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Abstract. This thesis presents new methods and techniques for the
study of inherent periodicities and rhythmic characteristics of polyphonic
audio recordings. The above methodologies aim at the study of tradi-
tional music genres as is the case of Eastern Type traditions and Greek
Traditional music. The above genres exhibit a great variety of rhythmic
characteristics and are not investigated in depth in the existing litera-
ture. Toward this direction, the presented work takes into consideration
the characteristics of the above music genres thus providing a tool for
the study of Ethnomusicology.

1 Introduction

Content-based music analysis is a growing challenge in the context of Music In-
formation Retrieval (MIR). One of the earliest and well studied topics of MIR is
the automatic extraction and analysis of rhythmic features from audio record-
ings. The developed applications include tempo and music meter induction and
beat tracking. Such features are justified by the temporal nature of music and
the existence of inherent periodicities in music signals. Apart from the above,
other applications based on rhythmic characteristics emerged over the years.
Such are the retrieval of rhythmic similar recordings, the application of music
summarization and other.

Throughout the years the methods exhibited have been focused on western
music corpora and specific music styles. The latter resulted in the development
of techniques that performed well when certain preconditions are satisfied. Such
preconditions are the music meter type, the beat range and patterns of rhythm
that consist of isochronously perceived tempo beats. These methodologies do
not take into consideration less popular music genres as is the case with Eastern
type traditions. In such traditions, a variety of music meters and beats and more
free-form rhythmic patterns are very frequently encountered. The above poses a
question for the Ethnomusicology studies that are in need of different approaches
and techniques.

In this thesis, we present content-based techniques for the automatic ex-
traction of inherent periodicities and rhythmic characteristics from an audio
recording that can be applied to non-western music corpora. The applications
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developed concern the induction of music meter and tempo,the automatic ex-
traction of the two most similar segments of a music recording, that we call
audio thumbnail, the music retrieval based on rhythmic similarity and a method
for modeling and tracking of rhythmic patterns in an audio recording that may
consist of uneven rhythmic components.

2 Rhythmic characteristics of Greek Traditional Dances

Rhythm and rhythmic patterns lie in the core of folk music, as is the case with
Eastern traditional folk dances. This is also true for Greek traditional dance
music [1], [2]. Unlike to the western music genres, a great variance of tempo
ranges and music meters is exhibited. Tempo can range from 40− 480 bpm and
music meters 2
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, etc. A table of the studied corpus is exhibited

in Table 1.

Table 1. Rhythmic tempo range, music meters and patterns studied.

3 Feature Extraction

3.1 Scale-based MFCCs

In order to proceed with the proposed applications, a feature extraction step
takes place. In the feature extraction step, the audio recording is long-term seg-
mented and for each long-term segments a short-term moving window analysis
[3] takes place with overlapping Hamming windows of ∼ 92 msec and overlap
∼ 23 msec. For the short term analysis of each long term audio segment, we
considered both energy and mel frequency cepstral coefficients (MFCCs) [4]. In
addition to the standard MFCCs, which assumes equally spaced critical band fil-
ters in the mel scale, we propose a filter bank consisting of overlapping triangular
filters, whose center frequencies align with the chromatic tones [5]. We will refer
to this feature sequence as scale-based MFCCs, c̄, of dimensions M × L feature
sequence, where M is the number of short-term windows and L the number of
MFCC filters used.

3.2 Event detection and Inter-Onset-Interval

An additional processing step takes place for the detection of music event be-
ginnings and durations, for the application of modeling and tracking rhythmic
patterns.

Let stdMel(n), be the smoothed and normalized standard deviation of scale-

based MFCCs and dEner(n), n = 1, . . . , N , the first derivative of signal energy
for each frame, where N is the number of short-term frames. A peak picking



algorithm selects those maxima with frame index m for which stdMel(m) >
stdMel(k),∀k ∈ [k1, k2] and m being the center of the [k1, k2] interval. Let also
i be the number of frame for which dEner(i) > dEner(k),∀k ∈ [k1, k2] with i

being, also, the center of [k1, k2]. Our goal is to select those frames whose frames
indices i, m coincide within a threshold value. For our applications this value
was chosen to be equal to 0.1secs. These frames are selected to indicate onsets

and we choose the respective value of m to indicate the onsets. The value of
k2 − k1 depends on the rhythmic components of the modeled rhythmic patterns
and is usually set equal to the duration of the shortest rhythmic component of
the pattern.

The physical meaning of these onsets is that they signal the beginning of
an event, i.e., a significant change in terms of spectrum (stdMel) and energy
(dEner). Each event will, therefore, have an onset and an associated time dura-
tion. Let, mk,mk+1 be two consecutive selected onsets. Then mk < mk+1 and
mk+1 −mk is the so-called inter-onset-interval (IOI ). The feature sequence F
will be given as input to the HMM modeling a rhythmic pattern, is formed by
zeroing the stdMel of all frames, except those that correspond to onsets, i.e.,

F = {Oz0
, a(m1), Oz1

, a(m2), . . . , OzM−1
, a(mM ), OzM

},

where Ozj
stands for zj successive zeros. As a result, a(mj) is the amplitude of

the j-th onset and Ozj
it’s associated duration.

4 Tempo and music meter induction

In this thesis we propose an alternative method for the extraction of the tempo
and music meter periodicities [5]. The proposed technique is based on Self Si-
milarity Matrix analysis that was originally mentioned in [6]. Each long-term
segment serves as the basis to generate a Self Similarity Matrix (SSM), using
the Euclidean Distance metric. By its definition, the SSM is symmetric around
the main diagonal and it therefore suffices to focus on its lower triangle. The
diagonals of the SSM express the difference of the audio feature with different
instances of itself and with the proper processing can reveal the pairs of corre-
lating periodicities. If the mean of SSM diagonals is perceived as a function of
the short-term step k then the following equation occurs:

S1(k) =
1

M − k

M
∑

i=k

‖c̄(i), c̄(i− k)‖ , k = 1, . . . ,M − 1, (1)

where k is the diagonal index and ‖.‖ is the Euclidean distance function and c̄ is
the scale based MFCCs. Clearly, M -k is the length of the k-th diagonal. Sl(k) is
computed for all long-term segments, l = 1, . . . , L. The plot of Sl as a function
of k exhibits a number of minima and maxima. Since we employ the Euclidean
Distance Metric the minima (valleys) indicate the similarity between feature
instances. For the detection of the most significant periodicities (minima), we
have developed an algorithm based on a dominance region criterion.



Specifically, a valley at lag m is considered to be “dominant” in a region,
[k1, k2], of lags, if it holds the lowest value in the region, i.e., if Sl(m) <

Sl(k),∀k ∈ [k1, k2], where m is the center of [k1, k2]. The selected dominant mi-
nima will form pairs that comply with the studied correlated periodicities and
music meters, i.e., 2
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, etc. In the suggested method, tempo induction

will be examined in combination with the meter induction. In this direction, the
number of appearances of the formed pair will be processed in terms of histo-
gram and their ratio quality, in terms of round of error, will also be examined.
The pair yielding the greater number of occurrences and the best round of error

will be selected as the tempo and music meter pair.
The conducted experiments for 350 audio recordings revealed that, the al-

gorithm retrieved successfully the tempo and music meter for the 95% of the
cases.

In the context of pairwise periodicity induction, we advanced the proposed
method and developed a variation based on a double histogram processing and
a different ratio of correlated periodicities. The above application aimed at the
development of a method that extracts two tempo periodicities from an audio
recording that coincide with the pair of periodicities perceived by a human lis-
tener [7]. The proposed method took place in the MIREX international contest
[8] and the results are exhibited in Table 2.

Tempo Both tempi At least one
Deviation (%) correct (%) tempo correct (%)

2.5 54.95 89.60

5 59.9 92.57

8 60.89 94.06
Table 2. Performance of the algorithm for the Greek Traditional Dance.

5 Music summarization

In the context of exploring the periodicities of an audio recording, we propose a
method for the discovery of the two most similar excerpts of an audio recording.
We will consider these excerpts as the thumbnail of the audio recording and the
suggested method explores another aspect of the SSM. The above excerpts are
considered as the audio thumbnail of the recording.

In this sense, the scale based MFCCs is calculated and a dimensionality re-
duction takes place using the Singular Value Decomposition, (SVD) method.
The SVD method is applied on the transpose, c̄T , of c̄, i.e., c̄T = USV, where
UM×L and VL×L are the projection matrices and SL×L is the matrix of singular
values and M is the number of short-term frames and L the number of output
filters used. The first six rows of the transpose, UT , of U , are finally selected as
the feature sequence.



In the sequel, the SSM is generated from the first six rows of UT and the
Euclidean Distance. At a first step, the SSM is correlated with a rectangular
window, w (size D × D). The window has 1’s on the main diagonal and zeros
elsewhere. If (i, j) are the position indices of an element of SSM, the upper left
corner of w is chosen to coincide with (i, j). The correlation result, S(i, j), for
SSM(i, j) is therefore computed as follows:

S(i, j) =

D−1
∑

d1=0

D−1
∑

d2=0

SSM(i+ d1, j + d2)w(d1, d2) =

D−1
∑

d=0

SSM(i+ d, j + d).

At a second step, let S(k,m) be the lowest value of S yielding the two segments
representing the audio thumbnail. S(k,m) resides on the diagonal with index
k − m and elements {S(k,m), S(k + 1,m + 1), . . . , S(k + D − 1,m + D − 1)}
form a segment on the diagonal that defines the desired thumbnail. Parameter D
controls the size of the thumbnail and is user defined, depending on the corpus
under study.

6 Music retrieval by rhythmic similarity

In an attempt to retrieve recordings of rhythmic similarity, we propose a method
based on SSM and parts of it’s mean diagonals that we refer to with the term
rhythmic signature. The similarity measurement between signatures of audio
recordings is performed by means of a standard Dynamic Time Warping tech-
nique [9].

At a first step, the music signal is short-term processed to extract a sequence
of scaled based MFCCs, i.e. C = [c(1) c(2) . . . c(N)], be the new sequence
of MFCCs. In the sequel, C is long-term segmented with a moving long-term
window (window length is 4 secs and step is 1 sec). To simplify notation, let Ct =
[ct(1) ct(2) . . . ct(M)], be the subsequence that corresponds to the t-th long-
term window, where M is the window length measured in number of frames. The
SSM is then calculated for each long-term window, using the Euclidean Distance
metric. For the t-th long-term window, the mean value, Rt(k), of each diagonal in

the lower SSM triangle is computed, i.e., Rt(k) = 1
M−k

∑M

l=k

∥

∥ct(l), ct(l − k)
∥

∥,
where k is the diagonal index and ‖.‖ is the Euclidean distance function. Each
Rt is treated as a signal. At a next step, the mean signal, Rµ, of all Rt’s is

computed, i.e., Rµ(k) = 1
T

∑T

t=1Rt(k), and then normalized to unity, where T
is the number of long-term windows.

In what follows, we will refer to Rµ as the rhythmic signature of the music
recording. The main idea behind this approach, is that, recordings with similar
rhythmic characteristics are expected to yield “similar” signatures. Therefore,
the next challenge is to devise a similarity measure for signatures.

If L is the number of music recordings in a corpus, L rhythmic signatures
are first extracted. In order to measure similarity between signatures, a standard
Dynamic Time Warping cost has been employed. As is the case with DTW tech-
niques [3], a set of local path constraints needs to be first defined. In our study



we experimented with two types of constraints, i.e., Sakoe-Chiba and Itakura

and adopted the former.

Precision % Class 1 Class 2 Class 3 Class 4 Recall % Class 1 Class 2 Class 3 Class 4

Class 1 94.3 3.2 1.7 0 Class 1 94.3 3.8 1.9 0

Class 2 3.8 96.8 0 0 Class 2 3.2 96.8 0 0

Class 3 1.9 0 96.6 10.9 Class 3 1.6 0 90.3 8.1

Class 4 0 0 1.7 89.1 Class 4 0 0 2.4 97.6

Table 3. Precision and recall for Greek Traditional corpus.

If a rhythmic signature is drawn from the corpus, its matching cost against
the remaining L-1 signatures is calculated using the adopted DTW technique.
This procedure yields L−1 cost values which are sorted in ascending order, with
the lowest values indicating highest similarity.

Table 3 presents the confusion matrix for the four classes of Greek genres,
where the leave-one-out method was applied. Table 3 reveals that, when only
the lowest matching cost was examined, limited confusion occurred between the
classes 3 and 4 and classes 1 and 2. Further experimentation revealed that, when
the two lowest matching costs were taken into account, the confusion matrix
remained the same within statistical confidence.

7 Modeling and tracking of rhythmic patterns.

In this work, we use HMM s to locate rhythmic patterns in music recordings by
employing an enhanced Viterbi algorithm. The proposed method operates on
the assumption that the music meter and a rough estimate of the tempo are
known. It is assumed that tempo remains approximately constant throughout
the recordings. To our knowledge, this is the first time that the problem of beat
and meter tracking is addressed in the context of complex meters without any
prior knowledge of any pattern location. Our focus is on complex meters, such
as 7
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, which appear in eastern folk music but also patterns of 2

4
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4
that are

also frequently encountered in traditional dances. .
In our approach, a rhythmic pattern is modeled by means of a Hidden Markov

Model, where each event of the pattern corresponds to a HMM state. In order
to locate occurrences of such a pattern in a recording, the HMM is fed with
overlapping segments of the feature sequence that has been extracted from the
audio data and at a next step the extracted patterns (if any) are connected using
a dynamic programming technique, thus creating a chain of rhythmic patterns.
Finally, if are any patterns missing an additional HMM tracking step takes place
using the previously extracted patterns a “seeds”.

7.1 Modeling of Rhythmic patterns by means of HMM

Rhythmic structures can be considered to build upon fundamental rhythmic

patterns. For example, recordings of music meter 7
8

with tempo ranging from



200 - 290bpm, as is the case with a number of traditional music genres, are
perceived as a rhythmic pattern of a sequence of [dotted quarter note - quarter
note - quarter note]. Table 1 exhibits the patterns modeled in this study. This
is also consistent with the performance of the accompaniment instruments and
the singing voice in such recordings. To construct the corresponding HMM, each
component of the above rhythmic pattern will be represented by a HMM state.
Each state models by means of a Gaussian pdf with mean value, µi, the time
duration of the respective event (within an allowable tempo fluctuation). As
shown in Figure 1, for the example of 7

8
we have three states each tuned to the

respective event duration.

Fig. 1. 3-state HMM modeling a 7

8
rhythmic pattern.

7.2 End States and Enhanced Viterbi Algorithm

In Figure 1 except from the three rhythmic pattern states, two more states are
added, namely E1, and E2 (displayed in black). These states will be referred
to as end states and are allowed to emit all the detected IOI s with a uniform
probability. The physical meaning of these states is that the HMM can bounce
between them whenever a sequence of IOI s does not conform with the pattern
being modeled. On the other hand, the states that model the rhythmic pattern

are assumed to emit IOI s following a Gaussian probability.
In HMM terminology [10], let λ = {π,A,B}, be the parameters of the HMM

that models a rhythmic pattern. πi is the initial state probability, AS×S the
state transition matrix, Bi the Gaussian probability distribution (pdf ) of each
pattern state, and S the number of states (including pattern and end states).
Each Gaussian pdf, is associated with a pattern component (i.e., dotted quarter),
with mean time duration µi and standard deviation σi,where time is measured
in frames. The initial probabilities were set to π=[ 1

2
1
2

0 . . . 0], (S -1 zeros), forcing
all paths to start from the first end state or the first pattern state. Furthermore,
all self transition probabilities are set to zero, i.e., Ai,i = 0. The only allowable
right to left transitions are those from the second end state and the last pattern

state to the first end state and the first pattern state, marked with dashed arrows
in Figure 1. This allows for tracking repetition in terms of rhythmic patterns if
the long-term window is long enough [7].



As it is known [10], the standard Viterbi algorithm employs a Type B cost
function for the generation of the trellis diagram. A Type B cost function takes
into consideration both the transition costs between nodes [i, j] (Ai,j Bj(t)), as
well as the accumulated node costs (at−1(i)). In our approach, a Type T cost
function was used instead, that only accounts for the transition cost between
nodes. It is worth mentioning that a Type T cost retains the Markovian nature
of the trellis diagram [11]. In Markov model terminology the delta variable [10]
reduces to:

δt(i, j) = Ai,jBj(t) (2)

By eliminating the forward probability from Eq. 2, this cost function takes
into account only the “local” activity of the most recent transition. If the HMM

enters several times the end states before entering the pattern states, this will
not affect local high probability transitions between pattern states which indicate
that the pattern has been found.

To find the best state sequence, Q = {q1, q2, . . . qT } for each long-term seg-
ment the arguments that maximize the forward variable equation are first stored
in a two dimensional array ψ, as ψ(j, t)

ψ(j, t) = argmax [δt(i, j)], 1 ≤ i ≤ S, i 6= j (3)

At a next step, a backtracking procedure is applied on every node that corre-
sponds to the last state of the rhythmic pattern, irrespective of time instance.
This is expected to yield a number of paths. In order to select the best one
(with the highest probability), the path probabilities have to be computed. To
this end, if Q = {q1, q2, . . . qT } is an extracted path, the associated probability
is calculated from the equation:

pmodel =
∏

∀q∈Q

at(q), and q not an end state. (4)

As shown in the above Equation (4), the end states do not participate in the
calculation of the pattern recognition probability since they do not belong in the
rhythmic patterns modeled by the HMM s.

Due to the nature of polyphonic music, it is obvious that the onsets returned
during the feature extraction process will outnumber the onsets corresponding
to the correct beat locations. To address the above problem, an enhancement of
the Viterbi algorithm was employed. Let us consider the onset sequence F for
an audio region, i.e.:

F = {. . . , a(m− 3), Ozm−3
, a(m− 2), Ozm−2

,

a(m− 1), Ozm−1, a(m), Ozm
, a(m+ 1), Ozm+1

, . . .}

Let a(m) and a(m − 3) be two correct onsets with two false ones, [a(m − 2),
a(m− 1)] in between. Their corresponding durations of [a(m− 2), a(m− 1)] are
[Ozm−2

, Ozm−1
]. Although a(m − 3) is a correct onset, it’s corresponding dura-

tion Ozm−3
is erroneous, due to the presence of the events a(m − 2), a(m − 1).



Taking into account the zero components, the correct duration can be derived as
∑3

i=1Ozm−i
. In this way, we offer to the HMM the possibility to eliminate false

onsets and keep the correct ones, while searching for the optimal path and if a
lower cost (higher probability) is achieved by eliminating events, the Viterbi is
given the means to do it. In other words, the cost now becomes “context” depen-
dent. This context dependency of the Viterbi algorithm leads to the modification
of Equation (2) as:

δ̂t(i, n, j) = Ai,jB̂j , (5)

where: B̂j = Bj(
∑t

d=t−n+1Ozd
), where n is the index of the zero component

being added and D the maximum number of observations allowed to be summed.
The maximum number of observation symbols over which a state is allowed to
sum, depends upon the tolerance of each state mean duration variation ∆µi.
This is expressed as: ∀i ∈ pattern states,

∑D
d=1Ozd

≤ ∆µi. In this work, a
constant state duration variation ∆µi ≃ 20%µi was allowed, based on extensive
experimentation. The forard variable Equation is now transformed to:

ât(j) = max
1≤t≤T,1≤n≤D,1≤i≤S,i6=j

[

δ̂t(i, n, j)
]

(6)

Unlike the pattern states, the end states are not allowed to sum consecutive
onsets. This is justified by the fact that end states are not actually a part of
the examined rhythmic pattern, but rather serve as “collectors” for erroneous
and “off-beat” onsets. After the whole feature sequence has passed through the
HMM the resulting pattern’s locations are examined. Among the correct loca-
tions returned by the algorithm, false pattern locations may appear or missing
ones. Toward this direction, a dynamic programming technique is developed and
a cost grid is formed in order to select those patterns that lie in succession, thus
forming a “winning” chain pattern. Furthermore, if missing patterns exist the
patterns in the “winning” chain pattern serve as “seeds” for the additional ex-
traction of patterns. The results for the modeled patters are exhibited in Table
4 for the mean tempo case and the intentionally introduced erroneous tempo
case.

Table 4. Evaluation results on a stage basis using the proposed method.

8 Conclusions

This thesis presented several content-based analysis methods for the extraction
and discovery of rhythmic characteristics from audio recordings. Our study has
focused on non-western corpora that exhibit a wide variety of rhythms and
rhythmic patterns. The developed techniques exhibit satisfactory results for the



studied corpora. The future work will mainly focus on the automatic modeling
of the rhythmic patterns directly from the audio recording and the automatic
extraction of the audio thumbnail size.
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