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Abstract. The objective of this dissertation is the design and analysis
of iterative methods for the numerical solution of large, sparse linear
systems. This type of systems emerges from the discretization of Partial
Differential Equations. Two special types of linear systems are stud-
ied. The first type deals with systems whose coefficient matrix is two
cyclic whereas the second type studies the augmented linear systems.
Initially, the Preconditioned Simultaneous Displacement (PSD) method,
which is a generalized version of the Symmetric SOR (SSOR) method, is
studied when the Jacobi iteration matrix is weakly cyclic and its eigen-
values are all real “real case” or all imaginary “imaginary case”. The
first result is that the PSD method has better convergence rate than
the SSOR method. In particular, in the “imaginary case” its conver-
gence is increased by an order of magnitude compared to the SSOR
method. In an attempt to further increase the convergence rate of the
PSD method, more parameters were introduced. The new method is
called the Modified PSD (MPSD) method. Under the same assumptions
the convergence of the MPSD method is studied. It is shown that the
optimum MPSD method is equivalent to the optimum MSOR method.
Furthermore, the convergence analysis of the Generalized Modified Ex-
trapolated SOR (GMESOR) and Generalized Modified Preconditioned
Simultaneous Displacement (GMPSD) methods is studied for the nu-
merical solution of the augmented linear systems. The main result of
our analysis is that both methods possess the same rate of convergence
and less complexity than the Preconditioned Conjugate Gradient (PCG)
method. The last result is important since it proves that the addition of
parameters in an iterative method has the same effect in the increase of
the rate of convergence as that of the Conjugate Gradient (CG) method
which belongs to the Krylov subspace methods.

1 Introduction

The modeling of many scientific problems leads to the solution of Partial Dif-
ferential Equations (PDEs). The discretization of a PDE using finite difference
or finite element methods leads to a linear system of equations whose coefficient
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matrix is large and sparse. These systems can be solved using direct or iter-
ative methods. However, iterative methods become more attractive since they
are very effective and require less memory and arithmetic operations than direct
methods. Another reason that the iterative methods have become particularly
popular is because they are suitable for parallel processing.
The first iterative methods were the Jacobi (1824) and later the Gauss-Seidel
(1848). After about 100 years the popular Successive Overrelaxation (SOR)
method was discovered and 10 years later, its symmetric version, the Symmetric
Successive Overrelaxation (SSOR) method. These methods introduce a parame-
ter ω whose role is to minimize the spectral radius, the largest in modulus eigen-
value, of their iterative matrix. The main result from the convergence analysis
of the SOR method was the determination of the optimal value of the parameter
ω for which the spectral radius is minimal and hence the rate of convergence of
the iterative method becomes maximum and better, by an order of magnitude,
than the Gauss-Seidel (GS) method. This result was found by Young (1952)
[12] and first presented in his thesis. The whole theory was developed for sys-
tems whose coefficient matrix is two-cyclic. It was already known in 1952 that
the introduction of parameters in iterative methods resulted in increasing the
rate of convergence. However, research was directed to the development of other
iterative methods based on orthogonality of vectors for solving generalized lin-
ear systems. A representative of these methods is the Conjugate Gradient (CG)
method [6].
In this dissertation the Preconditioned Simultaneous Displacement (PSD) method
is studied [8]. This method was proposed in 1980 by Evans and Missirlis [4] and
is a generalization of the SSOR method for the numerical solution of linear
systems. Our starting point is the derivation of a functional equation which re-
lates the eigenvalues of the PSD preconditioned matrix to its associated Jacobi
iteration matrix. In particular, convergence conditions and optimum values of
the parameters of the PSD method are determined to achieve optimal rate of
convergence in cases where the Jacobi iteration matrix is weakly cyclic and its
eigenvalues are either all real “real case” or all imaginary “imaginary case”.
The study of convergence of the PSD method revealed that its rate of conver-
gence is faster than the SSOR method. Especially, in the “imaginary case” its
convergence is improved by an order of magnitude as compared to SSOR. This
result is quite encouraging for the study of the PSD method in case where the
Jacobi iteration matrix has complex eigenvalues. In an effort to further increase
the rate of convergence of the PSD method, more parameters were introduced.
The new method called Modified PSD (MPSD)[9]. Under the same assumptions
the convergence of the MPSD method is studied. The main result of this analy-
sis is that the MPSD method becomes equivalent to the MSOR method for the
optimum values of their parameters. It is also shown that the MPSD method
converges faster than the corresponding Modified SSOR method. Also, the PSD
method achieves faster convergence rate compared to the classical SOR method.
Indeed, in case where the smallest in modulus eigenvalue of the Jacobi iteration
matrix increases then the rate of convergence of the MPSD method increases



whereas the rate of convergence of the SOR method remains constant.
In recent years, many researchers have studied the saddle point problem

which leads to the solution of an augmented linear system. Such systems arise
in areas of computational fluid dynamics, constrained optimization, image pro-
cessing, finite element approximations and elsewhere. The most known and the
oldest methods are the Uzawa and the preconditioned Uzawa methods which are
special cases of the SOR-like method. In 2005, the Generalized SOR (GSOR)
method was studied, which improved the rate of convergence of the SOR-like
method by introducing an additional parameter.
In this dissertation, we developed the convergence analysis of the Generalized
Modified Extrapolated SOR (GMESOR) and generalized Modified Precondi-
tioned Simultaneous Displacement (GMPSD) methods [10] for the numerical so-
lution of augmented linear systems. To study the convergence of these methods it
was necessary to derive a functional equation between the eigenvalues of the iter-
ation matrices of the aforementioned methods with those of matrix J (see (11)).
It is assumed that the eigenvalues of the matrix J are all real and positive. Under
these assumptions, sufficient conditions for the convergence of these methods are
found. Furthermore, the optimal values of their parameters are determined such
that these methods obtain the optimum rate of convergence. We studied the
Generalized SOR (GSOR), Generalized Extrapolated SOR (GESOR), General-
ized Modified PSD with three parameters (GMPSD(3)), Generalized Modified
SSOR (GMSSOR) and Generalized SSOR (GSSOR) methods. The main result
of this analysis is that all these methods have the same rate of convergence and
less complexity than the Preconditioned Conjugate Gradient (PCG) method.
The latter result is important because it demonstrates that the introduction of
parameters in an iterative method results in the same increase in the rate of
convergence as the Conjugate Gradient (CG) method. Next, we present a small
part of the present dissertation, which refers to the convergence analysis of the
Generalized Modified Extrapolated SOR method.

2 The Generalized Modified Extrapolated SOR method

Let A ∈ R
m×m be a symmetric positive definite matrix and B ∈ R

m×n be a
matrix of full column rank, where m ≥ n. Then, the augmented linear system is
of the form [1], [2], [3], [5]

Au = b (1)

where

A =

(

A B

−BT 0

)

, u =

(

x

y

)

, b =

(

b1
−b2

)

(2)

with BT denoting the transpose of the matrix B. Such systems arise in areas of
computational fluid dynamics, constrained optimization, image processing , in
finite element approximations and elsewhere [2].
Let the coefficient matrix A of (1) be defined by the splitting

A = D − L − U (3)



where

D =

(

A 0
0 Q

)

, L =

(

0 0
BT aQ

)

, U =

(

0 −B

0 (1− a)Q

)

, (4)

with Q ∈ R
n×n be a prescribed nonsingular and symmetric matrix and a ∈ R.

Furthermore, we denote by T, the diagonal matrix T = diag(τ1Im, τ2In) with
τ1, τ2 ∈ R− {0}, Im ∈ R

m×m and In ∈ R
n×n be identity matrices.

For the numerical solution of (1), we consider the following iterative scheme

(

x(k+1)

y(k+1)

)

= H(τ1, τ2)

(

x(k)

y(k)

)

+ η(τ1, τ2)

(

b1
−b2

)

(5)

where
H(τ1, τ2) = I −R−1TA, η(τ1, τ2) = R−1Tb, (6)

R is a nonsingular matrix to be defined and I = diag(Im, In).
In the sequel we consider different types of the preconditioned matrix R and
study the iterative methods derived by (5) and (6).

2.1 The functional relationship

As a first step we consider the preconditioning matrix which is formed by the
parametrized diagonal and lower triangular part of A

R = D −ΩL, (7)

where Ω = diag(ω1Im, ω2In) with ω1, ω2 ∈ R. Then the iterative scheme (5),
(6) becomes the GMESOR method. In case a = 0 this method was introduced
in [1] and proposed for further study. We initiate our study by developing the
convergence analysis of GMESOR. In the general case where a 6= 0 our theoret-
ical analysis reveals new convergence regions for the parameters of the GSOR
method generalizing the ones found in [1]. If R is given by (7), then (6) becomes

H(τ1, τ2, ω2, a) = I − (D −ΩL)−1
TA

or
H(τ1, τ2, ω2, a) = (D −ΩL)−1[(I − T )D + (T −Ω)L + TU ] (8)

and

η(τ1, τ2, ω2, a) = (D −ΩL)−1
Tb. (9)

The iterative scheme given by (5), (8) and (9) will be referred to as the General-
ized Modified Extrapolated SOR (GMESOR) method. For (D−ΩL)−1 to exist
we require

det(D −ΩL) 6= 0.

Because of (4)

R = D −ΩL =

(

A 0
−ω2B

T (1− aω2)Q

)

.



Therefore,

det(D −ΩL) = (1− aω2)
n detAdetQ 6= 0

or

aω2 6= 1 (10)

since the matrix A is symmetric positive definite and the matrix Q is nonsingu-
lar.
The GMESOR method has the following algorithmic form.

The GMESOR Method: Let Q ∈ R
n×n be a nonsingular and symmetric

matrix. Given initial vectors x(0) ∈ R
m and y(0) ∈ R

n, and the parameters
τ1, τ2 6= 0, ω2, a ∈ R with aω2 6= 1. For k = 0, 1, 2, ... until the iteration sequence

{(x(k)T , y(k)
T
)T } is convergent, compute

x(k+1) = (1− τ1)x
(k) + τ1A

−1(b1 −By(k)),
y(k+1) = y(k) + 1

1−aω2

Q−1
{

BT [ω2x
(k+1) + (τ2 − ω2)x

(k)]− τ2b2
}

,

where Q is an approximate (preconditioning) matrix of the Schur complement
matrix BTA−1B.

Note that in the above algorithm the parameter ω1 is eliminated. For special
values of its parameters GMESOR degenerates into known methods or produces
new ones. Indeed, if ω = τ1 = τ2 = ω2 and a = 0 then GMESOR becomes the
SOR-like method [5]; if ω = τ1 = τ2 = ω2 = 1 and a = 0 then it becomes the
preconditioned Uzawa method [3]; if τ = τ1 = τ2 then GMESOR will be referred
to as the GESOR method and if τ1 = ω1, τ2 = ω2 and a = 0, then it becomes
the GSOR method [1].
By comparing the algorithmic structures of the GMESOR method and the
GSOR method, we can verify that both methods have exactly the same compu-
tational complexity. Also, the GMESOR method has less computational com-
plexity than the Preconditioned Conjugate Gradient (PCG) method.
In the following theorem we find the functional relationship between the eigen-
values λ of the iteration matrix H(τ1, τ2, ω2, a) with the eigenvalues µ of the
associated matrix J , where

J = Q−1BTA−1B. (11)

Theorem 1 Let A ∈ R
m×m be symmetric positive definite, B ∈ R

m×n be of full
column rank and Q ∈ R

n×n be nonsingular and symmetric. If λ 6= 1 − τ1 is an
eigenvalue of the matrix H(τ1, τ2, ω2, a) and if µ satisfies

λ2 + λ

(

τ1 − 2 +
τ1ω2

1− aω2
µ

)

+ 1− τ1 +
τ1(τ2 − ω2)

1− aω2
µ = 0, (12)

where aω2 6= 1, then µ is an eigenvalue of the key matrix J = Q−1BTA−1B.
Conversely, if µ is an eigenvalue of J and if λ 6= 1 − τ1 satisfies (12), then λ



is an eigenvalue of H(τ1, τ2, ω2, a). In addition, λ = 1 − τ1 is an eigenvalue of
H(τ1, τ2, ω2, a) (if m > n) with the corresponding eigenvector (xT , 0)T , where
x ∈ N (BT ) and N (BT ) is the nullspace of BT .

Proof. See [10].
From the above theorem we can obtain the following corollary.

Corollary 1 Under the hypothesis of Theorem 1 the nonzero eigenvalues of the
iteration matrix L(ω1, ω2, a) of the GSOR method are given by λ = 1− ω1 or if
aω2 6= 1 by

λ2 + λ

(

ω1 − 2 +
ω1ω2

1− aω2
µ

)

+ 1− ω1 = 0. (13)

2.2 Optimum parameters

In this section we determine optimum values for the parameters of the GSOR
and GMESOR methods under the hypothesis that a 6= 0 and the eigenvalues of
the matrix J are real. The sign of J ’s eigenvalues depends upon the properties
of the matrix Q. We assume that Q is a symmetric positive definite matrix.
The matrix Q is an approximate matrix to BTA−1B. The reason being that if
Q ≃ BTA−1B then J = Q−1BTA−1B ≃ I. In this case the ratio of the max-
imum to the minimum eigenvalue of the matrix J becomes minimum and its
value is approximately 1. As a consequence, the spectral radius of the iteration
matrix of the GMESOR (GSOR) method attains its minimum value.

The GSOR method

In the following theorem the optimum parameters for the GSOR method are
determined assuming that a 6= 0.

Theorem 2 Consider the GSOR method. Let A ∈ R
m×m and Q ∈ R

n×n be
symmetric positive definite and B ∈ R

m×n be of full column rank. Denote the
minimum and the maximum eigenvalues of the matrix J = Q−1BTA−1B by
µmin and µmax, respectively. Then the spectral radius of the GSOR method,
ρ(L(ω1, ω2, a)), is minimized for any a 6= −√

µminµmax at

ω1opt =
4
√
µminµmax

(
√
µmin +

√
µmax)2

and ω2opt =
1

a+
√
µminµmax

(14)

and its corresponding value is

ρ(L(ω1opt , ω2opt , a)) = (1− ω1opt)
1

2 =

√
µmax −√

µmin√
µmax +

√
µmin

. (15)

Proof.The functional relationship (13) may be written as follows

(λ+ ω1 − 1)(λ− 1) = −λω1ω̂2µ (16)



where
ω̂2 =

ω2

1− aω2
, (17)

and aω2 6= 1. The optimum values of ω1 and ω̂2 will be determined such that

ρ(L(ω1, ω̂2, a)) = max
µmin≤µ≤µmax

|λ| (18)

is minimum. Then, the real roots of (16) are the intersection points of the
parabola

gω1
(λ) =

(λ+ ω1 − 1)(λ− 1)

ω1ω̂2
(19)

and the straight lines

h(λ) = −λµ, 0 < µmin ≤ µ ≤ µmax. (20)

Following a similar argument as in [11] page 111, h(λ) are straight lines through
the point (0, 0) and gω1

(λ) is a parabola passing through the point (1,0). The
discriminant of (13) is

∆(ω1, ω̂2, µ) = (2− ω1 − ω1ω̂2µ)
2 − 4(1− ω1) = 0. (21)

Note that ∆(ω1, ω̂2, µ) ≤ 0 for 0 < ω1 ≤ ω̃ and ∆(ω1, ω̂2, µ) ≥ 0 for ω̃ ≤ ω1 < 2,
where

ω̃ =
4ω̂2µ

(1 + ω̂2µ)2
.

If 0 < ω1 ≤ ω̃ then the minimum value of ρ(L(ω1, ω̂2, a)) is attained when (see
(13))

|λ̃1| = |λ̃N | = (1 − ω1)
1/2, (22)

where λ̃1 and λ̃N are the two conjugate complex roots of (13) as illustrated in
figure 1. Furthermore, (22) is a decreasing function of ω1. In case ω̃ ≤ ω1 < 2 the
roots of (13) can be geometrically interpreted as the intersection of the curves
gω1

(λ) and h1(λ) = −λµmax. The largest abscissa of the two points of intersec-
tion of h1(λ) and gω1

(λ) decreases with increasing ω1. Indeed as ω1 increases, the
intersection point (1−ω1, 0) of gω1

(λ) with the Oλ axis is moving towards to zero
until gω1

(λ) becomes tangent to h1(λ), which occurs when ∆(ω1, ω̂2, µmax) = 0
or equivalently

(2− ω1 − ω1ω̂2µmax)
2 − 4(1− ω1) = 0. (23)

A similar argument for hN (λ) = −λµmin reveals the condition∆(ω1, ω̂2, µmin) =
0 must hold or equivalently

(2 − ω1 − ω1ω̂2µmin)
2 − 4(1− ω1) = 0. (24)

Note that the straight lines h1(λ) = −λµmax and hN (λ) = −λµmin include all
the lines h(λ) = −λµ. The spectral radius is given by

ρ(L(ω1, ω̂2, a)) = max
µmin≤µ≤µmax

{|λ̃1|, |λ̃N |} (25)



y

λ̃N

1− ω1 λ̃1 1

λ

h1(λ)

gω̃1
(λ)hN (λ)

gω1
(λ)

Fig. 1. Conditions for minimization of ρ(L(ω1, ω̂2, a)).

where λ̃1, λ̃N are the abscissas of the points of tangent of h1(λ), hN (λ), respec-
tively. For the minimization of ρ(L(ω1, ω2, a)) with respect to ω1 we require

|λ̃1| = |λ̃N |

or
λ̃1 = −λ̃N = (1− ω1)

1/2, (26)

where the last equality holds by the fact that λ̃1, λ̃N are the abscissas of the
tangents h1(λ) and hN (λ), respectively. Equating the first parts of (23) and (24)
we obtain

2− ω1 − ω1ω̂2µmax = −(2− ω1) + ω1ω̂2µmin

or

ω1 =
4

2 + ω̂2(µmin + µmax)
. (27)

Substituting (27) into (23), it follows that

ω̂2 =
1√

µminµmax
, (28)

from which, because of (17), the second part of (14) is obtained. From (27),
because of (28), we obtain that the optimum value of ω1, is given by the first
part of (14). From (22) and (26) it follows that

ρ(L(ω1, ω2, a)) = (1 − ω1)
1/2

which, because of (14), yields (15). ⊓⊔



Theorem 2 finds the optimum values of the relaxation parameters ω1 and ω2 of
the GSOR method in the general case where a 6= 0. Note that by letting a = 0 in
(14) we obtain the optimums found in [1]. Our analysis shows that the param-
eter a has no impact on the spectral radius of the GSOR method as one might
have expected. In fact, from (14) it follows that ω2opt ∈ (0, (µminµmax)

−1/2] for
any a 6= −√

µminµmax. This implies that GSOR will attain the same rate of

convergence for any value of ω2 in the range (0, (µminµmax)
−1/2]. In case µmin

and µmax cannot be estimated accurately enough this is an advantage compared
to the single value (µminµmax)

−1/2 for ω2 in the GSOR with a = 0.

The GMESOR method

In the sequel we determine the optimum parameters for the GMESOR method.

Theorem 3 Consider the GMESOR method. Let A ∈ R
m×m and Q ∈ R

n×n

be symmetric positive definite and B ∈ R
m×n be of full column rank. Denote

the minimum and the maximum eigenvalues of the matrix J = Q−1BTA−1B by
µmin and µmax, respectively. Then the spectral radius of the GMESOR method,
ρ(H(τ1, τ2, ω2, a)), is minimized at

ω2opt = τ2opt , (29)

τ1opt =
4
√
µminµmax

(
√
µmin +

√
µmax)2

and τ2opt =
1

a+
√
µminµmax

(30)

and its corresponding value is

ρ(H(τ1opt , τ2opt , ω2opt , a)) =

√
µmax −√

µmin√
µmax +

√
µmin

. (31)

Proof.The functional relationship of the GMESOR method is written as (12)
or

(1− aω2)(λ + τ1 − 1)(λ− 1) = τ1(ω2 − τ2 − λω2)µ. (32)

The optimum values of τ1, τ2 and ω2 will be determined such that

ρ(H(τ1, τ2, ω2, a)) = max
µmin≤µ≤µmax

|λ| (33)

is minimum. Then the real roots of (32) are the intersection points of the parabola

g(λ) =
(λ + τ1 − 1)(λ− 1)(1− aω2)

τ1
(34)

and the straight lines

h(λ) = (ω2 − τ2 − λω2)µ, 0 < µmin ≤ µ ≤ µmax. (35)

Following a similar argument as in [11] page 111, h(λ) are straight lines through
the point (0, (ω2 − τ2)µ) and g(λ) is a parabola passing through the points (1,0)



y

λ̃N

1− ω1 λ̃1 1

λ

h1(λ)

gω̃1
(λ)

hN (λ)

gω1
(λ)

(0, (ω2 − τ2)µ)

Fig. 2. Conditions for minimization of ρ(H(τ1, τ2, ω2)).

and (1 − τ1, 0) (see figure 2). It can be verified that the largest abscissa of the
two points of intersection of h(λ) and g(λ) decreases until h(λ) becomes tangent
to g(λ) which occurs when the discriminant of (12) becomes equal to zero, i.e.
∆(τ1, τ2, ω2, µ) = 0 or

[(τ1−2)(1−aω2)+τ1ω2µ]
2−4(1−aω2)[(1−τ1)(1−aω2)+τ1(τ2−ω2)µ] = 0. (36)

Note that since the straight lines h1(λ) = (ω2 − τ2 − λω2)µmax and hN (λ) =
(ω2 − τ2 − λω2)µmin include all the lines h(λ) = (ω2 − τ2 − λω2)µ, the optimum
values of the parameters τ1, τ2 are obtained when h1(λ) and hN (λ) are tangent
to the parabola gτ1(λ̃). Furthermore

ρ(H(τ1, τ2, ω2, a)) = max
µmin≤µ≤µmax

{|λ̃1|, |λ̃N |} (37)

where λ̃1, λ̃N are the abscissas of the points of tangent of h1(λ), hN (λ), respec-
tively. Therefore,

|λ̃1| = [(1− τ1)(1 − aω2) + τ1(τ2 − ω2)µmax]
1/2, (38)

and
|λ̃N | = [(1− τ1)(1− aω2) + τ1(τ2 − ω2)µmin]

1/2, (39)

From (37) it follows that the minimum value of ρ(H(τ1, τ2, ω2, a)) is attained
when

|λ̃1| = |λ̃N | (40)



which, because of (38) and (39), it follows that

ω2 = τ2. (41)

In case λ̃1 and λ̃N are the two conjugate complex roots of (32), it follows that
(40) holds also. So, (41) holds if either (32) has real or conjugate complex roots.
However, if (41) holds, then (12) becomes

λ2 + λ (τ1 − 2 + τ1τ̂2µ) + 1− τ1 = 0,

which is the functional relationship of the GSOR method (see (13)) with

τ̂2 =
τ2

1− aτ2
. (42)

Therefore the optimum values of τ1 and τ̂2 are given by the first and second part
of (14), respectively, whereas the minimum value of ρ(H(τ1, τ2, ω2, a)) is given
by (15). Finally, using (42) we find (30). ⊓⊔

In 2003, Li, Evans and Zhang [7], applied the Preconditioned Conjugate Gradient
(PCG) method for solving the augmented linear system (1) and proved that the
PCG method is at least as fast as the SOR-like method. Later, in [1] it was
established that the GSOR method has better convergence rate than the SOR-
like method whereas its spectral radius is the same with that of the PCG method
for the optimum values of its parameters. Our analysis shows that the GMESOR
iterative method have also the same rate of convergence with the GSOR method
for the optimum values of their parameters (see Theorems 2, 3), which in turn
is equal to the PCG method.

3 Remarks and Conclusions

We have studied the convergence analysis of various generalized iterative meth-
ods for the solution of the augmented linear system (1) when the coefficient ma-
trix A is of the form (2). We assumed that A ∈ R

m×m was a symmetric positive
definite matrix and B ∈ R

m×n was a matrix of full column rank, where m ≥ n,
in order to have a unique solution, whereas Q was a symmetric positive definite
matrix. Under these assumptions we were able to find sufficient conditions for
the GMESOR iterative method as well as for its counterparts to converge and
we were able to determine its optimum rate of convergence in the general case
where a 6= 0. From our analysis, it is proved that this method is equivalent with
the GSOR method since it has the same spectral radius, which is given by (15).
It is also proved that the introduction of the parameter a in the structure of
A and hence in the preconditioned matrix R does not have any impact in the
convergence rate of this method as one might have expected. Furthermore, all
these methods have the same spectral radius as the Preconditioned Conjugate
Gradient (PCG) method but less complexity. Therefore, it will be interesting to
study the behavior of the GSOR and GMESOR methods in problems where the



PCG method is the best solver. An interesting research direction is the study of
all these methods in case of nonsymmetric augmented linear systems where the
eigenvalues of the matrix J are now complex.
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