
Computational geometry for curved objects:
Voronoi diagrams in the plane

George M. Tzoumas?

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

geotz@di.uoa.gr

Abstract. We examine the problem of computing exactly the Delau-
nay graph (and the dual Voronoi diagram) of a set of, possibly inter-
secting, smooth convex pseudo-circles in the Euclidean plane, given in
parametric form. Pseudo-circles are (convex) closed curves, every pair
of which has at most two intersection points. We propose robust end
efficient algorithms for all required predicates under the exact compu-
tation paradigm, analyzing their algebraic complexity. To speed up the
algebraic computations, we exploit geometric properties of the problem
and provide a subdivision-based algorithm that exhibits quadratic con-
vergence, allowing for real-time evaluations. Finally, we present a cgal-
based c++ implementation for the case of ellipses, which is, to the best
of our knowledge, the first exact implementation in non-linear computa-
tional geometry. Our code spends about 98 sec to construct the Delaunay
graph of 128 non-intersecting ellipses, when no degeneracies occur. It is
faster than the cgal segment Delaunay graph, when ellipses are approx-
imated by k-gons for k > 15.

1 Introduction

Computing the Delaunay graph, and its dual Voronoi diagram, of a set of sites
in the plane has been studied extensively due to its numerous applications, in-
cluding motion planning, assembly, surface reconstruction, and crystallography.
In contrast to most existing approaches, our work guarantees the exactness of
the Delaunay graph. This means that all combinatorial information is correct,
namely the definition of the graph’s edges, which, of course, have no geometric re-
alization. The dual Voronoi diagram involves algebraic numbers for representing
the vertices and bisector edges: our algorithms and software handle these num-
bers exactly. For instance, they can answer all point-location queries correctly.
Hence, we say that our representation of the dual Voronoi diagram adheres to the
principles of the exact computation paradigm, a distinctive feature in the realm
of non-linear computational geometry. For drawing the diagram, our methods
allow for an approximation of these numbers with arbitrary precision, and this
precision need not be fixed in advance.

? Dissertation Advisor: Ioannis Z. Emiris, Professor

Fig. 1. Left: Voronoi diagram of 15 ellipses; Right: Voronoi diagram and Delau-
nay graph of 10 ellipses

Input sites have usually been linear objects, the hardest cases being line
segments and polygons [9,10]; moreover, only the latter yields an exact output.
The approximation of smooth curved objects by (non-smooth) linear or circular
segments may introduce artifacts and new branches in the Voronoi diagram, thus
necessitating post-processing. It may even yield topologically incorrect results,
as explained in [14].

The Voronoi diagram has been studied in the case of planar sites with curved
boundaries [14], where topological properties are demonstrated, including the
type of bisector curves, though the predicates and their implementation are not
considered. There are works that compute the planar Voronoi diagram approxi-
mately : In [8], curve bisectors are traced within machine precision to compute a
single Voronoi cell of a set of rational C1-continuous parametric closed curves.
The runtime of their implementation varies between a few seconds and a few
minutes. It is briefly argued that the method extends to exact arithmetic, but
without elaborating on the underlying algebraic computations or the handling of
degeneracies. In another work [15], the boundary of the sites is traced with a pre-
scribed precision, while [13] suggests working with lower-degree approximations
of bisectors of curved sites.

Few works have studied exact Delaunay graphs for curved objects. In the case
of circles, the exact and efficient implementation of [5] is now part of cgal.1

Conics were considered in [1], but only in a purely theoretical framework. More-
over, the algebraic conditions derived were not optimal, leading to a prohibitively
high algebraic complexity.

In [11], the authors study the properties of smooth convex, possibly intersect-
ing, pseudo-circles. They show that the Voronoi diagram of these sites belongs
to the class of abstract Voronoi diagrams [12] and propose an incremental algo-
rithm that relies on certain geometric predicates. The evaluation of the predicates
themselves is not considered, this is the problem addressed by this thesis.

1 http://www.cgal.org/

Fig. 2. Left: The Bean curve t 7→ (1+t2

t4+t2+1 ,
t(1+t2)
t4+t2+1); Right: Voronoi diagram of

two intersecting ellipses

2 Preliminaries

Our input is smooth convex closed curves given in parametric form. For an
example of such a curve we refer the reader to fig. 2 left. Smoothness allows
the tangent (and normal) line at any point of the curve to be well-defined. We
denote by Ct a smooth closed convex curve parametrized by t. We refer to a
point p on Ct with parameter value t̂ by pt̂, or simply by t̂, when it is clear from
context. By Ct

◦ we denote the interior of the region bounded by the curve Ct.
Ct is a smooth convex object (site), so that if p denotes a point in the plane,
p ∈ Ct ⇐⇒ p ∈ Ct ∪ Ct

◦. When two sites intersect, we assume that their
boundaries have at most two intersections, i.e. they form pseudo-circles. A curve
Ct is given by the map

Ct : R 3 t 7→ (Xt(t), Yt(t)) =
(
Ft(t)
Ht(t)

,
Gt(t)
Ht(t)

)
, (1)

but actual denominators can differ; we use (1) for simplicity in our proofs.
Here Ft, Gt and Ht are polynomials in Z[t], with degrees bounded by d. All

algorithms, predicates and the corresponding analysis are valid for any para-
metric curve, even when the polynomials have different degrees, though we use
(1) for simplicity. We assume that Ht(t) 6= 0∀t ∈ R. To simplify notation we
write Ft instead of Ft(t), and denote its derivative with respect to t as F ′t . When
d = 2 the curves defined are conics: ellipses and circles are the only closed convex
curves represented.

Let pt(Xt, Yt) be a point on the curve Ct. The equation of the line that
supports the normal at pt is (Nt) : (x − Xt)X ′t + (y − Yt)Y ′t = 0, which is a
polynomial Nt(x, y, t) ∈ Z[x, y, t], linear in x and y and of degree ≤ 3d− 2 in t .

Given a curve Ct, if we consider rationals t1 6= t2 in R, then the point
((Xt(t1) + Xt(t2))/2, (Yt(t1) + Yt(t2))/2) belongs to Ct

◦; such a point is p in
fig. 3. To characterize the relative position of sites Ct, Cr, we compute and
characterize (as external or internal) all their bitangent lines. For example, if
two sites do not intersect, then they have 2 internal and 2 external bitangents.
The same technique decides the relative position of a point and a site since, i.e.,

q

Ct

Cr

pt̂

pr̂

(Nr̂) (Nt̂)

pt1

pt2

q′

p

Ct

Cr

Cs

Fig. 3. Deciding SideOfBisector (left) and DistanceFromBitangent
(right)

when a point is interior to a site there are no supporting lines tangent to the
site.

3 Basic predicates

In this section we examine the predicates for the incremental algorithm of [11].
The expected complexity of an insertion (in a diagram with n sites) is O(log2 n)
for disjoint sites. Computing an exact Delaunay graph implies that we identify
correctly all degenerate cases, including Voronoi circles tangent to more than 3
sites. The insertion of a new site consists roughly of the following: (i) Locate
the nearest neighbor of the new site, (ii) Find a conflict between an edge of the
current diagram and the new site, or detect that the latter is internal (hidden)
in another site, in which case it does not affect the Delaunay graph nor the
Voronoi diagram. (iii) Find the entire conflict region, defined as that part of the
Voronoi diagram which changes due to the insertion of the new site, and update
the dual Delaunay graph. In the sequel, we analyze the predicates needed for
the above three steps. However, predicate InCircle is presented separately due
to its higher complexity.

We shall now present the SideOfBisector predicate. First, we recall from
[11] the definition of distance. Given a site Ct and a point q in the plane, the
(signed) distance δ(q,Ct) from q to Ct equals minx∈Ct

||q−x|| when q 6∈ Ct and
to −minx∈Ct

||q−x|| when q ∈ Ct, where || · || denotes the Euclidean norm. The
absolute value of the distance equals the radius of the smallest circle centered at
q tangent to Ct. Given two sites Ct and Cr and a point q = (q1, q2) ∈ Q2, this
predicate decides which site is closest to the point. If q 6∈ Ct and q ∈ Cr, then
q is closer to Cr. For example, in fig. 3, q′ is closer to Cr. Otherwise, if q lies
outside or inside both sites, we have to compare the distances from q to the two
curves. To find the site closest to q it suffices to compare the (squared) lengths
of segments qpt̂ and qpr̂. We can express this length as an algebraic number

of degree ≤ 3d − 2. Therefore this predicate is decided by comparing two such
algebraic numbers [6]. An alternative approach for ellipses is to consider the
pencil of two conics [4].

Now we consider the DistanceFromBitangent predicate. Consider two
sites, Ct and Cr, and their CCW bitangent line, which leaves both sites on the
right hand-side, as we move from the tangency point of Ct to the tangency point
of Cr; such a bitangent appears in fig. 3. This line divides the plane into two
halfplanes and DistanceFromBitangent (abbreviated by DFB from now on)
decides whether a third site, Cs, lies in the same halfplane as the other two.

We split the problem into two sub-problems. The first consists in comput-
ing the external bitangent of interest, while the second consists in deciding the
relative position of the third site with respect to this bitangent. The bitangents
of Ct and Cr are modeled through the vanishing of a discriminant of a polyno-
mial. The degree of the discriminant is ≤ 4(d − 1)2 and its solution yields the
tangency points of the bitangent lines. To decide the position of Cs w.r.t. the
CCW bitangent line, we consider the tangency points of all the bitangents of Ct

and Cs, shown with circular marks in fig. 3. We can then decide the position of
Cs by the ordering of the aforementioned points and the tangency point of the
bitangent and Ct, shown with solid circular mark in the same figure [4,6].

4 InCircle

This section introduces a polynomial system for expressing the Voronoi circle,
leading to a robust and fast implementation of our main predicate. Recall that
the Voronoi circle is centered at a Voronoi vertex whose radius equals the distance
between the vertex and the sites closest to it (i.e., the circle is tangent to the
sites). A Voronoi disk is a disk defined by a Voronoi circle.

Given sites Ct, Cr, Cs in this order, we denote their associated Voronoi disk
by Vtrs iff their tangency points on the disk are in CCW direction (cf. fig. 6
middle). In this case, Vtrs is a CCW Voronoi disk, and Vtsr is a CW Voronoi
disk. Since the Voronoi diagram of smooth convex pseudo-circles is an abstract
Voronoi diagram, given 3 sites, there may exist at most one CCW Voronoi disk
and at most one CW Voronoi disk. Moreover, these disks may be either external
(externally tangent to the sites) or internal (internally tangent).

Let us now adapt the definition of conflict from [11], (see also fig. 4):

Definition 1. Given sites Ct, Cr, Cs, let Vtrs be their Voronoi disk and Ch

be a query site. If Vtrs is an external Voronoi disk, then Ch is in conflict with
Vtrs iff Vtrs is intersecting Ch

◦. If Vtrs is an internal Voronoi disk, then Ch is
in conflict with Vtrs iff Vtrs is included in Ch

◦.

Given Ct, Cr, Cs, InCircle decides if a newly inserted site Ch is in conflict
with Vtrs. A degeneracy arises when Ch is also tangent to Vtrs. Given that Vtrs

exists, the predicate is computed as follows: (i) Solve the algebraic system that
expresses the Voronoi circle. Among the solutions (which correspond to various
tritangent circles, cf. fig. 6 middle), find Vtrs. (ii) Determine the relative position
of Ch w.r.t. Vtrs.

Ct

Cr

Cs

Ch

Vtrs

Fig. 4. Conflict query site Ch with the external Voronoi disk Vtrs

Bitangent circles. Given two sites Ct and Cr, their bisector is the locus of points
that are equidistant from the two sites. Let q(x, y) be a point on the bisector.
Then q is the intersection of three lines, namely the normal lines from q to each
site, and the bisector line of the two footpoints (a subset of fig. 6 left) which is
expressed by the following system.

Nt(x, y, t) = Nr(x, y, r) = Mtr(x, y, t, r) = 0. (2)

Eliminating x, y we obtain a bivariate polynomial B(t, r) of degree ≤ 4d− 2 in
each parameter [3]. Note that for the case of ellipses, that concerns our imple-
mentation, the implicit form of the bisector curve is of total degree 28, while the
parametric one is of total degree 12. Each point q on the bisector is the center
of a bitangent circle to the two sites. The algebraic curve B(t, r) contains some
branches that do not correspond with the definition of our distance (since the
min function is involved). We are interested only in the externally bitangent
circles, or the internally bitangent ones (we call such circles Apollonius circles
of two sites).

We pick the proper branch of the bisector exploiting the following geometric
properties we have discovered. Consider a point t̂ ∈ Ct. B(t̂, r) is a univariate
polynomial and its solutions are the tangency points of bitangent circles on Cr

(with fixed tangency point t̂ on Ct). Let r̂ be the tangency point on Cr. B(t̂, r̂),
abbreviated as B̂, corresponds to a specific bitangent circle. If t̂ ∈ Cr

◦, then B̂
should correspond to an internal bitangent disk. Therefore, we have to make
sure that its radius is bounded by that of the maximal disk tangent at t̂ and
included in Ct. Note that the center of such a maximal disk lies on the medial
axis of Ct. If t 6∈ Cr

◦ (fig. 6 right), then B̂ should correspond to an external
bitangent disk. Therefore t̂ has to lie in the interior of the convex hull (CH) of
Ct and Cr. Moreover, r̂ lies in an arc, whose endpoints are the tangency points
of the tangent lines from t̂ to Cr. If the tangent line ε at t̂ intersects Cr, then
one endpoint of the arc is replaced by an intersection point of ε and Cr.

Computing Voronoi circle by subdivision. In the parametric space, the intersec-
tion of two bisectors involves three variables. In order to express the Voronoi

t1
t2

r2

r1 s2

s1

t̂

r̂ ŝ

t̂

t1
t2

s1

r2

Fig. 5. Left: All-pair bitangent circles. Right: t2, when computed from t1, en-
closes t̂

circle, we consider the intersection of three bisectors by solving the system:

B1(t, r) = B2(s, t) = B3(r, s) = 0. (3)

The basic idea of our algorithm [7] is the following: Let (t̂, r̂, ŝ) be the solution
of (3) we are looking for. Now consider the following system:

B1(t1, r2) = B3(r2, s1) = B2(s1, t2) = 0 (4)
B1(t2, r1) = B3(r1, s2) = B2(s2, t1) = 0 (5)

These two systems look like (3). The difference is that we have considered t1 6= t2
in the general case and thus we can start solving the above equations in the
given order. Doing so and keeping solutions that correspond to Apollonius circles
(using the geometric arguments described previously), leads to a construction as
in fig. 5 left. All bitangent circles coincide with the Voronoi circle when t1 = t̂ =
t2. Otherwise, we have found an interval [t1, t2] that contains t̂. We can refine it
by choosing a new point t′1 inside this interval and computing [t′1, t

′
2] (suppose

without any harm that t′1 < t′2). It holds that t1 approaches t̂ from the left⇒ r2
approaches r̂ from the right ⇒ s1 approaches ŝ from the left ⇒ t2 approaches t̂
from the right (see fig. 5 right). Therefore t′1 ∈ [t1, t2]⇒ t̂ ∈ [t′1, t

′
2] ⊂ [t1, t2]. Note

that computing a smaller interval on dimension t allows us to compute smaller
intervals on dimensions r and s as well. Therefore we maintain exactly one box
that contains our solution, contrary to generic interval-arithmetic techniques
that may need to maintain a large number of boxes.

Theorem 1. The above subdivision-based algorithm converges quadratically.

Proof. By using the implicit function theorem and Taylor expansions [7].

Nt

Nr

Ns

Mtr

Mts
t̂

r̂

ŝ

Ct

Cr

Cs

Ct

Cr

Cs

Ct

Cr

t̂

Fig. 6. Left: An external tritangent circle; Middle: Various tritangent circles.
Dotted line: CCW(t,r,s), Dashed line: CW(t,r,s); Right: Finding an external
bitangent circle

Computing Voronoi circle algebraically. The polynomial system expressing all
circles tangent to Ct, Cr, Cs is:

Nt(x, y, t) = Nr(x, y, r) = Ns(x, y, s) = Mtr(x, y, t, r) = Mts(x, y, t, s) = 0. (6)

The first 3 equations correspond to normals at points t, r, s on the 3 given sites.
All normals go through the Voronoi vertex (x, y). The last two equations force
(x, y) to be equidistant from the sites: each one corresponds to the bisector of the
segment between two footpoints (cf. fig. 6 left). This system was also used in [13],
but solved with iterative methods. Elimination of x, y from Mtr, Nt, Nr yields
the bisector of two sites w.r.t. t, r. It turns out that the resultant of (6) can be
computed faster than that of (2), as the former system has simpler redundant
solutions. However, (2) is more appropriate for the subdivision scheme, as it
contains only two variables per equation.

Solving the system. The resultant of n + 1 polynomials in n variables is an
irreducible2 polynomial in the coefficients of the polynomials which vanishes iff
the system has a complex solution. In particular, sparse (or toric) resultants
express the existence of solutions in (C∗)n [2]. It is impossible to compute the
resultant of 5 arbitrary polynomials as a determinant, so we apply successive
Sylvester determinants, i.e., optimal resultant formulae for n = 1. This typically
produces extraneous factors but, by exploiting the fact that some polynomials
are linear, and that none contains all variables, we shall provide the complete
factorization of the computed polynomial; we focus on conics for simplicity, but
our approach holds for any parametric curve. We denote by Π(t) the resultant
of (6) when eliminating all variables except t: it is, generally, an irreducible
univariate polynomial and vanishes at the values of t that correspond to the
complex tritangent circles. Recall that the curves are defined by (1).

2 Irreducibility occurs for generic coefficients; otherwise, resultants can be factorized.

Theorem 2. If Π(t) is the resultant of (6) as above, then Resxy(R1, R2, Nt) =
Π(t)H40

t (GtH
′
t−G′tHt)36, where, R1 = Resr(Mtr, Nr), R2 = Ress(Mts, Ns), and

the degree of Π is 184.

The above theorem provides an upper bound of 184 complex tritangent circles
to 3 conics. Numeric examples show that the bound is tight.

Corollary 1. The degree of the resultant of (6) for general parametric curves,
as in (1), is bounded by (3d− 2)(5d− 2)(9d− 2), after dividing out the factor of
(Ht(GtH

′
t −G′tHt))(5d−2)2 .

A more careful analysis may exploit term cancellations to yield a tighter bound.
If we solve the resultant of system (6), we obtain one coordinate of the solu-

tion vectors (in isolating interval representation). There are methods to obtain
the other variables, too. For instance, plugging a value of t in the bisector equa-
tion of sites Ct and Cr allows us to find the corresponding value for r. In practice,
we are using our subdivision scheme to identify the box that contains the right
solutions.

Moreover, having obtained the resultant allows us to detect degenerate con-
figurations, i.e., all 4 sites being tangent to the same Voronoi disk. Consider the
triplets Ct, Cr, Cs and Ct, Cr, Ch. Let Π1(t), Π2(t) be the resultants of (6)
for these triplets respectively. The triplets admit an identical tritangent circle
iff gcd(Π1, Π2) 6= 1. Checking that the common tritangent circle corresponds to
the Voronoi circle (i.e., internal or external tritangent one) can be verified by
looking at the other coordinates, through our subdivision scheme. We can state
the following theorem:

Theorem 3. Comparing the real roots of Π1(t) with those of Π2(t) allows us
to decide InCircle. In the case of ellipses, this translates to comparisons of
algebraic numbers of degree 184.

5 Implementation & experiments

We shall briefly describe our efficient and exact implementation for non-intersecting
ellipses in the plane (fig. 1 left), which is now being extended to handle pseudo-
circles (fig. 2 right), or sites fully contained in other ones (fig. 1 right). Our code
is based on the existing cgal Apollonius package for the combinatorial part of
the algorithm. Since cgal follows the generic programming paradigm, the main
issue was to implement the predicates for ellipses, generalizing the circular sites
developed for the Apollonius diagram.

For the required algebraic operations, we relied on synaps, an algebraic
library which features state-of-the-art implementations for real solving, used to
solve the degree-184 univariate polynomials.

We have implemented polynomial interpolation to compute the resultant of
system (6), applying thm. 2 at the same time. To speed up the implementation,
we use ntl,which is an open source c++ library providing asymptotically fast
algorithms for polynomial GCD and Sylvester resultants.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
ec

)

perturbation 10^(-e)

k1
k2

InCircle

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16 18 20

tim
e

(s
ec

)

perturbation 10^(-e)

resultant

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000

tim
e

(s
ec

)

precision 2^(-b)

subdivision

Fig. 7. Left: Predicates; Middle: Resultant computation; Right: Subdivision

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350

tim
e

(s
ec

)

of pts/ellipse

Vor.Pts, unfiltered
Vor.Pts, filtered

Vor.Pts, filtered, location
Vor.Ellipses, unfiltered

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80

tim
e

(s
ec

)

of edges/ellipse

Vor.Seg, unfiltered, location
Vor.Ellipses, unfiltered

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

tim
e

(s
ec

)

of sites

Vor.Ellipses, unfiltered
Vor.20-gons, unfiltered, location

Fig. 8. Delaunay graph of: 32 ellipses vs point approximations with increasing
number of points per ellipse (left), 32 polygons with increasing number of edges
(middle), polygons and ellipses (right)

For InCircle, we have implemented our specialized subdivision method us-
ing interval arithmetic provided by synaps and multi-precision floating point
numbers by mpfr. This is a filter, which answers InCircle before full precision
is achieved at non-degenerate cases. When the mpfr precision is not enough, we
fall back to the exact algebraic method.

Overall, our software design, is generic so as to distinguish the geometry from
the algebra part, allowing us to try different algebraic libraries. Currently, we
are also using cgal’s Algebraic Kernel which provides univariate real solving,
multivariate polynomial handling and resultant computation via interpolation.

Now, we present various experimental results. All runtimes are obtained on
a Pentium-4 2.6 GHz machine with 1.5GB of RAM, unless otherwise specified.

We have measured the performance of SideOfBisector, DFB and InCir-
cle with varying bitsize. Left fig. 7 corresponds to ellipses with randomly per-
turbed parameters (axes, rotation and center of ellipses) by adding / subtracting
10−e, with varying e, to small (10-bit) random input parameters; this forces the
polynomials computed during each predicate evaluation to have coefficients of
large bitsize. All runtimes appear to grow sub-quadratically in e, which is ex-
pected since SideOfBisector, DFB have constant arithmetic complexity and
InCircle is handled by the subdivision algorithm with quadratic convergence,
hence computes τ bits in O(log(τ)) steps. In case of degeneracies, the runtime
of InCircle is dominated by the resultant computation, shown in middle fig. 7.

Finally, we measured the time needed for the subdivision algorithm to reach
a precision of 2−b, using mpfr floats, in right fig. 7. This precision is achieved

in about 0.2 sec, and 1 sec suffices for almost 2000 bits of precision, whereas
the 24k-bit approximation needs about 0.5 min. This shows that the theoretical
separation bound of several million bits [4] cannot be achieved efficiently, hence
the usefulness of resultant-based methods. On the other hand, resultants, even
with 10-bit input coefficients can be about 70 times slower than the subdivision
algorithm using the standard floating point precision of 2−53. In short, both
methods have to be combined for a robust and fast solution.

The overall time for the construction of the Delaunay graph (and the struc-
ture representing its dual diagram) is shown in right fig. 8 (solid line). It takes,
for instance, 98 sec to compute the exact Delaunay graph of 128 non-intersecting
ellipses. More importantly, it is about linear in the number of sites for up to this
number of non-intersecting ellipses.

Comparing with point approximations. Each ellipse is approximated by a con-
stant number of k points taken uniformly on its boundary (just like the vertices
of the polygons in fig. 9, right). These points have rational coordinates, as they
are obtained using (1). We compare against 3 variations of the incremental al-
gorithm of cgal for the Delaunay triangulation: (i) without filtering,(ii) with
filtering, (iii) with filtering and improved nearest neighbor location. Left fig. 8
presents results concerning 32 ellipses, with k varying from 8 to 320. We see that
the Delaunay graph computation of 32 ellipses is faster for variations (i),(ii),(iii)
of the Delaunay triangulation of points for k ≥ 120, k ≥ 160 and k ≥ 240
respectively.

Comparing with polygonal approximations. We compare against the cgal pack-
age for the segment Delaunay graph (and the dual Voronoi diagram) [10]. We
replaced each ellipse (fig.9 left) by a 20-gon (fig.9 right). Right fig. 8 shows the
time for the incremental construction of the Voronoi diagram of polygons by
cgal (dashed line) compared to that of ellipses (solid line) when the number
of sites varies from 4 to 128. Again, nearest neighbor queries are performed
smartly. Middle fig. 8 shows the required time to construct the Delaunay graph
of 32 ellipses (solid line) and that of 32 polygons approximating each ellipse
with a varying number of edges (dotted line). As the number of edges per ellipse
increases, the squared-logarithmic cost per insertion becomes non-negligible. In-
terestingly, the Delaunay graph of polygons is slower with > 15 segments per
ellipse.

References

1. F. Anton. Voronoi diagrams of semi-algebraic sets. PhD thesis, The University of
British Columbia, January 2004.

2. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Number 185 in
Graduate Texts in Math. Springer, New York, 2nd edition, 2005.

3. G. Elber and Myung-Soo Kim. Bisector curves of planar rational curves. Comp.-
Aid. Des., 30:1089–1096, 1998.

Fig. 9. Left: Voronoi diagram of 16 ellipses. Right: Voronoi diagram of 16 20-gons
approximating each ellipse (320 segments in total)

4. I. Z. Emiris, E. P. Tsigaridas, and G. M. Tzoumas. Predicates for the exact Voronoi
diagram of ellipses under the euclidean metric. Intern. J. Comp. Geom. & Appl.,
18(6):567–597, 2008. Special Issue.

5. I.Z. Emiris and M.I. Karavelas. The predicates of the Apollonius diagram: algo-
rithmic analysis and implementation. Comp. Geom.: Theory & Appl., Spec. Issue
on Robust Geometric Algorithms and their Implementations, 33(1-2):18–57, 2006.

6. I.Z. Emiris, E.P Tsigaridas, and G.M. Tzoumas. Exact Delaunay graph of smooth
convex pseudo-circles: General predicates, and implementation for ellipses. In Proc.
SIAM/ACM Joint Conf. Geometric & Solid Modeling, San Francisco, October
2009. To appear.

7. I.Z. Emiris and G.M. Tzoumas. Exact and efficient evaluation of the InCircle
predicate for parametric ellipses and smooth convex objects. Comp.-Aid. Des.,
40(6):691–700, 2008.

8. I. Hanniel, R. Muthuganapathy, G. Elber, and M.-S. Kim. Precise Voronoi cell
extraction of free-form rational planar closed curves. In Proc. 2005 ACM Symp.
Solid and Phys. Modeling, pages 51–59, Cambridge, Massachusetts, 2005. (Best
paper award).

9. M. Held. Vroni: An engineering approach to the reliable and efficient computation
of Voronoi diagrams of points and line segments. Comput. Geom. Theory Appl.,
18:95–123, 2001.

10. M.I. Karavelas. A robust and efficient implementation for the segment Voronoi
diagram. In Proc. 1st Int. Symp. Voronoi Diagrams, pages 51–62, 2004.

11. M.I. Karavelas and M. Yvinec. Voronoi diagram of convex objects in the plane. In
Proc. 11th Europ. Symp. Algorithms, LNCS, pages 337–348. Springer, 2003.

12. R. Klein, K. Mehlhorn, and S. Meiser. Randomised incremental construction of
abstract Voronoi diagrams. Comput. Geom.: Theory & Appl., 3(3):157–184, 1993.

13. R. Ramamurthy and R. T. Farouki. Voronoi diagram and medial axis algorithm
for planar domains with curved boundaries - II: Detailed algorithm description. J.
Comput. Appl. Math., 102(2):253–277, 1999.

14. R. Ramamurthy and R.T. Farouki. Voronoi diagram and medial axis algorithm
for planar domains with curved boundaries I. Theoretical foundations. J. Comput.
Appl. Math., 102(1):119–141, 1999.

15. M. Ramanathan and B. Gurumoorthy. Constructing medial axis transform of
planar domains with curved boundaries. Comp.-Aid. Des., 35(7):619–632, 2003.

	Computational geometry for curved objects: Voronoi diagrams in the plane
	George M. Tzoumas

