
Development of a Language and its Enacting
Engine for the Unified Discovery of

Heterogeneous Services

Michael Pantazoglou⋆

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

michaelp@di.uoa.gr

Abstract. Service orientation fosters a high-level model for distributed
applications development, which is based on the discovery, composition
and reuse of existing software services. However, the heterogeneity among
current service-oriented technologies renders the important task of ser-
vice discovery tedious and ineffective. This dissertation proposes a new
approach to address this challenge. Specifically, it contributes a frame-
work supporting the unified discovery of heterogeneous services, with a
focus on web, peer-to-peer, and grid services. The framework comprises a
service query language and its enacting service discovery engine. Overall,
the proposed solution is characterized by generality and flexibility, which
are ensured by appropriate abstractions, extension points, and their sup-
porting mechanisms. The viability, performance, and effectiveness of the
proposed framework are demonstrated by experimental measurements.

1 Dissertation Summary

1.1 Service-Oriented Computing and Service Discovery

Thanks to its high level of abstraction and the promise of interoperability among
heterogeneous systems, service-oriented computing [1] appeals to designers and
developers of distributed software applications. According to the principles of
this paradigm, an application is not necessarily built from scratch, but is rather
composed by reuse of existing software services, which can be discovered and ap-
propriately orchestrated to deliver the desired functionality. The service-oriented
software engineering process involves interactions among three principal actors,
as follows:

– Service providers expose their software solutions as services, and render them
discoverable by publishing their descriptions to appropriate brokers

– Service brokers provide the appropriate infrastructure to facilitate publica-
tion and discovery of available services

⋆ Dissertation Advisor: Aphrodite Tsalgatidou, Assist. Professor



– Service consumers first discover the services they need by searching the
contents of one or more service brokers, and subsequently invoke them by
interacting with the corresponding service providers, through well-defined
interfaces

Clearly, the task of service discovery is essential to service-oriented comput-
ing, as it allows developers to find existing services that meet their application
requirements, and reuse them accordingly, instead of implementing their func-
tionality themselves. Indeed, service discovery spans the development life cycle of
a service-oriented solution and is iteratively applied to improve its functionality
and performance:

– At an early stage, it facilitates the specification and assessment of require-
ments by software analysts

– At design-time, it assists software designers and developers in identifying the
building blocks of their application, either through bottom-up or top-down
analysis

– At run-time, it supports the on-demand substitution of malfunctioning ser-
vices with functionally similar, yet better performing ones

All in all, service discovery contributes to the adoption of service orientation,
as it allows businesses, organizations, and other entities to dynamically find
each other, in terms of the functionalities they offer, and subsequently interact
through the services they provide, or need.

1.2 Problem Description

To date, web services constitute the prevailing instantiation of the service-
oriented computing paradigm; they are widely in use, whereas all fundamental
aspects in regards to their description, discovery and invocation are governed
by well-defined standards. In recent years, however, a shift of other distributed
computing technologies such as peer-to-peer systems and Grids toward service
orientation has been observed [2–4], bringing them closer to each other, and to
the web services technology. Peer-to-peer services and grid services are currently
published, discovered and utilized in the development of full-fledged service-
centric applications, in the same way web services are. Still, the combined usage
of all these services, a requirement that is met today in many application do-
mains, quickly becomes an intricated task.

From the perspective of service discovery, such shortfall is due to the lack of
appropriate means to address the following challenges:

– Heterogeneity in service descriptions. Service requesters need assistance in
shaping their queries independently from the various service models and
description formats.

– Heterogeneity in service discovery mechanisms. Service discovery queries
should be fired independently from the underlying mechanisms provided by
the infrastructure, where services are published. Moreover, low-level techni-
cal details should be transparent to the service requester.



– Multi-dimensional query formation and evaluation. Service discovery queries
should reflect real-world requirements by encapsulating search criteria to-
wards multiple functional and qualitative properties of a service. Then, ap-
propriate matchmaking models and mechanisms are required to support the
evaluation of such queries.

– Technological volatility. In order to ensure their long-term viability, service
discovery languages and tools need to be flexible enough, so as to easily
evolve and adapt to advances in services technologies.

1.3 Related Work

Despite the considerable volume of research results in service discovery, the var-
ious proposed approaches only partially address the aforementioned challenges,
and thus they cannot be applied to the discovery of heterogeneous services. In
the following paragraphs, we give an overview of related work focusing on the
proposed query languages and engines, and we assess their limitations.

Most of the currently existing languages for service discovery fail to address
the heterogeneity in service descriptions and service discovery mechanisms. In
[5, 6], the authors propose the use of XQuery to express queries over service
descriptions that are constructed according to specific schemas. Similarly, in
[7, 8], service queries can only be evaluated against WSDL documents. In an
effort to address the need for multi-dimensional query formulation, the approach
proposed in [9] defines certain extensions to the UDDI specification, still queries
are only compliant with registries of that type. Also, numerous approaches that
have adopted existing semantic service description languages to express service
queries, as for example in [10], are naturally confined to limited sets of available
services.

Many service discovery frameworks have also embraced semantic web tech-
nologies to improve precision and recall of the matchmaking process, as it is
reported in [11–13]. However, such approaches mainly focus on support for the
evaluation of functional search criteria, they are constrained to specific types
of service brokers, and generally lack flexibility. Other efforts have tackled the
challenge of multi-dimensional query evaluation [14, 15], or the heterogeneity in
service discovery mechanisms [16, 17]. Even though the proposed system archi-
tectures are characterized by flexibility, they exclusively support the discovery of
web services and thus their solution is not applicable to other types of services.

1.4 Contributions

With this dissertation, we argue that, a unified approach can tackle all afore-
mentioned challenges and can thereby successfully remedy any deficiency in the
course of discovering heterogeneous services. Motivated by the identified gap in
languages and tools that could support such an approach, we back this argu-
ment by proposing a complete framework comprising a high-level service query
language called USQL (Unified Service Query Language), and a flexible service
discovery engine called Proteus.



The main contribution of our unified approach lies in the idea that service
discovery should be orthogonal with respect to the existing service technologies.
To this end, the proposed framework:

– supports the construction and evaluation of service discovery queries, as
well as the formulation of their responses, independently from the type of
the requested service, the format of the service description, and the kind of
broker infrastructure, where the service has been published.

– provides a rich syntax for queries that can capture an open set of functional
and qualitative requirements towards the requested service, in the form of
search criteria and filters.

– can be easily extended with additional elements and functionality, thereby
attaining flexibility and immunity to the volatility of service technologies.

Thanks to the inherent generality and flexibility of both USQL and Proteus,
the contributed unified approach ensures interoperability with a wide spectrum
of service technologies, and thus it can be applied to the discovery of hetero-
geneous services in a variety of environments and settings. Consequently, the
proposed framework does not impose any restrictions on service providers, in
regards to their existing service descriptions, or on service brokers, in regards to
their currently supporting discovery mechanisms.

2 Results and Discussion

This section briefly reports and discusses the primary results of this dissertation,
namely the USQL language and the Proteus engine, focusing on their salient
features.

2.1 The Unified Service Query Language

The Unified Service Query Language, abbreviated to USQL, provides a high-level
meta-model and its accompanying algebra to support the unified discovery of
heterogeneous services as follows:

– Queries are formulated independently from the type of the requested service
and the discovery mechanism of the broker, where services are published

– Queries can be evaluated over an open set of service descriptions adhering
to diverse languages and schemas

– Queries may encapsulate requirements and filters towards multiple functional
and non-functional service properties

– Query results are uniformly constructed and may contain entries that corre-
spond to various types of services

The above features are attained by USQL through its meta-model, which,
thanks to its generic conceptual basis [18, 19], has been defined at a high level



of abstraction, and is thus positioned orthogonally to the various service types,
as well as to the heterogeneous service description and discovery technologies.

At the core of USQL lies a hierarchy of abstracted elements that are used
to model weighted (i.e. prioritized) requirements towards a service. On top of
these abstractions, USQL defines a series of concretized elements, which can ex-
plicitly express requirements towards the service capability, the service interface
(i.e. input/output messages and their constituent elements), the underlying re-
source and its properties, as well as constraints to an open set of qualitative
service properties. Besides, the meta-model is open, allowing for seamless ac-
commodation of additional types of service requirements. Notably, all supported
requirements can be described by text and/or be semantically annotated with
the use of ontology concepts. Such duality in requirements expression gives USQL
a significant advantage over many other service discovery languages, which are
constrained to the use of either keywords-based text or semantic annotations.

With USQL, service discovery queries are formulated as USQLRequest docu-
ments, which may blend the flavors of the aforementioned types of requirements
along with an open set of search filters. The latter are treated as hard constraints
aiming at reducing the number of service entries that are retrieved by the ser-
vice discovery engine upon query execution. For instance, in the case of queries
targeting web services, peer-to-peer services, or grid services, typical examples
of search filters might constrain the service provider, classification, the peer or
peer group identifier, or the name of the virtual organization.

In addition to the expression of search criteria and filters, a USQL query
may convey information regarding its search target(s). This way, queries may be
directed to one or more explicitly specified and potentially heterogeneous ser-
vice brokers, which are uniformly described with the use of a generic element
provided by the USQL meta-model. Such feature is particularly important in
closed environments, where service discovery needs to be conducted in a con-
trolled manner, or in settings, where the potential search targets are more than
one and thus they need to be determined.

For completeness purposes, and in opposition to other approaches, USQL
conveniently defines the structure of service discovery results, which take the
form of USQLResponse documents. Each such document constitutes the answer
of the service discovery engine to a USQL query, and contains entries correspond-
ing to the matches that were found, i.e. the service operations that adequately
satisfied the expressed search criteria and filters. The information conveyed by
a matched service entry serves two purposes:

– Firstly, it provides human-intended details of the corresponding service oper-
ation, such as its overall degree of match, its provider, name, description, and
service type, which aim at facilitating the service selection process. Along
those lines, included in the matched service entry may be also details re-
garding the service properties that were constrained by the query, such as
the service capability, interface, underlying resource, or its QoS.

– Secondly, appropriate details allowing the immediate invocation of the cor-
responding service are included. Such information is meant to be interpreted



by appropriate software, such as service composition execution engines or
other service clients, in order to access and call the particular service op-
eration. As invocation details primarily depend on the service type, USQL
defines a simple, generic structure to facilitate their expression in a uniform
manner.

USQL is mathematically grounded by an algebra [20], which underpins the
evaluation of USQL queries. Among the main features of this mathematical
model are its independency from the various service description schemas, and
its flexibility in terms of the matchmaking algorithms that are employed to
match values of various types (e.g. text, ontology concepts, numerical values,
etc.). Similarly, the algebra relies on external mechanisms for the evaluation of
technology-dependent requirements supported by the meta-model, such as the
ones referring to QoS service properties and data types, while it can seamlessly
accommodate the evaluation of new types of requirements.

According to the USQL algebra, a query containing weighted service require-
ments and an advertisement containing the corresponding properties of a service
are perceived as two ordered sets, Q and A, respectively, such that requirement
ri ∈ Q refers to property pi ∈ A. To match all constituent pairs (ri, pi), a number
of functions that correspond to the requirement types supported by the USQL
meta-model are defined. These functions are then appropriately combined in the
context of a match calculator, which is used to quantify the overall degree of
match between Q and A, taking into account the different weights assigned to
the requirement elements ri ∈ Q. The match calculator is based on the following
intuitive assumptions:

– User requirements towards the desired functional and/or non-functional ser-
vice properties are usually prioritized. Such priorities may be either explicitly
specified by means of appropriate weights, or be implied by the nature of
each requirement. Hence, satisfying requirements of higher priority is more
important than satisfying the ones with lower priority.

– The more important a service requirement is regarded, the more its degree
of satisfaction affects the overall degree of match of a candidate service.
Consequently, services failing to meet the top-prioritized requirements are
left off of the query results.

The USQL meta-model has been implemented through a declarative XML
syntax, which enables the use of the language by both humans and software
agents. Besides, the Proteus engine, which we briefly present in the following
section, supports the processing of XML-based USQL queries by providing a
reference implementation of the USQL algebra.

2.2 The Proteus Engine

Proteus is an engine designed to support the unified discovery of heterogeneous
services, with the use of USQL as query language. In early specifications of the en-
gine [21, 22], queries were dispatched to the various heterogeneous search targets,



which was a time- and resource-consuming task. To address the inflicted perfor-
mance challenges, which arise from the potentially large numbers and distribu-
tion of service brokers as well as from the large volumes of published services,
the latest version of Proteus adopts a traditional search engine-like architecture.
Specifically, the process of query execution is clearly decoupled from the process
of visiting the various service brokers, retrieving and processing their contents.
Overall, the engine’s functionality is organized in two independent subsystems:

– The Crawler subsystem embodies a set of components, which are neces-
sary for: (1) periodically visiting heterogeneous, yet already known to the
system service brokers, with the aim of harvesting their published service
descriptions; (2) processing the heterogeneous service descriptions, so as to
generate service advertisements which adhere to a common format; and (3)
appropriately storing and indexing the generated service advertisements into
the internal repository of Proteus.

– The Query Processor subsystem provides users with an interface for unified
discovery of heterogeneous services. The subsystem accepts queries submit-
ted by users in the form of USQLRequest documents, extracts the expressed
filters to retrieve service advertisements from the internal repository of Pro-
teus, and further evaluates their content against the expressed search criteria
according to the USQL algebra, in order to calculate the overall degree of
match. The results of that process are consolidated into a USQLResponse
document, which is returned to the requester, as a response to their query.

Among the most essential features of the Proteus architecture is its openness,
thanks to which the engine, aligned with the flexibility of USQL, effectively ad-
dresses the heterogeneity of existing service description and discovery technolo-
gies. At the core of the system lies a powerful extensibility mechanism, which
allows for seamless accommodation of additional functionality in the form of
plug-ins. This mechanism comprises a registry, where meta-information on each
contributed plug-in is maintained, and a selector, which is commonly used by
both subsystems to find and dynamically instantiate pluggable components. The
Proteus engine can be seamlessly extended by plug-ins of various kinds, which
are briefly described as follows:

– Harvester plug-ins abstract the Crawler subsystem from the heterogeneity
of existing service discovery mechanisms, and are employed to retrieve the
contents of various service brokers. Selection of an appropriate harvester is
based on the type of the corresponding broker, which the Crawler needs to
visit. Each harvester plug-in accepts as input an object containing informa-
tion about the broker to be visited, such as its access details, and returns as
output a list of objects that correspond to the service publications found in
that broker.

– Parser plug-ins provide the Crawler with the ability to parse the contents
of an open set of heterogeneous service description documents. For each
such document, the appropriate parser is identified by the namespace of the



schema used for its formulation. (e.g. WSDL [23], OWL-S [24], etc.). Each
parser plug-in accepts as input an object that corresponds to a service pub-
lication, and returns a list of service advertisements abiding by a common,
USQL-compliant format, which result from the parsing process.

– QoS Matcher plug-ins address the diversity of QoS requirements that can
be set in a USQL query, and are employed by the Query Processor to sup-
port their evaluation upon matchmaking. The Query Processor identifies and
selects the appropriate QoS matcher to be used for each QoS requirement
according to its denoted name (e.g. Availability, Reliability, ResponseTime,
etc.). All these components implement a common interface accepting as input
two objects that correspond to the requirement and the respective service
property, and returning as output their degree of match.

– Datatype Matcher plug-ins are used by the Query Processor to calculate
the degree of match among requested and advertised data types. They are
specifically involved in the matchmaking of requirements towards (1) the
input/output messages of a service, where the requester may have specified
the desired data type for each constituent message element; and (2) the
resource of a grid service, where the desired data types of the constituent
resource properties may be specified. Each datatype matcher encapsulates all
details related to the supported data type namespace (e.g. XSD [25], JSON
[26], etc.), which it corresponds to, thereby rendering Proteus independent
from those technologies.

In addition to the flexibility acquired through the above mentioned exten-
sibility mechanism, Proteus is also characterized by modularity rendering the
internal components of the engine independent from each other. Thus, changes
to a particular component do not affect the remainder of the subsystem, which
it belongs to. Such design is particularly useful in the case of the components
responsible for the matchmaking of textual values and ontology concepts: in
accordance to the USQL algebra, the details of their respective implementing
algorithms are isolated from the main matcher component, thereby allowing for
their seamless substitution if needed.

2.3 Evaluation Results

Our approach to service discovery was evaluated through a number of studies
and experiments. Starting out with USQL, we assessed its generality and suit-
ability in the discovery of heterogeneous services by conducting a detailed survey
on existing standards. Firstly, we compared USQL to the interfaces provided by
prevailing service discovery mechanisms. Secondly, we mapped the USQL meta-
model to the schemes of widely used service description languages. The goal of
such evaluation was to demonstrate that a unified approach in the formulation of
service discovery queries is feasible with minimum defects in terms of expressive-
ness and compatibility with the various existing service-oriented technologies. As
the survey results indicated, USQL covers all types of search filters and criteria
that are currently supported by the existing service discovery mechanisms. Also,



a high degree of compatibility with the most prominent service description lan-
guages was established, verifying that USQL is indeed applicable to the discovery
of a wide range of services.

The effectiveness of our approach in service matchmaking, through the USQL
algebra, was quantified by experimenting on the precision and recall of the search
results corresponding to queries for different kinds of web, peer-to-peer, and grid
services. In order to estimate the contribution of each distinct type of require-
ments supported by USQL, all queries that were used in the experiment were
incrementally constructed. The experimental results showed that, on the one
hand, the performance of our approach in terms of precision and recall is sat-
isfactory, although it also depends on the performance of the various external
matchmaking algorithms that are embodied in the USQL algebra for the evalu-
ation of text values, ontology concepts, data types, and QoS requirements. On
the other hand, it became evident that, the ability of USQL to combine different
kinds of requirements in a single query generally enhances the accuracy of the
search results.

The evaluation of our approach was concluded with a number of experi-
ments on the performance of Proteus. According to the measurements retrieved
through the use of a prototype implementation of the engine, both subsystems
perform in a satisfactory manner. Further, through replication of the Crawler
and the Query Processor, we verified that, despite heterogeneity, Proteus scales
well as the numbers of search targets, published services, and incoming queries
increase. Overall, the abstraction and flexibility required for the unified discovery
of heterogeneous services did not inflict the performance of our system.

3 Conclusions

We proposed a unified approach to the discovery of heterogeneous services, which
is realized by a framework containing a query language called USQL and its en-
acting service discovery engine called Proteus. Both the language and the engine
are characterized by a high level of abstraction and flexibility, thereby being
orthogonally positioned to the heterogeneous service-oriented technologies. Ini-
tially implemented as part of the SODIUM platform [27], our framework was
successfully applied to the unified discovery of web services, grid services, and
peer-to-peer services, which were subsequently composed into applications in the
domains of healthcare and crisis management [28]. The extensibility of USQL was
also exercised in a preliminary effort to support the expression of requirements
towards the behavior of composite services, as reported in [29]. It is also worth
mentioning that, besides its reference implementation in Proteus, USQL was also
adopted by two other proposed frameworks for semantically enhanced web ser-
vice publication and discovery, namely PYRAMID-S [17] and DIRE [16].

The ideas revolving around the query language and its enacting service dis-
covery engine presented in this dissertation can be extended in several research
directions. Some indicative examples are given below:



– First of all, it would be interesting to assess the applicability of our approach
in discovering additional types of services that have become popular in the
last few years, such as RESTful services [30], or OSGi services [31].

– Further, assuming the availability of appropriate standards, the USQL meta-
model could be extended in the future to accommodate information related
to the context of the requested service.

– Finally, given the proliferation of Web 2.0 and social networking technologies,
the exploitation of techniques such as tagging could enhance the results of
service discovery, through the collective intelligence that is gradually shaped
by service requesters in regards to the services semantics. Some preliminary
results towards that direction have already been reported in [32].

It is in our belief that, the accomplished flexibility of both USQL and Proteus
will facilitate the undertaking of such endeavors in the future.

References

1. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. IEEE Internet Computing 9(1) (January-February 2005) 75–81

2. Gong, L.: JXTA: A network programming environment. IEEE Internet Computing
5(3) (2001) 88–95

3. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the
Grid: An Open Grid Services Architecture for distributed systems integration.
http://www.globus.org/alliance/publications/papers/ogsa.pdf (2002) Open Grid
Service Infrastructure WG, Global Grid Forum.

4. OASIS: WSRF, Web Services Resource Framework. http://www.oasis-
open.org/committees/wsrf/

5. Hoschek, W.: The Web Service Discovery Architecture. In: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing, Maryland. (2002) 1–15

6. Jin, B., Zhang, L., Zang, Z.: A unified service discovery framework. In: Proceedings
of the Sixth International Conference on Grid and Cooperative Computing, GCC
2007, IEEE Computer Society (2007) 203–209

7. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web service
similarity. International Journal of Cooperative Information Systems 14(4) (2005)
407–438

8. Crasso, M., Zunino, A., Campo, M.: Easy web service discovery: A query-by-
example approach. Science of Computer Programming 71(2) (2008) 144–164

9. Ran, S.: A model for web services discovery with QoS. ACM SIGecom Exchanges
4(1) (2003) 1–10

10. Srinivasan, N., Paolucci, M., Sycara, K.: An efficient algorithm for OWL-S based
semantic search in UDDI. In: SWSWPC 2005. Volume 3387 of Lecture Notes in
Computer Science., Springer (2005) 96–110

11. Elenius, D., Ingmarsson, M.: Ontology-based service discovery in p2p networks.
In: Proceedings of the First International Workshop on Peer-to-Peer Knowledge
Management, P2PKM’04. (2004)

12. Oundhakar, S.A., Verma, K., Sivashanmugam, K., Sheth, A.P., Miller, J.A.: Dis-
covery of web services in a multi-ontology and federated registry environment.
International Journal of Web Services Research 2(3) (2005) 1–32



13. Srinivasan, N., Paolucci, M., Sycara, K.: Semantic web service discovery in the
OWL-S IDE. In: Proceedings of the 39th Annual Hawaii International Conference
on System Sciences, HICSS-39, IEEE Computer Society (2006) 109b

14. Kozlenkov, A., Spanoudakis, G., Zisman, A., Fasoulas, V., Sanchez, F.:
Architecture-driven service discovery for service-centric systems. International
Journal of Web Services Research 4(2) (2007) 82–113

15. Al-Ali, R., Rana, O., Walker, D., Jha, S., Sohail, S.: G-QoSM: Grid service dis-
covery using QoS properties. Computing and Informatics Journal, Special Issue
on Grid Computing 21(4) (2002) 363–382

16. Baresi, L., Miraz, M., Plebani, P.: A flexible and semantic-aware publication in-
frastructure for web services. In: Proceedings of the 20th International Conference
on Advanced Information Systems Engineering (CAiSE 2008). Volume 5074 of
Lecture Notes in Computer Science., Springer (2008) 435–449

17. Pilioura, T., Tsalgatidou, A.: Unified publication and discovery of semantic web
services. ACM Transactions on the Web 3(3) (June 2009)

18. Athanasopoulos, G., Tsalgatidou, A., Pantazoglou, M.: Interoperability among
heterogeneous services. In: Proceedings of the 2006 IEEE International Conference
on Services Computing, SCC 2006, IEEE Computer Society (2006) 174–181

19. Tsalgatidou, A., Athanasopoulos, G., Pantazoglou, M.: Interoperability among
heterogeneous services: The case of integration of p2p services with web services.
International Journal of Web Services Research (IJWSR) 5(4) (October-December
2008) 79–110

20. Pantazoglou, M., Tsalgatidou, A., Athanasopoulos, G.: Quantified matchmaking
of heterogeneous services. In: Proceedings of the 7th International Conference on
Web Information Systems Engineering, WISE 2006. Volume 2455 of Lecture Notes
in Computer Science., Springer (2006) 144–155

21. Pantazoglou, M., Tsalgatidou, A., Athanasopoulos, G.: Discovering Web Services
and JXTA Peer-to-Peer Services in a Unified Manner. In: Proceedings of the
4th International Conference on Service-Oriented Computing, ICSOC ’06. Volume
4294 of Lecture Notes in Computer Science., Springer (2006) 104–115

22. Pantazoglou, M., Tsalgatidou, A., Athanasopoulos, G., Pilioura, T.: A unified
approach towards the discovery of web and peer-to-peer services. In: Proceedings of
the IEEE International Conference on Web Services, ICWS 2006, IEEE Computer
Society (2006) 901–902

23. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Service De-
scription Language (WSDL) 1.1. http://www.w3.org/TR/wsdl (March 2001) W3C
Note, World Wide Web Consortium (W3C).

24. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIll-
raith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E.,
Srinivasan, N., Sycara, K.: OWL-S: Semantic markup for web services.
http://www.w3.org/Submission/OWL-S/ W3C Member Submission, 22 Novem-
ber 2004.

25. W3C. XML Schema, http://www.w3.org/XML/Schema
26. JSON, JavaScript Object Notation, http://json.org
27. Tsalgatidou, A., Athanasopoulos, G., Pantazoglou, M., Berre, A.J., Pautasso, C.,

Gronmo, R., Hoff, H.: 4. Information Systems. In: Unified discovery and composi-
tion of heterogeneous services: The SODIUM approach. MIT Press (2008) 67–100

28. Tsalgatidou, A., Athanasopoulos, G., Pantazoglou, M., Pautasso, C., Heinis, T.,
Gronmo, R., Hoff, H., Berre, A.J., Glittum, M., Topouzidou, S.: Developing scien-
tific workflows from heterogeneous services. SIGMOD Record 35(2) (June 2006)
22–28



29. Pantazoglou, M., Tsalgatidou, A., Spanoudakis, G.: Behavior-aware, univied ser-
vice discovery. In: Proceedings of the Service-Oriented Computing: A look at the
inside (SOC@Inside) Workshop, co-located with ICSOC 2007. (2007)

30. Vinoski, S.: RESTful Web Services Development Checklist. IEEE Internet Com-
puting 12(6) (Nov.-Dec. 2008) 96–95

31. Preuveneers, D., Berbers, Y.: Pervasive Services on the Move: Smart Service Diffu-
sion on the OSGi Framework. In: Proceedings of the 5th International Conference
on Ubiquitous Intelligence and Computing, UIC08. Volume 5061 of Lecture Notes
in Computer Science., Springer (2008) 46–60

32. Pantazoglou, M., Tsalgatidou, A.: A P2P Platform for Social Intelligent Web
Service Publication and Discovery. In: Proceedings of the Third International
Multi-Conference on Computing in the Global Information Technology, ICCGI
2008, IEEE Computer Society (2008) 271–276


