this dissertation the technology of photonic crystals is chosen as the technology 
platform to study optical integrated nanophotonic devices. Photonic crystals are 
periodic structures created by materials with different dielectric constants that are 
periodically placed in space. Photonic crystals are classified in 1D, 2D and 3D 
according to their dielectric constant periodicity in space. One of the most important 
features of photonic crystals is the presence of photonic band gaps in their dispersion 
diagrams. More specifically a photonic band gap is a range of frequencies for which 
light cannot propagate inside the structure. Therefore many useful photonic crystal 



devices can be constructed with photonic band gaps, preventing light from 
propagating in certain directions with specified frequencies [1].  

Coupled Resonator Optical Waveguide (CROW) devices in photonic crystals may 
find important applications in future integrated nanophotonic circuits. These devices 
represent a new kind of waveguides not depending on the principles of total internal 
reflection nor on Bragg reflectors to guide light [2]. Waveguiding is performed by the 
coupling of neighboring resonators appropriately placed in order to ensure loose 
coupling [2]. CROWs can be manufactured by several kinds of resonators such as 
Fabry-Perot resonators, photonic crystal cavities, micro rings and micro disks and 
may function with different ways of coupling between these resonators giving rise to 
several designs and applications. In this dissertation the photonic crystal cavities were 
chosen to construct CROWs and Side Coupled Integrated Spaced Sequence of Optical 
Resonators (SCISSORs) [3]. 

Several methods are going to be developed in order to study these structures. The 
role of these methods is very important so as to understand the way in which light 
propagates through these structures and in addition to theoretically analyze and design 
them. Arithmetic methods that directly solve Maxwell’s equations in the time domain 
(Finite Difference Time Domain, FDTD) [4] or in frequency domain (Finite 
Difference Frequency Domain, FDFD) [5] can overview the evolution of 
electromagnetic fields and may be successfully applied to devices like CROWs and 
SCISSORs. Unfortunately they present several drawbacks such as need for enormous 
computational power and time for the simulation of complicated structures. The Mode 
Matching method [6] can analyze the properties of such structures having as only 
prerequisite the analysis of the structure in supercells. Another similar method that is 
going to be fully analyzed in this dissertation is the Couple Mode Theory (CMT) [7]. 

Firstly a closed form formula for the calculation of the transfer function of a 
Photonic Crystal (PC) CROW coupled to an input and an output PC waveguide will 
be derived [8]. Coupled Mode Theory is initially used for the derivation of a semi 
analytical transfer function model [11]. This semi-analytical model is compared to the 
results of an in-house FDTD tool (also used in [13]) and good agreement is obtained. 
Using this semi-analytical model and taking into account only adjacent cavity and/or 
waveguide coupling, a simpler analytical model is obtained for the first time, 
providing a closed form formula for the transfer function of the device regardless of 
the number of cavities. This analytical model may be used to quickly estimate the 
transfer function of the device once the coupling coefficients are estimated. Using the 
analytical model, the resonant frequencies of the device were also obtained. This 
model can provide a useful tool in the design of CROW-based filters and other similar 
devices [8]. 

As previously stated CROWs and SCISSORs are well suited for coupling of mode 
analysis, which usually requires much less computational resources compared Finite 
Difference Time Domain (FDTD) schemes. Coupled mode models [10] also provide a 
useful physical insight in the device operation. Therefore in this dissertation is derived 
a general coupled mode theoretic model for the treatment of coupled cavity devices 
incorporating various phenomena such as dispersion, frequency variation of the 
coupling coefficients, non-adjacent cavity coupling and waveguide mode self 
coupling [14]. The model is validated comparing its results against the FDTD method 
[13] and the strength of the underlying assumptions is highlighted. Overall it was 



shown that the CMT model can provide an adequate device description offering a 
tangible manner of calculating the transfer function and a useful physical insight.  

Finally the relation between fabrication imperfections and the performance of a 
photonic crystal Coupled Resonator Optical Waveguide (CROW) is studied [12]. A 
semi analytical model is presented, which calculates the perturbation of the coupling 
coefficients through their derivatives with respect to the geometric characteristics of 
the rods of the photonic crystal lattice. To account for random perturbations in finite 
devices, Finite Difference (FD) methods require very small grid size in order to 
capture small geometric perturbations. To obtain reliable statistical results, many 
perturbed devices must be calculated rendering such simulations intractable. This 
alternative approach, based on a previously developed coupled mode model [8], is 
applied to the calculation of the derivatives of the coupling coefficients with respect 
to the rod radii and positions. Once these derivatives are calculated, the transfer 
functions of a large number of devices with randomly perturbed geometric 
characteristics using Taylor’s expansion, are estimated and the results are analyzed 
discussed. 

2 Results and Discussion 

2.1 Electromagnetic field equations  

 

Fig. 1 (a) Coupled Resonator Optical Waveguides (CROW) coupled to two photonic crystal 
waveguides, and (b) a Side coupled integrated sequence of three resonators (SCISSOR). 

The basic equations for the electromagnetic field inside the photonic crystal 
CROW will be given in order to derive a transfer function model for the structure of 
Fig. 1a based on CMT. Assuming weak coupling, the electromagnetic field (E,H) can 
be accurately approximated as a linear superposition of the isolated modes of the 
waveguides and cavities, i.e.  
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where En, Hn are the electric and magnetic modal fields of the nth isolated cavity 
modes (1nN), (Efl, Hfl) and (Ebl, Hbl) are the forward and backward propagating 
modes of the lth waveguide (l=1 or 2). Due to the symmetry of the device in Fig. 1a, 



the role of the input and output waveguide may be interchanged. The waveguide l=1 
will be considered as the input waveguide. In addition an, afl and abl denote the 
excitation coefficients of the nth cavity mode and the forward and backward isolated 
propagating mode of the lth waveguide respectively. Assuming that z is the 
propagation direction of the waveguide modes, afl and abl are generally considered 
z-dependent [15], while the cavity mode amplitudes an are assumed not to depend on z 
[16]. The Bloch’s theorem will be used in order to express the waveguide mode fields 
as [17]. The propagation constant ml will be considered positive for the forward 
(m=f) and negative for the backward (m=b) propagating mode and the Bloch 
functions eml and hml are periodic vector functions with the same periodicity a as the 
input/output waveguides along the z direction. Since the waveguides are considered 
the same, at a given frequency , the propagation constants will be f1=f2=-b1=-
b2=. The waveguide modes are normalized and the forward and backward 
propagating modes obey the orthogonality relations as in [15]. 

In the same way the cavity modes obey a similar set of equations,  

 n o nj  E H  (3) 

 n o cn nj   H E  (4) 

where cn(r) is the isolated dielectric constant distribution of nth cavity alone and 0 is 
the isolated mode resonant frequency. Assuming a lossless structure, one may chose 
the electric fields for the cavity modes to be purely real En

*=En resulting in purely 
imaginary magnetic field, Hn

*=-Hn as discussed in [18].  

2.2 Coupled Mode Equations 

In order to derive the coupled mode equations for the waveguide and cavity modes 
of the structure, the Lorentz’s reciprocity theorem [18] will be used. This theorem 
relates two electromagnetic fields (Ea,Ha) and (Eb,Hb) obeying Maxwell’s equations 
in media with dielectric constant distributions a and b respectively. Using the 
corresponding reciprocity equations presented in [18], the following coupled system 
of equations is derived:  

 d
dz

 
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where the vectors a=(a1,a2) and b=(ac1,ac2,…,acN) contain the amplitudes of the 
waveguide and cavity mode respectively, while the matrices W=[wpq] and Cpq=[cpq] 
are determined by the coupling coefficients of the modes,  
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where 1=1 and 2=-1. The coefficients wpq correspond to the coupling of the 
waveguide modes inside the cavities, while cpq are determined by the coupling of the 
waveguide modes with the cavity modes. As previously stated we apply Bloch’s 
theorem [1] to express the forward waveguide mode as 1=e1exp(jz), where  is the 
propagation constant of the mode and e1 is the Bloch function which is periodic along 
z. In order to obtain the cavity coupled mode equations, the reciprocity equations can 
be applied in this case considering the vector functions Fn=E×Hcn

*+Ecn
*×H, where 

1nN.  
The following equations are then derived: 
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In (8) the integration is performed along the propagation direction from the input 
(z=0) to the output (z=L) of the device. The matrices S=[spq] and K=[pq] are defined 
by: 
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where elements pq are the coupling coefficients between the cavity modes and spq 
much like cpq are determined by the coupling of the waveguide modes with the cavity 
modes. 
 

2.3 Estimation of the transfer function 

The previous equations provide a framework for the estimation of the transfer 
function of the structure. The power transfer function is defined as T()=|a1(L)/a1(0)|2 
and is determined by the ratio of the amplitudes of the forward propagating mode at 
the device output and input. In [8] we have shown how under certain simplifying 
assumptions (e.g. assuming W0) the transfer function of the CROW can be obtained. 
However in this case a more generalized transfer function derivation will be shown 
for the case of a SCISSOR (Fig. 1b). Because of the term corresponding to W, (5) is 
not directly amenable to integration as in [8] and for this reason we consider the 22 
matrix U, obeying the differential equation: 
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Given its value U(0) at z=0, U can be calculated numerically by approximating the 
derivative in (11) with a finite difference. If W is small enough, then it can be easily 
shown that U is approximated by:  
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where it is assumed that U(0)=I. We substitute a=Uc in (5) in which case we obtain: 
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The above equation can now be readily integrated with respect to z, in order to 
obtain: 
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where we used the fact that c=U-1a. The vector b can be estimated by (8), if one 
performs integration by parts. We assume a matrix  such that: 
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where P is a constant matrix. Taking into account that Sa=(/z)c, we can write: 
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and using (13) and (8) we obtain: 
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where matrix G is determined by: 
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We note that in (17), the amplitudes of the cavity modes contained in b are 
expressed in terms of the input and output waveguide mode amplitudes a(L) and a(0). 
The amplitudes a1(0) and a2(L) of the forward and backward mode at z=0 and z=L are 
determined by the incident wave conditions. Typically when calculating the transfer 
function, we assume that a2(L)=0, i.e. that there is no reflected wave at the device 
output. In any case, we can choose the elements of P, so that only the incident 
amplitudes of the forward and backward modes a1(0) and a2(L) respectively appear in 
(17). To do this we require the first column of (L)U-1(L) to be zero and that the 
second column of (0)U-1(0) be also zero. Using some straightforward mathematic 
manipulations, we find that the elements of Ppq of P must be given by: 

 2 0pP    (19) 



 21
1 2 1

220

( ) ( ) ( )
( )

L

p p p
u L

P dz M L M z
u L
 

  
 

  (20) 

where the M=[Mpq] is the matrix M=SU and upq are the elements of U which can be 
estimated numerically using (11) or (12). Given Mpq, we can use (19)-(20) to 
determine the elements of P. Assuming that a2(L)=0, then taking into account that 
E(0)=I and that (0)=P, we obtain from (17): 

 1 (1)
1(0)a b G P  (21) 

where P(q) denotes the qth column of P. Equation (21) expresses the cavity mode 
amplitudes b=(ac1,ac2,…,acN) in terms of the forward waveguide mode amplitude 
a1(0) at the device input. Therefore equation (14) can be used to estimate a1(L) in 
terms of a1(0) and b. The transfer function can be calculated taking into account the 
fact that T()=|a1(L)/a1(0)|2. 

To calculate the transfer function of a CROW, like the one depicted in Fig. 1a, 
using the semi-analytical form and the simplifying assumptions of [8] one first needs 
to estimate the coupling coefficients of the cavity/cavity and cavity/waveguide 
systems and hence the isolated modal fields of the waveguides and the cavities. This 
can be achieved through the Plane Wave Expansion (PWE) method [17]. For the 
calculation of the modes of the isolated cavity the number of plane waves used were 
55 in each direction (resulting in a total number of 3025 plane waves) while for the 
waveguide modes the number of plane waves used were 15 along the propagation 
direction and 61 in the transverse direction. Using this method, the isolated cavity 
mode resonant frequency f0 was calculated near afo/c=0.3869. Fig. 2 depicts the power 
transfer function =||2, obtained. The three notches of  are due to the resonances of 
the three cavity system (Fig. 2). The amplitude of the power transfer function reaches 
approximately the value 0.25 at the resonant frequencies [19]. 

 
Fig. 2 Transfer functions of a CROW side-coupled to two PC waveguides as obtained using 

either the FDTD method or the outlined CMT.  

In a similar way Fig. 3 presents the results for the generalized CMT model for a 
SCISSOR (Fig. 1b) along with the FDTD transfer functions for validation purposes. 
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A single cavity SCISSOR is chosen (depicted in the inset of Fig. 3) device and 
various grid sizes  were assumed for the FDTD scheme. The cavity is spaced one 
rod away from the waveguide. Fig. 3 illustrates that as grid size reduces the transfer 
function calculated by the FDTD gradually approaches that of the CMT. For =ra/8 
(ra is the radius of the rod) one obtains a 0.3% difference between the values of the 
resonant frequencies predicted by two methods and a 15% difference in the 3 dB 
bandwidth of the resonance. Smaller grid sizes were not considered because they 
rendered the FDTD simulations quite time consuming especially in the case of 
sharper resonances. To estimate the modal fields with the PWE, we used 75x75 plane 
waves in the case of the cavity mode and 33x75 plane waves in the case of the 
waveguide mode along the z and y directions respectively. The resonant frequency of 
the isolated cavity mode was estimated at afo/c=0.3877. A7x7 and 1x7 supercell was 
used in the PWE calculation in the case of the cavity and the waveguide fields. 

 
Fig. 3 Transfer function of a single cavity SCISSOR obtained by the CMT and the FDTD 

scheme. For the latter method, various grid sizes  are considered. 

2.4 Approximations of the CMT model 

The CMT approach usually results in a more tangible estimation of the transfer 
function of the device. In [8] it was shown how this can be rigorously achieved in the 
case of a CROW, by ignoring the evanescent waveguide modes in the field expansion, 
the frequency dependence of the modal fields and secondary coupling effects. In this 
section some of these restrictions mentioned above will be discussed and the CMT 
results are going to be compared against the FDTD method. 

Frequency dependence of the coupling coefficients. 
Inspecting the coupled mode coefficients in (7) and (9)-(10), it is deduced that the 

coupling coefficients exhibit a frequency dependence since  appears both in front of 
the magnetic mode overlap integral and inside the electric field overlap integral. The 
frequency dependence of the coupling coefficients is also due to the fact that the 
modal fields are given by 1=e1exp(jz) [8] where both the propagation constant  
and the Bloch field e1 are frequency dependent. Our simulation results have shown 
that taking into account the frequency dependence of the coupling coefficients can 
have an important bearing on the results.  
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Coupling Assumptions.  
As previously stated, the general coupling of modes analysis accounts for the 

coupling of the waveguide modes inside the cavities through the matrix W. If this 
secondary coupling is ignored (W0) the transfer function evaluations become much 
simpler. It is therefore interesting to investigate the influence of this waveguide mode 
coupling. The simulation results imply that W has a rather minor bearing even in the 
case where the cavities are placed relatively near the waveguides. Its influence may 
be greater in the case of structures with weaker mode confinement, however. 
In addition it is interesting to consider whether adjacent cavity coupling alone is 
sufficient to provide an accurate estimate for the transfer function. In this case, the 
matrix K is considered tridiagonal, i.e. pq0 when |p-q|>1. The simulation results 
indicate that coupling between non-adjacent cavities also results in a frequency 
detuning which may be important in the case of sharp resonances. 

Expansion in terms of the cavity supermodes.  
The CMT model presented in 2.2 is based on the expansion of the electromagnetic 

field in terms of the isolated cavity modes. This is not the only choice however. In 
[16], we have discussed how an N-cavity system can be considered as a single 
resonator exhibiting N modes inside the bandgap, which can be referred as the 
“supermodes” Esn, Hsn of the cavity system in analogy to the supermodes of a 
waveguide coupler [20]. These modes obey Maxwell’s equations, e.g. 
Hsn=jncEsn where c is the dielectric constant of the N-cavity system, and n is 
the resonant frequency of the nth mode. One can apply the reciprocity relations [8] 
again to obtain coupled mode equations similar to 2.2. The simulation results have 
shown that the choice of supermodes seems to produce a more accurate description 
for the broad resonance. However, since it involves the estimation of the cavity modes 
of a large resonator (coupled cavity system) such estimations may require an 
excessive number of plane waves.  

Evanescent waves.  
The simulation results have indicated that in specific cases CMT fails to provide an 

accurate description of very sharp resonances. This may be due to the assumptions 
made during its derivation. Probably the most important one is that evanescent waves 
are neglected in the field expansion of (1)-(2). Although coupled mode theory could 
in principle be expanded to include evanescent waves [21], this would lead to a 
cumbersome model, since the number of evanescent waves is infinite. Evanescent 
modes are included in FDTD, but their influence cannot be easily distinguished. To 
obtain some measure of the importance of evanescent modes, we resort to the Mode 
Matching (MM) method also developed in [6] where the PWE method was adapted to 
estimate evanescent waveguide modes as well.  

2.5 Geometric perturbations 

To account for random perturbations in finite devices a very small grid size is 
required in order to capture these small geometric perturbations. To obtain reliable 



statistical results, many perturbed devices must be calculated. Therefore an alternative 
approach is proposed derived from the previously developed coupled mode model 
based on the calculation of the derivatives of the coupling coefficients with respect to 
the rod radii and positions [14]. Once these derivatives are calculated, one may 
estimate the transfer functions of a large number of devices with randomly perturbed 
geometric characteristics using Taylor’s expansion. Consequently the first step is to 
calculate all the coupling coefficients of the ideal device (i.e. a device free of 
geometric perturbations) and estimate its transfer function. To incorporate the effect 
of perturbations, the derivatives of the coupling coefficients need to be calculated as 
in [14]. Then one may generate random perturbations along the horizontal (x) and 
vertical (z) axis and the rod radius R for each rod of each perturbed device. The 
derivatives in this method need to be calculated only once and can then be used to 
statistically study the effect of imperfections on a large number (for example 1000) of 
perturbed devices. The transfer functions for perturbed CROW devices with 10 
cavities, for different cavity/waveguide and cavity/cavity spacing are shown in Fig. 4.  

 
Fig. 4 Transfer functions for perturbed CROW devices with 10 cavities and (a) 2 rod 

cavity/cavity and waveguide/cavity spacing and (b) three rod spacing. The rod positions and 
radii are perturbed by 2nm. 

Finally simulation results calculated from 200 sample devices with =2nm, 
depicted in Fig. 5, have shown that the average of standard deviation i=std{Ti(fni)}, 
of the resonance centers fni increases with the size of the device, implying that larger 
CROWs are much more susceptible to fabrication imperfections. 

 

Fig. 5 The average standard deviation  with respect to the number of CROW cavities for 
perturbations of  =2nm  
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3 Conclusions 

This dissertation presented the method that was developed in order to analyze the 
spectral characteristics of CROW waveguides with finite cavity numbers in photonic 
crystals starting from Maxwell’s equations. The analysis additionally assumed an 
input and output waveguide coupled to the CROW structure since its spectral 
behavior is directly linked to the way light is coupled in and out of the structure. The 
simplification of the model led to an analytical equation for the calculation of the 
resonant frequencies of the structure directly by the calculation of its coupling 
coefficients. The presented method does not require excessive computational time or 
resources in order to produce accurate results. In addition the results were compared 
with the FDTD method and good agreement was observed. Furthermore this 
analytical method provides a better physical insight of the way cavities and 
waveguides interact inside the CROW and may provide a useful tool in the design of 
CROW-based filters and other similar devices. 

An analysis of the spectral characteristics of SCISSOR devices was also performed 
using the proposed semi-analytical model. All parameters (i.e. frequency dependence 
of the coupling coefficients, adjacent cavity/cavity and cavity/waveguide coupling, 
CMT expansion consideration, evanescent waves) involved in the calculation of the 
transfer function were discussed and a better physical understanding of the analysis 
was provided. Many discrepancies of the CMT model for specific SCISSOR 
structures were therefore explained. 

Finally, the influence of fabrication induced disorders in the performance of a 
photonic crystal CROW was numerically investigated. The semi-analytical model was 
also used for the calculation of the transfer function of the device in the presence of 
geometric perturbations of various types. The model was based on the estimation of 
the derivatives of the coupling coefficients of the CROW. Then, using these 
derivatives a large number of perturbed devices was simulated with a very small 
computational overhead. The statistical study of various performance issues such as 
the amplitude change and frequency shift of the device resonances as well as the 
resonance 3dB bandwidth were discussed. Using this model one may numerically 
estimate the relation between the device performance and the quality of the 
fabrication process. 
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