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Abstract. In this dissertation the problem of semi-supervised spectral
unmixing is studied. We describe a framework of Bayesian techniques
that take into account the special characteristics of hyperspectral data
and exploit the prior knowledge of the model’s constraints. The assump-
tion of sparsity on the unmixing process is introduced, which leads to
the development of efficient schemes for spectral unmixing. Besides, a
novel method for Bayesian inference is proposed, termed BI-ICE, which
is computationally efficient, and can be considered as a first-moments ap-
proximation to variational inference methods. Experimental results con-
ducted both on simulated and real hyperspectral data are presented that
illustrate the robust estimation performance of the proposed sparsity-
inducing methods.
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1 Introduction

Over the past decades hyperspectral image analysis has emerged as one of the
fastest growing technologies in the field of remote sensing. Hyperspectral im-
agery refers to the process of remotely obtaining data about an object (in our
case a geographical area), with the use of hyperspectral sensors. Hyperspectral
sensors have the ability to sample the electromagnetic spectrum in hundreds of
continuous spectral bands. As a consequence, each pixel of a hyperspectral image
is represented by a vector, where each coefficient is a measurement of reflectance
at a respective wavelength.

The immense growth of hyperspectral imaging applications has also been
accompanied by the development of numerous techniques to effectively process
the overwhelming amount of collected data. Sophisticated algorithms have been
proposed in the literature that either ameliorate the shortcomings of hyperspec-
tral data, or focus on the exploitation of their informational content. Among all
possible signal processing applications that exploit hyperspectral data, in this
dissertation we are more interested in the thematic area of spectral unmixing.

The process of hyperspectral unmixing is described by two major steps: (a)
the endmember extraction step, and (b) the inversion process. In the endmember
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extraction step the spectral signatures of the endmembers contributing to the
hyperspectral image are determined. Popular endmember extraction algorithms
include the pixel purity index (PPI), [1], the N-FINDR algorithm, [2], and the
vertex component analysis (VCA) method, [3]. The inversion process determines
the abundances corresponding to the estimated endmembers obtained in the pre-
vious step. The abundances should satisfy two constraints, in order to remain
physically meaningful; they should be non-negative and sum to one. Under these
constraints, spectral unmixing is formulated as a convex optimization problem,
which can be addressed using iterative methods, e.g., the fully constrained least
squares method, [4], or numerical optimization methods, e.g., [5]. Bayesian meth-
ods have also been proposed for the problem, e.g., the Gibbs sampling scheme
applied to the hierarchical Bayesian model of [6]. Semi-supervised unmixing, [6,
7], which is considered in this dissertation, assumes that the endmembers’ spec-
tral signatures are available. The objective of semi-supervised unmixing is (a)
to determine how many and which endmembers are present in the mixed pixel
under study and (b) to estimate their corresponding abundances.

2 Work contributions

The scientific contributions that appear in the present work exhibit a Bayesian
treatment for the problem of supervised spectral unmixing. A major advantage
of the Bayesian approach is that it provides a flexible framework to represent
the probabilistic mechanisms of data generation and our prior information about
it. To this end, parametric probabilistic models are considered, and appropriate
prior distributions are employed to capture the uncertainties of the model pa-
rameters.

In the context of hyperspectral signal processing, we were greatly influ-
enced by the wide applicability of Bayesian methods. Our first contribution
is a Bayesian maximum a posteriori (MAP) estimator, published in [8], which
is specifically designed to account for the convex constraints of the abundance
estimation problem. Utilizing the simplicity of the Gaussian distribution and
the symmetry of constraints, closed form expressions are derived for the modes
of the posterior distribution of the abundances. Following this path an efficient
estimator is proposed, which has almost similar estimation performance, but is
computationally more efficient than quadratic programming methods that ad-
dress the same constrained estimation problem.

The applicability of our proposed schemes has also been of concern. A repre-
sentative example is the case study on the unmixing of real hyperspectral data
collected from the OMEGA spectrometer, [9], aboard the Mars Express mission.
The objective of the OMEGA spectrometer is to collect information which will
help to determine the mineral composition of the Mars surface. This is an in-
teresting application for spectral unmixing. Three methods are considered and
compared in the unmixing process: (a) the ENVI-SVD method, which is com-
mercially available through the popular remote sensing software ENVI, (b) the
MAP estimator of the preceding paragraph, and (c) a quadratic programming
method, [5], which is an iterative Newton method. The results of this comparison



are available in [10, 11], where it is seen that the MAP estimator can provide
reliable results and outperform existing methods.

In the sequel, a significant amount of efforts was invested to leverage sparse
signal processing techniques for spectral unmixing. The primary assumption is
that only a small number of endmembers will be mixed in a single pixel, and
hence, the abundance estimation problem will inherently have a sparse solution.
To the best of our knowledge, we were among the first to introduce the notion
of sparsity to the problem of spectral unmixing. This consideration is exhibited
in the publications [7, 12, 13]. In both publications a variant of the least absolute
shrinkage and selection operator (lasso), [14], was selected to impose sparsity.
In [7], the adaptively weighted lasso, [15], is utilized and special manipulation
is provided for the constraints of the problem. To force the nonnegativity con-
straint, the optimization problem is solved using a modified LARS algorithm,
which retrieves only nonnegative solutions. Moreover, the additivity constraint
is included in the quadratic loss function of least squares, by means of an appro-
priate extra linear equation.

Another contribution of this thesis is the development of a Bayesian hier-
archical model analogous to the adaptive lasso, [15]. In the proposed Bayesian
setup, independent Laplace priors are employed by the model to correspond to
the weighted `1 norm penalization of the adaptive lasso. Besides, the nonnegativ-
ity constraint is incorporated to the model by a truncation operation on the prior
distributions. A novel method for Bayesian inference is then developed, termed
as Bayesian inference iterative conditional expectations algorithm (BI-ICE). BI-
ICE appears to be a first-moments approximation to variational approximation
methods, and is summarized in Section 3. The proposed Bayesian approach is
analytically described in [13].

Finally, a lot of effort has also been invested into the research and develop-
ment of a sparse reconstruction algorithm, in the framework of Bayesian com-
pressive sensing. The previous Bayesian set-up has been adopted to promote
sparse solutions to an underdetermined system of linear equations. To perform
Bayesian inference, a recently proposed sub-optimal, type-II maximum likeli-
hood algorithm was adjusted to fit the needs of the present framework. The
resulting incremental-type algorithm has superior performance when compared
to other Bayesian compressive sensing methods, as illustrated in Chapter 4 of
the dissertation.

3 Semi-supervised hyperspectral unmixing via a novel
Bayesian approach

An interesting perspective of the semi-supervised spectral unmixing problem
arises when the latent sparsity of the abundance vector is taken into account.
A reasonable assumption is that only a small number of endmembers are mixed
in a single pixel, and hence, the solution to the endmember determination and
abundance estimation problem is inherently sparse. This lays the ground for
the utilization of sparse signal representation techniques, e.g., [16–18], in semi-
supervised unmixing. A number of such semi-supervised unmixing techniques has
been recently proposed in [7, 19, 20], based on the concept of `1 norm penalization



to enhance sparsity. These methods assume that the spectral signatures of many
different materials are available, in the form of a spectral library. Since only a
small number of the available materials’ spectra are expected to be present in
the hyperspectral image, the abundance vector is expected to be sparse.

Let y be a M × 1 hyperspectral image pixel vector, where M is the number
of spectral bands. Also let Φ = [φ1,φ2, . . . ,φN ] stand for the M ×N signature
matrix of the problem, with M > N , where the M × 1 dimensional vector φi
represents the spectral signature (i.e., the reflectance values in all spectral bands)
of the ith endmember and N is the total number of distinct endmembers. Finally,

let w = [w1, w2, . . . , wN ]
T

be the N × 1 abundance vector associated with y,
where wi denotes the abundance fraction of φi in y.

The linear mixture model (LMM) is adopted, that is, the previous quantities
are assumed to be interrelated as follows

y = Φw + n. (1)

The additive noise n is assumed to be a zero-mean Gaussian distributed random
vector, with independent and identically distributed (i.i.d.) elements, i.e., n|β ∼
N(n|0, β−1IM ), where β denotes the inverse of the noise variance (precision).
Due to the nature of the problem, the abundance vector is usually assumed to
satisfy the following two constraints

wi ≥ 0, i = 1, 2, . . . , N, and

N∑
i=1

wi = 1, (2)

namely, a non-negativity constraint and a sum-to-one (additivity) constraint.
Based on this formulation, a semi-supervised hyperspectral unmixing technique
is introduced, where the endmember matrix Φ is assumed to be known a priori.
As mentioned before, each column of Φ contains the spectral signature of a sin-
gle material, and its elements are non-negative, since they represent reflectance
values. The mixing matrix Φ can either stem from a spectral library or it can
be determined using an endmember extraction technique, e.g., [3]. However, the
actual number of endmembers that compose a single pixel’s spectrum, denoted
as ξ, is unknown and may vary from pixel to pixel. Sparsity is introduced when
ξ � N , that is by assuming that only few of the available endmembers are
present in a single pixel. This is a reasonable assumption, that is in line with
intuition, since it is likely for a pixel to comprise only a few different materials
from a library of several available materials. Summarizing, in semi-supervised
unmixing, we are interested in estimating the abundance vector w for each im-
age pixel, which is non-negative and sparse, with ξ out of its N entries being
non-zero.

3.1 Hierarchical Bayesian model

Considering the observation model defined in (1) and the Gaussian property of
the additive noise, the likelihood function of y can be expressed as follows

p(y|w, β) = N(y|Φw, β−1IM ) = (2π)
−M

2 β
M
2 exp

[
−β

2
‖y −Φw‖22

]
. (3)



Accounting for the non-negativity property of w, and assuming that all wi’s
are i.i.d., a normal distribution truncated on the non-negative orthant RN

+ of

the N -dimensional Euclidean space RN is assigned to w, i.e.,

p(w|γ, β)=

N∏
i=1

[
N(wi|0,

γi
β

) IR1
+

(wi)

]
= 2N (2π)

−N
2 β

N
2 |Λ|

1
2 exp

[
−β

2
wTΛw

]
IRN

+
(w) (4)

where R1
+ is the set of non-negative real numbers, IRN

+
(·) is the indicator func-

tion1 for RN
+ , γ = [γ1, γ2, . . . , γN ]T is a N×1 vector of hyperparameters, γi ≥ 0,

and Λ−1 = diag(γ).
For β, a conjugate Gamma prior with respect to the Gaussian likelihood of

(3) is selected, expressed as

p(β|κ, θ) = Γ (β|κ, θ) =
θκ

Γ (κ)
βκ−1exp [−θβ] , (5)

where β ≥ 0, and κ ≥ 0, θ ≥ 0 are the distribution parameters.
We extend the model of [21, 22], by assigning an independent Gamma distri-

bution to every γi, each parameterized by a distinct hyperparameter λi, i.e.,

p(γi|λi) = Γ (γi|1,
λi
2

) =
λi
2

exp

[
−λi

2
γi

]
, i = 1, 2, . . . , N, (6)

Then, the combination of the hierarchical priors given in (4) and (6) leads to
a sparsity-promoting, non-negative (truncated) Laplace distribution for w (this
formulation gives rise to the so-called Bayesian lasso [22]). This distribution can
be obtained by marginalizing the hyperparameter vector γ from the model, i.e.,

p(w|λ, β) =

∫
p(w|γ, β)p(γ|λ)dγ = β

N
2 |Ψ |

1
2 exp

[
−
√
β

N∑
i=1

√
λi |wi|

]
IRN

+
(w),

(7)

where λ = [λ1, λ2, . . . , λN ]T and Ψ = diag(λ). The motivation to use a hyper-
parameter vector λ instead of a single λ for all γi’s as in [22, 21], is to form a
hierarchical Bayesian analogue to the adaptive lasso, proposed in [15]. Indeed, it
can be shown, that the maximum a posteriori (MAP) estimator of w, which is
distributed according to (7), is the solution to the following optimization prob-
lem,

w̃ = arg min
w

{
β

2
‖y −Φw‖22 +

N∑
i=1

αi|wi|

}
, s.t. w ∈ RN

+ , (8)

which, excluding the non-negativity constraint, coincides with the definition of
the adaptive lasso, [15].

1 IRN
+

(x) = 1(0), if x ∈ RN
+ (x /∈ RN

+ ).



It is obvious from (7) that the quality of the endmember selection procedure
depends on the tuning parameter vector λ. We choose to infer the hyperparam-
eter vector λ from the data, by assuming a Gamma hyperprior for each element
of λ,

p(λi|r, δ) = Γ (λi|r, δ) =
δr

Γ (r)
λi
r−1exp [−δλi] , i = 1, 2, . . . , N (9)

where r and δ are hyperparameters, with r ≥ 0 and δ ≥ 0. Both Gamma priors
of β, in (5), and λi, in (9), are flexible enough to express prior information,
by properly tuning their hyperparameters. In this paper, the hyperparameters
κ, θ, r, δ are set to zero as in [6, 21], forming non-informative (Jeffreys’) priors,
although other values can, in principle, be selected.

3.2 Bayesian inference

As it is common in Bayesian inference, the estimation procedure is based on the
computation of the joint posterior distribution of the parameters. For the model
presented in Section 3.1, this posterior is

p (w, β,γ,λ|y) =
p (y|w, β) p (w|β,γ) p (γ|λ) p (λ) p (β)

p(y)
, (10)

which is intractable, because p(y) cannot be computed analytically. To overcome
this obstacle, a Markovian Gibbs sampling strategy can be followed, in which
the conditional posterior distributions of the associated parameters are utilized.

Posterior conditional distributions In the following, analytical expressions
are derived for the posterior conditional distributions of the model parameters w,
γ, λ and β. Starting with w, it can be easily shown that its posterior conditional
density is the multivariate Gaussian, truncated in RN

+ ,

p(w|y,γ,λ, β) = N(w|µ,Σ)IRN
+

= NRN
+

(w|µ,Σ) (11)

where Σ and µ are respectively expressed as follows,

Σ = β−1
[
ΦTΦ + Λ

]−1
, µ = βΣΦTy. (12)

The posterior conditional for the precision parameter β, is easily shown to be a
Gamma distribution, i.e.,

p(β|y,w,γ,λ) = Γ

(
β|M +N

2
+ κ,

1

2
‖y −Φw‖22 + θ +

1

2
wTΛw

)
(13)

Straightforward computations yield that the conditional distribution of γi given
y, wi, λi, β is expressed as

p(γi|y, wi, λi, β) =

(
λi
2π

) 1
2

γ
− 1

2
i exp

[
−βw

2
i

2γi
− λi

2
γi +

√
βλi |wi|

]
, i = 1, 2, . . . , N

(14)



Finally, the conditional posterior of λi given y, wi, γi, β also turns out to be a
Gamma distribution,

p(λi|y, wi, γi, β) = Γ
(
λi|1 + r,

γi
2

+ δ
)
, i = 1, 2, . . . , N. (15)

In the sequel, we propose a deterministic approximation of the Gibbs sampler,
where the randomly generated samples of the Gibbs sampler are replaced by the
means of the corresponding conditional distributions, (11), (13), (14) and (15),
as explained in Section 3.2. Thus, a novel scheme iterating among the conditional
means of w, β, γi and λi arises, which will be termed Bayesian inference iterative
conditional expectations (BI-ICE) algorithm. It should be emphasized that by
following this approach, we depart from the statistical framework implied by the
Gibbs sampler and we end up with a new deterministic algorithm for estimating
the parameters of the proposed hierarchical model.

The proposed BI-ICE algorithm As mentioned previously, BI-ICE needs
the conditional expectations of the model parameters. These are computed an-
alytically as described below:

Expectation of p(w|y,γ,λ, β) w: As shown in (11), p(w|y,γ,λ, β) is a mul-
tivariate Gaussian distribution, truncated in RN

+ . In the one-dimensional case,
the expectation of the truncated Gaussian distribution in R1

+ can be computed
as

x ∼ NR1
+

(x|µ∗, σ∗)⇒ E [x] = µ∗ +

1√
2π

exp
(
− 1

2
µ∗2

σ∗2

)
1− 1

2erfc
(

µ∗
√
2σ∗

)σ∗, (16)

where erfc(·) is the complementary error function. Unfortunately, to the best of
our knowledge, there is no analogous closed-form expression for theN -dimensional
case. However, as shown in [23], the distribution of the ith element of w condi-
tioned on the remaining elements w¬i = [w1, . . . , wi−1, wi+1, . . . , wN ]T , can be
expressed as

wi|w¬i ∼ NR1
+

(wi|µ∗i , σ∗ii) (17)

µ∗i = µi + σT¬iΣ
−1
¬i¬i (w¬i − µ¬i) (18)

σ∗ii = σii − σT¬iΣ
−1
¬i¬iσ¬i, (19)

where matrix Σ¬i¬i is formed by removing the ith row and the ith column
from Σ, the (N − 1) × 1 vector σ¬i is the ith column of Σ after removing
its ith element σii and µi is the ith element of µ. Based on this result, an
iterative procedure is proposed in order to compute the mean of the posterior
p(w|y,γ,λ, β). Specifically, the j-th iteration, j = 1, 2, . . . , of this procedure is



described as follows2

1. w
(j)
1 = E[p(w1|w(j−1)

2 , w
(j−1)
3 , . . . , w

(j−1)
N )]

2. w
(j)
2 = E[p(w2|w(j)

1 , w
(j−1)
3 , . . . , w

(j−1)
N )]

... (20)

N. w
(j)
N = E[p(wN |w(j)

1 , w
(j)
2 , . . . , w

(j)
N−1)]

This procedure is repeated iteratively until convergence. Experimental results
have shown that the iterative scheme in (20) converges to the mean of w ∼
NRN

+
(w|µ,Σ) after a few iterations.

Expectation of p(β|y,w,γ,λ): The mean value of the Gamma distribution of
(13) is given by

E [p(β|y,w,γ,λ)] =
M+N

2 + κ
1
2‖y −Φw‖22 + θ + 1

2wTΛw
(21)

Expectation of p(γi|y, wi, λi, β): It can be shown that the expectation of (14)
is expressed as

E [p(γi|y, wi, λi, β)] =

(
2λi
π

) 1
2
(
βw2

i

λi

) 3
4

exp
[√

βλi |wi|
]
K3/2

(√
βλi |wi|

)
,

(22)

where Kν(·) stands for the modified Bessel function of second kind of order ν.
Expectation of p(λi|y, wi, γi, β): Finally, the mean value of the Gamma dis-

tribution (15) is

E [λi|y, wi, γi, β)] =
1 + r

1
2γi + δ

. (23)

The basic steps of the proposed BI-ICE algorithm are summarized in Table
1. Regarding the updating of parameter w(t), an auxiliary variable v has been
utilized in Table 1. This is initialized with µ(t) (the value of µ at iteration t)
and is updated by performing a single iteration of the scheme described in (20).
The resulting value of v is assigned to w(t). The rationale behind this choice
is that for Σ diagonal (which happens when the columns of Φ are orthogonal),
it easily follows from (18), (19) that the wi’s in (20) are uncorrelated. Thus, a
single iteration is sufficient to obtain the mean of NRN

+
(w|µ,Σ). Although, this

is not valid when Σ is not diagonal, experimental results have evidenced that
the estimation of the mean of NRN

+
(w|µ,Σ) resulting after the execution of a

single iteration of the scheme in (20) is also sufficient in the framework of the
BI-ICE algorithm.

A basic advantage of the proposed Bayesian approach, which is the Bayesian
analogue to the adaptive lasso, is that all parameters are naturally estimated

2 In the following, for notational simplicity, the expectation Ep(x|y)[x] of a random
variable x with conditional distribution p(x|y) is denoted as E[p(x|y)].



Table 1. The BI-ICE algorithm

Input Φ, y, κ, θ, r, δ

Initialize γ(0) = λ(0) = 1, β(0) = 0.01 ‖y‖2
for t = 1, 2, . . . do

- Compute w(t) as follows

Compute Σ(t),µ(t) using (12)

Set v(0) = µ(t)

Compute v
(1)
1 = E

[
p(v1|v(0)2 , . . . , v

(0)
N )

]
,

using (18), (19), and (16)

Compute v
(1)
2 = E

[
p(v2|v(1)1 , v

(0)
3 , . . . , v

(0)
N )

]
,

using (18), (19), and (16)
...

Compute v
(1)
N = E

[
p(vN |v(1)1 , v

(1)
2 , . . . , v

(1)
N−1)

]
,

using (18), (19), and (16)

Set w(t) = v(1)

- Compute β(t) = E
[
p(β|y,w(t),γ(t−1),λ(t−1)

]
, using (21)

- Compute γ
(t)
i = E

[
p(γi|y, w(t)

i , λ
(t−1)
i , β(t))

]
,

i = 1, 2, . . . , N, using (22)

- Compute λ
(t)
i = E

[
p(λi|y, w(t)

i , γ
(t)
i , β(t))

]
,

i = 1, 2, . . . , N, using (23)
endfor

from the data. In contrast, deterministic algorithms for solving the lasso, e.g.
[15], face the problem of fine-tuning specific parameters (corresponding to λ of
our model), that control the sparsity of the solution. As shown in the simula-
tions presented in the next section, the BI-ICE algorithm converges very fast,
and retains the sparsity of the solution. It has been further observed that by ini-
tializing w with µ, a single cycle is sufficient for the inner sampler to converge.
The computational complexity of the proposed method can be further reduced
by avoiding the explicit computation of the matrices Σ−1¬i¬i in (18), (19).

4 Experimental results and discussion

The performance of the BI-ICE algorithm is illustrated by unmixing a synthetic
hyperspectral image, using data from the USGS spectral library. Specifically, 30
endmembers were selected from the library, to construct a 453 × 220 endmem-
ber matrix, having condition number 36.182 × 106. The number of disparate
endmembers composing a single pixel varied between one (pure pixel) and five,
whereas the abundances were generated according to a Dirichlet distribution, so
as to satisfy the positivity and sum-to-one constraints. The observations were
corrupted by Gaussian noise, whose variance was determined by the SNR level.
First, the fast convergence and sparse estimations of w exhibited by the new
algorithm are depicted in Fig. 1a. In this experiment, a pixel with three non-
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Fig. 1. (a) Estimation of the entries of the sparse vector w, as BI-ICE progresses. The
algorithm is applied to simulated data, generated using a highly correlated matrix of
spectral data. White noise is added (SNR = 25 dB). Dashed lines: true values. Solid
lines: estimated values. (b) MSE as a function of the level of sparsity obtained by
different unmixing methods when applied to simulated data with white additive noise
(SNR = 20 dB)

zero abundances (0.1397, 0.2305, 0.6298) is considered, and white noise is added
to the model, such that the SNR is equal to 25dB. The curves in Fig. 1a are
the average of 50 noise realizations. We observe that less than 15 iterations are
sufficient for the BI-ICE algorithm to converge to the correct sparse solution of
w. That is, it determines correctly the abundance fractions of the endmembers
present in the pixel, while all remaining abundance fractions converge to zero.

Next, the BI-ICE algorithm was compared to: (a) the least squares (LS)
algorithm, (b) a quadratic programming (QP) technique, which enforces the
constraints, but does not specifically exploit the problem’s sparsity, [5], (c) the
orthogonal matching pursuit (OMP) algorithm, [17], which is a widely used,
greedy, sparsity promoting algorithm, (d) the sparse unmixing by variable split-
ting and augmented Lagrangian (SUnSAL) algorithm, [20, 24], and (e) the con-
strained version of SUnSAL, CSUnSAL, which solves the constrained version of
the lasso operator, (see also [24] for details). In our experiments, the param-
eters used for SUnSAL are µ = 1, and λ = 1, while for CSUnSAL we used
µ = 1, λ = 10−3, and δ = 10−6, see also [20]. Based on the following metric,

MSE = E
[
‖w−w̃‖22
‖w‖22

]
, where w and w̃ are the true and the estimated abundance

vectors respectively, the corresponding MSE curves for different sparsity levels
ranging from 1 (pure pixel) to 20 are shown in Fig. 1b. Due to poor results, the
MSE curve of the LS algorithm is not shown in the figure. It can be seen that
the proposed algorithm outperforms the OMP, QP, and CSUnSAL algorithms
and has similar performance to the SUnSAL algorithm.

In comparison to BI-ICE, the adaptive methods SUnSAL and CSUnSAL are
of lower computational complexity. However, it should be pointed out that the



comparable performance, in terms of MSE, of the alternating direction algo-
rithms SUnSAL and CSUnSAL with BI-ICE comes at the additional expense
of manually fine-tuning nontrivial parameters, such as the sparsity promoting
parameter λ, (see [24]). Thus, an advantage of the proposed BI-ICE algorithm
over SUnSAL and CSUnSAL algorithms is that all unknown parameters are di-
rectly inferred from the data. Besides that, BI-ICE bears interesting by-products
such as: (a) estimates of all model parameters; a useful parameter in many ap-
plications is the noise variance, (b) estimates for the variances of the estimated
parameters, which may serve as confidence intervals, and (c) approximate poste-
rior distributions for the estimated parameters. In contrast, all other algorithms
considered are iterative algorithms that return point estimates of the parameters
of interest.

5 Conclusions

In this dissertation we have presented a general framework for semi-supervised
Bayesian learning, comprised of soft-constraint Bayesian estimation methods,
sparsity-promoting hierarchical Bayesian models and novel methods for Bayesian
inference. Under the assumption of the linear mixing model, spectral unmixing
has been formulated as a standard linear regression problem, where the param-
eters of interest are the abundance fractions of the endmembers spectra in each
pixel of a hyperspectral scene. A Bayesian MAP estimator has been suitably
adjusted to address the abundance estimation problem, taking into account the
constraints of nonnegativity and full additivity. To the best of our knowledge, we
were among the first to introduce sparsity in the context of spectral unmixing.
In order to induce sparsity, our research efforts have focused around the lasso
and its variants. First, we have successfully applied the adaptively weighted lasso
to the unmixing problem. A fully Bayesian treatment for the unmixing problem
was further developed, wherein a suitably selected hierarchical Bayesian model
and an efficient method to perform Bayesian inference are proposed. Finally, we
attempt to demonstrate the potential of the hierarchical Bayesian model by con-
sidering a sparse image reconstruction problem. To this end, a fast, suboptimal,
type-II maximum likelihood algorithm has been developed.
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