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Abstract. Nonlinear behaviour appears in almost all digital commu-
nication systems, such as satellite systems, telephone channels, mobile
cellular communications, wireless LAN devices, radio and TV channels,
digital magnetic systems, etc. Linear approximations that do not take
into account this type of behaviour, may lead to system performance
degradation as well as loss of information. Therefore, appropriate mod-
els should be developed that tackle nonlinear system characteristics. An-
other important issue in studying both linear and nonlinear systems is
that of the order (memory length) of the associated subsystems. It is crit-
ical, because knowing the exact subsystem orders may lead to accurate
system identification and channel equalization. The primary objective
of this dissertation is the solution of the structure determination prob-
lem in system identification. More specifically, the following two main
objectives are pursued:

– To develop methods and algorithms for the order determination of
both linear and nonlinear systems.

– To develop methods and algorithms for system identification and
channel equalization.

1 Introduction

Equalization or deconvolution is essentially a signal processing procedure to
restore a set of source signals which were distorted by an unknown linear or
nonlinear system, whereas system identification is a signal processing procedure
to identify and estimate the unknown linear or nonlinear system. The two prob-
lems prove important in a variety of areas of telecommunication applications.
In this dissertation, we study blind equalization and identification methods, not
only for linear systems but also for nonlinear systems modelled by finite Volterra
series [1]. The approach we take towards blind identification/equalization is the
following. We develop a method that identifies the orders (memory lengths) of
the discrete subsystems that comprise the total system (either linear or non-
linear). This method is implemented by a computationally efficient algorithm.
The algorithm detects the different subsystem orders as well as the number of
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subsystems that attain the same order. This is done both for Single Input Multi-
ple Output (SIMO) and Multiple Input Multiple Output (MIMO) Linear Time
Invariant (LTI) Finite Impulse Response (FIR) systems as well as for nonlinear
SIMO Volterra systems [2, 3] .

Once the orders have been determined, subsystems are clustered in groups of
the same memory length. For linear systems, Blind Source Separation techniques
(BSS) are used to identify the system kernels. For nonlinear Volterra systems
equalization is performed [3]. The complexity of the algorithm that is introduced
depends on the number of subsystems that comprise the total system, the num-
ber of output channels, the degree of nonlinearity, the number of output samples
and finally the statistical properties of the input. Our effort is concentrated on
developing an algorithm that minimizes complexity with respect to all the above
parameters.

This summary is organized as follows; First, in section 2 the model with the
underlying assumptions, the data structures used and the order determination
algorithm are presented. Section 3 provides the kernel identification algorithm
for LTI FIR MIMO systems and the equalization algorithm for SIMO Volterra
systems. In Section 4, conclusions and future work are presented.

2 Order Determination

Given an LTI FIR system or a nonlinear system described by a finite Volterra
series, our objective is to establish that

(a) The number of discrete inputs can be computed.

(b) The orders (memory lengths ) of the subsystems that comprise the total
system are determined.

(c) Computations can be carried out by an efficient algorithm. Specifically, if
L1, L2, · · · , LP are the different subsystem orders, they may be grouped into r
distinct numbers J1, J2, · · · , Jr such that J1 < J2 < · · · < Jr. Then for all i,
1 ≤ i ≤ r, the number mi of subsystems that have order Ji can be computed by
the proposed algorithm.

2.1 LTI FIR MIMO Systems

We shall be concerned with FIR MIMO systems of the form:

x(k) =

P∑
i=1

Li∑
j=0

hi(j)si(k − j) (1)

The system has P inputs and M outputs. Thus the output signal x(k) is
an M × 1 dimensional vector. The input sequences consist of the signals s1(k),
s2(k), · · · , sP (k). The orders of the P subsystems are given by the integers
L1, L2, · · · , LP . For each 1 ≤ i ≤ P , and 0 ≤ j ≤ Li, hi(j) is the corresponding
M × 1 kernel tap.



Memory lengths of the P subsystems are given by the integers L1, L2, · · · , LP .
In the general case, some of the above integers may be equal to each other.
Therefore, the r distint integer values appearing in the set L1, L2, · · · , LP that
denote the different subsystem orders, will in the following be denoted by J1, J2,
· · · , Jr and we shall assume, without loss of generality, that J1 < J2 < · · · < Jr.
In addition, for all i, 1 ≤ i ≤ r, mi will denote the number of subsystems
attaining the same order Ji.

2.2 SIMO Volterra Systems

The nonlinear systems under consideration are assumed to be SIMO, discrete-
time, time-invariant, causal and of finite memory. Furthermore, we assume that
any small changes to the system’s input s(n) result in small changes in the sys-
tem’s output. Any such system can be approximated over a uniformly bounded
set of input signals by a truncated Volterra series expansion of finite order P .

The output y(n) of a real valued SIMO Volterra system, as stated in [1], can
be described as:

x(n) = h0 +

P∑
p=1

N−1∑
mi=0

· · ·
N−1∑
mp=0

hp(m1, · · · ,mp)s(n−m1) · · · s(n−mp) (2)

+η(n)

As stated in [1], for a narrowband communication system input-output rela-
tionship is described by the equation:

x(n) = h0 +

P∑
p=1

N−1∑
mi=0

· · ·
N−1∑
mp=0

hp(m1, · · · ,m2k+1)s(n−m1) (3)

· · · s(n−mk+1)

s∗(n−mk+2) · · · s∗(n−m2k+1)

+η(n)

2.3 Model Equivalence and Assumptions

We may cast a nonlinear system described by a finite Volterra series as a linear
MIMO system. It should be noticed that there is no physical equivalence of the
two types of systems since the inputs of the casted Volterra system are products
of the original input. However, the casting is useful for algebraic manipulations.
Due to the casting, any of the systems under consideration can be described as:

x(k) =

B∑
i=1

Li∑
j=0

hi(j)si(k − j) (4)



or equivalently

x(k) = [H(z)]s(k) (5)

where [H(z)] is the system transfer function and s(k) = [s1(k) · · · sP (k)]t.
If Lq, 1 ≤ q ≤ P , denotes the maximum of L1, L2, · · · , LP , then the channel

polynomial matrix H(z) can be written as

H(z) =

Lq∑
i=0

H(i)z−i (6)

with

H(i) = [h1(i)h2(i) · · ·hP (i)] (7)

Again, the r distint integer values that denote the different subsystem orders,
will in the following be denoted by J1, J2, · · · , Jr and we shall assume, without
loss of generality, that J1 < J2 < · · · < Jr. In addition, for all i, 1 ≤ i ≤ r, mi

will denote the number of subsystems attaining the same order Ji.
For LTI FIR MIMO systems the following assumptions are made:

A1) The input sequences s1(k), s2(k), · · · , sP (k) are stationary Independent Iden-
tically Distributed (I.I.D.) zero mean signals of finite variance that are mutually
independent with each other.
A2) An upper bound L of the subsystems’ orders is known.
A3) The number of inputs P is strictly less than the number of outputs M .
Furthermore, the channel polynomial matrix H(z) is irreducible and column
reduced.

For SIMO Volterra systems the following assumptions are made:
B1) The input sequence s(n) is zero mean, i.i.d., with values in a finite alphabet
of at least P + 1 complex numbers. Examples include PSK or QAM signals.
B2) The system transfer matrix G(z) is irreducible. This guarantees that there
are no common zeros in the (FIR) transfer functions of every pair of the sub-
channels involved. It is a common assumption in all methods based on Second
Order Statistics.
B3) The memory of the linear kernel is strictly greater than the memory of any
nonlinear term. Furthermore, the first element of the zero-th tap of this kernel
is equal to unity.
B4) An upper bound L of B is known.

2.4 Definition of Data Structures

Assuming that k,Q ∈ Nand Q > k, we collect successive output vectors in the
matrix

T(k) = [x(k) x(k + 1) · · ·x(Q)] (8)



Likewise, we combine successive input values in row vector form as follows

s1(k) = [s1(k) s1(k + 1) · · · s1(Q)]

...
...

sB(k) = [sB(k) sP (k + 1) · · · sB(Q)] (9)

Using a window of length w, we form the following array of output samples:

Xk,w =

 T(k)
...

T(k − w + 1)

 (10)

Xk,w is the data matrix defined by stacking w consecutive such observations,
starting with T(k) and going back to T(k−w+1). Similarly, for all j, 1 ≤ j ≤ B,
we have

Sj
k,w =

 sj(k)
...

sj(k − w + 1)

 (11)

Next, we consider the row spaces

Xk,w = R (Xk,w) (12)

Sjk,w = R
(
Sj
k,w

)
(13)

Finally, for any l ∈ N we define the vector space

Ṡk,l =
(
S1k−1,L1+w ⊕ · · · ⊕ SBk−1,LB+w

)⋃ (
S1k+l+w,L1+w ⊕ · · · ⊕ SBk+l+w,LB+w

)
(14)

If we think of l as a smoothing window, we see that Ṡk,l is a subspace constructed
from both past and future data observations. Based on the above, we state the
following theorem that establishes the isomorphic relationship between input
and output subspaces.
Theorem 1: For all w ≥ w0, Xk,w

.
= S1k,L1+w ⊕ · · · ⊕ SBk,LB+w.

Then, we define the projection error matrix and the kernel-input product
matrices that are necessary to the development of the algorithm. The projection
error matrix Ek,l is defined as

Ek,l =


T(k + l)−T(k + l)|Ṡk,l

T(k + l − 1)−T(k + l − 1)|Ṡk,l

...
T(k)−T(k)|Ṡk,l





Ek,l is a (M(l+1))×(Q−k+1) matrix. Each block entry T(k+m)−T(k+m)|Ṡk,l

of Ek,l is formed by the error resulting from the projection of T(k +m) on the

space Ṡk,l generated by past and future input values. In the following analysis,we
shall fix k, without loss of generality since the carried out analysis is valid for any
choice of it. For all i, 1 ≤ i ≤ r, let hi1 ,hi2 , · · · ,himi

, be the mi subsystems that
attain order Ji. Denote by si1 , si2 , · · · , simi

the inputs to the above subsystems.
Then, for a given subsystem his , for all l, J1 ≤ l ≤ L and t, 1 ≤ t ≤ mi, we

define the matrix:

Dl,Ji(hit) =



hit(0) · · · 0M×1
...

. . .
...

hit(Ji)
... hit(0)

...
. . .

...
0M×1 · · · hit(Ji)


,

Next, for all subsystems attaining the same order Ji, we form the matrix:

Gl,Ji =
(
Dl,Ji

(hi1) · · · Dl,Ji
(himi

)
)
,

Collect input values of the above subsystems, to form the matrix:

S̃l,Ji=



si1(k + l − Ji)
...

si1(k)
...

simi
(k + l − Ji)

...
simi

(k)


Finally, for all i, 1 ≤ i ≤ r and for all l, Ji ≤ l ≤ L we define the matrices

Ψl,Ji
= Gl,Ji

S̃l,Ji
(15)

Having defined the projection error matrix and the kernel-input product matrices
we proceed to:
Theorem 2
(i) For any l : l < J1, El = 0
(ii) For l : J1 ≤ l < J2,

El = Ψl,J1 (16)

(iii) For n : 3 ≤ n ≤ r and l : Jn−1 ≤ l < Jn,

El −
n−2∑
m=1

Ψl,Jm
= Ψl,Jn−1

(17)



(iv) For l : Jr ≤ l ≤ L,

El −
r−1∑
m=1

Ψl,Jm = Ψl,Jr (18)

Next we establish the ranks of the projection error matrices El.
Theorem 3: The following statements are true:
(i) For any l : l < J1, rank(El) = 0
(ii) For l : J1 ≤ l < J2,

rank(El) = (l − J1 + 1)m1 (19)

(iii) For n : 3 ≤ n ≤ r and l : Jn−1 ≤ l < Jn,

rank(El) =

n−1∑
i=1

(l − Ji + 1)mi (20)

(iv) For l : Jr ≤ l ≤ L,

rank(El) =

r∑
i=1

(l − Ji + 1)mi (21)

Theorem 3 indicates how to compute the system’s different orders, as well
as the number of subsystems that attain it in a straightforward manner. In-
deed, starting with l = 0 we compute rank(E0) and we increase l by one until
rank(El) > 0. Equation (19) suggests that this value of l equals the smaller
of the orders J1. Moreover, it also gives the number m1 of the subsystems that
attain it. Having determined m1, we increase l in steps of one. As long as l < J2,
rank(El) remains a multiple of m1. When this stops to hold (20) suggests that
l = J2. At this point having computed m1, J1 we use (20) to determine the
number m2 of the subsystems that attain the order J2. We continue increasing
l. As long as l < J3, rank(El) increases by m1 + m2 each time l increases by
one. Again, when this stops to hold, (20) suggests that l = J3. At this point,
having computed J1,m1, J2,m2 we use (20) to determine the number m3 of the
subsystems that have order equal to J3. We keep increasing l by one until we
reach L and proceed in the same way, using (20) and (21) to determine Ji,mi

for all i : 1 ≤ i ≤ r. When l = L, we compute the number P of input signals as:

P =

r∑
i=1

mi (22)

3 LTI FIR MIMO Systems Kernel Identification and
Volterra Systems Equalization

Given an LTI FIR system or a nonlinear system described by a finite Volterra
series the objective of the algorithm is



(a) To identify the kernels of the system in case it is LTI FIR MIMO.

(b) To equalize input symbols in case of SIMO Volterra systems.
The model as well as the assumptions used have already been defined in the

previous chapter. An extra assumption is required for SIMO Volterra systems.
Specifically, the memory of the linear kernel is strictly greater than the memory
of any nonlinear term, while the first element of the zero-th tap of this kernel
is assumed to be equal to unity. Data structures required, have already been
defined in the previous section. In this section we state and prove a number of
lemmas and theorems that establish the validity of the algorithm. In addition,
the steps of the algorithm are presented.

Assuming k is fixed, we shall denote Ek,l by El, to simplify notation. We
state theorem 4 that is essential to the development of the proposed algorithm:
Theorem 4
For all i, 1 ≤ i ≤ r and each l, Ji ≤ l ≤ L, the elements of each one of the ma-
trices Ψl,Ji

can be computed from the elements of the matrices EJ1
,EJ2

, · · · ,EJi
.

3.1 Algorithm Description

A batch algorithm that performs system identification/equalization is developed.
For LTI FIR MIMO systems the algorithm uses the Joint Diagonilization Princi-
ple through the JADE algorithm as described in [9]. The outline of the algorithm
is the following.
A. Order Estimation

– Step A1: At the receiver, group the collected symbols in blocks of Q symbols
per block.

– Step A2: Using the first block, for all l, J1 ≤ l ≤ L compute the matrices El.
Store the matrices.

– Step A3: Compuite the orders J1, J2, · · · Jr of the different subsystems that
comprise the overall system following the algorithm established in [12]. Store
J1, J2, · · · Jr.

– Step A4: For FIR LTI MIMO systems execute part B of the algorithm, for
SIMO Volterra systems execute part C.

B. LTI FIR MIMO Systems Identification

– Step 1: Use matrices El computed in part A, to compute the matrices Ψl,Ji ,
according to theorem 1.

– Step 2: Set l = J1. Using the equation

EJ1
= ΨJ1,J1

(23)

and the JADE algorithm identify the kernels corresponding to the subsys-
tems of order J1 as columns of the matrix GJ1,J1

.
– Step 3: Set l = J2. Using the equation

EJ2 −ΨJ2,J1 = ΨJ2,J2 (24)



and the JADE algorithm identify the kernels that correspond to subsystems
of order J2 as columns of the matrix GJ2,J2 .

...
– Step r + 1: Set l = Jr. Use equation

EJr −
r−1∑
i=1

ΨJr,Ji = ΨJr,Jr (25)

and the JADE algorithm to identify the kernels corresponding to subsystems
of order Jr as columns of the matrix GJr,Jr

.
– End of Kernel Identification

C. Volterra Systems Equalization

– Step 1: Based on theorem 3, compute the matrices ΨJr,Jm , for all m, 1 ≤
m ≤ r − 1.

– Step 2: Set l = Jr and compute the matrix

EJr
−

r−1∑
m=1

ΨJr,Jm
= ΨJr,Jr

(26)

– Step 3: Use the first row of the computed matrix ΨJr,Jr to equalize the input
vector. Due to assumption A3 and the definition of ΨJr,Jr , the first row of
ΨJr,Jr

equals the vector [s(k) s(k + 1) · · · s(k +Q− 1)].
– Step 4: Use the next block of Q received symbols, to compute for all i, 1 ≤
i ≤ r the matrices EJi . Store the matrices.

– Step 5:Repeat steps 1− 4 to equalize next block of Q symbols. Do so, until
all received symbols have been processed.

– Step 6:End of Equalization

For Volterra systems, after equalization has been performed, the vector of
the linear kernel taps can be evaluated as the first column of ΨJr,Jr divided
by s(k). Furthermore, in order to equalize input symbols using equation(26) we
only need to know the values of the first row of each of the matrices ΨJr,Jm

.

4 Conclusions

4.1 Order Determination

The performance of the proposed algorithm in the presence of noise relies heav-
ily on the determination of the effective rank of a matrix perturbed by noise,
is the most sensitive. In [5] various criteria are given that estimate the effec-
tive rank of a perturbed matrix using its singular values. All but one out of
these, use threshold values that either do not appear to be based on any explicit
analytical expressions but are selected on an ad hoc basis, or lower and upper
bounds for them can be derived analytically assuming known noise statistics.



The only criterion among those presented in [5] that does not use either an ad
hoc threshold value or a threshold with upper and lower bounds based on known
noise statistics, determines the numerical rank t of a perturbed matrix B from
its singular values β1 ≥ β2 ≥ · · · ≥ βr as the index t for which βt >> βt+1. It is
straightforward to see that it is equivalent to the criterion used by the proposed
method.

Simulation experiments showed the following:

– For MIMO systems, the validity of the method was established even for low
SNR values. On the other hand, the rank pattern suggested by Theorem 3
is harder to detect in the presence of noise.

– For SIMO systems the proposed method outperforms the algorithm given in
[4] in all cases at least by 6dB, while MDL achieves the 90% success rate
at about the same SNR levels with the proposed method. The new method
outperforms the J-LSS algorithm by at least 14dB, while J-LSS performed
poorly in the case of true microwave channels.

– Denoising improved dramatically the algorithm’s performance for MIMO
systems. For SIMO systems, denoising had a mixed effect. However, we
should mention the performance boost that was achieved when denoising
was applied at the J-LSS method.

– In all our simulation experiments w was chosen equal to L the upper bound
of system’s orders. This is because, as noticed in [8], for a fixed data length,
large values of w imply fewer columns in the algorithm’s data matrices that
correspond to smaller sample size when projections on subspaces are evalu-
ated. Therefore, we tried to keep w as small as possible.

– The algorithm gives analogous results for order detection of Volterra Sys-
tems. It is important to notice that using 1500 symbols the algorithm achieves
high rates of successful order detection even for low SNR values such as 10dB.
This is due to the special structure of the Volterra systems, that is due to lin-
earization of the system, where the new inputs were redefined as subproducts
of delayed input values.

– The computational complexity of the proposed algorithm is O(M3Q2(L +
1)4+M3QL3(L+1)+M3Q2L3(L+1)+M3Q(L+1)3(L−J1+1)) for MIMO
systems. This reduces to O(M3Q2(L+1)4+M3QL3(L+1)+M3Q2L3(L+1))
for SIMO systems. In the above M is the number of outputs and Q is the
number of output data samples used. This suggests that the oversampling
rate or the number of diverse sensors M used at the receiver should be kept
small to avoid heavy computations. In addition, the less output samples used
and the tighter the estimate of the system orders’ upper bound L is, the less
expensive computations become.

4.2 LTI FIR MIMO Kernel Identification and SIMO Volterra
Systems Equalization

For LTI FIR MIMO systems the algorithm allows kernel identification in steps,
based on the JADE algorithm. Kernels are identified in groups, depending on the



memory length of the subsystems they belong to. Performance improvement as
compared with the algorithms given in [9, 10] emanates from the fact that kernel
identification is performed in steps, starting with the subsystems attaining the
lower memory and progressing to the subsystems with the higher memory. The
computational complexity of the proposed method is O(Q4 + (ML Q log2(Q))),
where Q is the size of symbols block, This is because, even though the method
is SOS based, the involvement of the JADE algorithm increases the complexity,
as it requires the computation of fourth-order cumulants.

For Volterra systems, the performance of the algorithm is quite satisfactory,
as compared with the ones given in [6, 11]. The overall algorithm complexity is
therefore, (N

Q )O(ML Q log2(Q)).
For both LTI FIR MIMO systems and SIMO Volterra systems, selecting

the appropriate size Q of symbol blocks affects the correct order determination
and by that the matrices El based on which identification/equalization are per-
formed. Selection of Q depends on SNR as well as the complexity of the system
examined, that is the number of subsystems it comprises of and their orders.
Extensive simulation experiments, involving both LTI FIR MIMO and Volterra
systems triggered by different types of PSK input, suggested that Q ≥ 1500.

4.3 Future Work

As it has already been mentioned the algorithm’s complexity is O(M3Q2(L +
1)4 +M3QL3(L+1)+M3Q2L3(L+1)+M3Q(L+1)3(L−J1 +1)) for the order
identification part of MIMO systems and O(M3Q2(L+ 1)4 +M3QL3(L+ 1) +
M3Q2L3(L+1)) for SIMO systems. Moreover, we pay O(Q4 +(ML Q log2(Q)))
operations for identification or (N

Q )O(ML Q log2(Q)) for Volterra systems equal-
ization. It is obvious that there should be some future work to improve computa-
tional complexity. This can be achieved either by ausing a recursive implementa-
tion scheme or by introducing other type of BSS techniques, with less complexity
than the JADE algorithm.
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