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Design and Implementation of a Semantic 
Okmizer 

SREEKUMAR T. SHENOY AND 

AWracf-In this paper we describe a scheme to utilize semantic 
knowledge in optimizing a user specified query. The semantics is rep- 
resented as function-free clauses in predicate logic. The scheme uses a 
graph theoretic approach to identify redundant joins and restrictions 
present in a given query. An optimization algorithm is presented which 
eliminates redundant nonprofitable specifications from a query while 
adding additional profitable specifications to it. Dynamic and heuristic 
interaction of three entities-schema, semantics, and query-forms the 
basis of the algorithm. The implementation architecture of the algo- 
rithm and test results on a representative set of data are presented. 
Issues associated with updating of semantic constraints are addressed 
and an algorithm for semantic maintenance is introduced. 

Index Terms-Algorithms, graph theory, heuristics, implication in- 
tegrity constraints, query optimization, redundancy, relational data- 
bases, secondary index, semantic rules, subset integrity constraints. 

I. INTRODUCTION 

Q  UERY optimization in relational databases continues 
to be an active issue in both academic and commer- 

cia fields for quite a long time now. The relevance for 
optimization stems from the flexibility provided by mod- 
em user-interfaces to databases. The interfaces and non- 
procedural query languages facilitate the users to specify 
queries which may be computationally costly and ineffi- 
cient to process. It then becomes not only meaningful but 
also important to reformulate the user specified query be- 
fore executing it to an equivalent form that is computa- 
tionally more efficient. 

Query optimization can be formally defined as a pro- 
cess of transforming a query into an equivalent form (that 
produces the same result as the original one for all data- 
base states) which can be evaluated more efficiently. 

Optimization in its conventional sense utilizes syntactic 
knowledge of the operations and storage details of the re- 
lations. The syntactic knowledge includes algebraic trans- 
formations and operator resequencing, whereas the stor- 
age details include indexes and clustering of storage. 
Several query processing algorithms are proposed in the 
literature-[l]-[4], [8], [iO],-[ll], [14], [17]5 [21], [23], 
[27], [3 11, [36], [39]-[41]. Most of the major commercial 
database management systems utilize these techniques to 
some extent to answer the ad hoc user queries. 
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ZEHRA MERAL OZSOYOGLU 

Semantic processing adds a relatively new dimension 
to query optimization. Instead of just resequencing the 
operators or incorporating the indexed access of data files, 
it tries to exploit any available knowledge about the data. 
For instance, it utilizes knowledge about the domains of 
relations, nature of data, and constraints associated with 
database instances. Such relevant pieces of knowledge 
available to the optimizer, combined with its potential 
ability to intelligently process it, helps its generation of 
more optimal forms of the user specified query from an 
execution point of view. 

Significance of semantic optimization can be made more 
apparent by certain inherent limitations of syntactic op- 
timization techniques. Since syntactic optimizers lack the 
entire body of semantic knowledge assured to be satisfied 
by all the instances of a particular database, in many cases 
they produce suboptimal forms ofthe query for execution. 
Certain queries that can be answered without any relation 
scans cannot be detected by syntactic optimizers, thus re- 
sulting in redundant database access. Cases where queries 
contain dangling relations cannot be identified by syntac- 
tic techniques alone, thus forcing redundant joins to be 
performed. Also, syntactic optimizers cannot detect and 
eliminate semantically redundant restrictions or joins from 
user specified queries, and for the same reason they fail 
to introduce semantically redundant restrictions or joins 
which could, in turn, reduce the overall cost of the query. 

Semantic query optimization is based on the semantic 
equivalence rather than the syntactic equivalence between 
different queries. Two queries are syntactically equivalent 
if their answers are the same for all the instances of the 
database. Two queries, possibly syntactically nonequiv- 
alent, are semantically equivalent if their answers are the 
same for all the instances of the database that satisfy the 
specified set of semantic rules. Semantic equivalence does 
not imply syntactic equivalence while syntactic equiva- 
lence trivially implies a semantic one. As an example, the 
two queries “retrieve (emp.all) where emp.Sal>40K” 
and ‘ ‘retrieve (emp . all) where emp . Sal > 40K and 
emp. Job = ‘Manager’ ” are not syntactically equivalent, 
but are semantically equivalent under the semantic rule 
‘emp . Sal > 40K + emp.Job=“Manager” ‘. Since the se- 
mantic equivalence between queries depends only on the 
database schema and the semantic rule set, the different 
queries can interchangeably be used to get the same re- 
sults, provided the schema and the semantics are unal- 
tered. Moreover, since these syntactically nonequivalent 
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queries can independently be optimized by a conventional 
syntactic optimizer, semantic processing does in fact ex- 
pand the spectrum of equivalent forms of the specified 
query. Thus, the semantic query optimization is the pro- 
cess of finalizing, among all the possible syntactically and 
semantically equivalent forms of the query, the one which 
can be executed most efficiently. 

There are various issues involved in semantic query 
processing. First, query and schema should be dynami- 
cally used to select the relevant semantics for optimiza- 
tion without an exhaustive search of semantic rule base. 
Second, there should be some mechanism to merge the 
selected semantics with the query. Third, there should be 
a cost analyzer to evaluate the costs of equivalent queries 
and rank them accordingly. Fourth, there should be a set 
of heuristics to guide the whole process in a meaningful 
way without a combinatorial explosion. 

This paper is organized as follows. Section II presents 
a brief discussion on the related previous work. In Section 
III we discuss clausal representations of query as well as 
various types of constraints that constitute a semantic rule 
base for the optimizer. We introduce a simplified and gen- 
eralized representation of implication constraints. Section 
IV addresses the issues related to the maintenance of se- 
mantic constraints. A maintenance algorithm is presented 
in this section with its associated data structures. Section 
V illustrates the role of heuristics as inference rules. Dif- 
ferent graph schemes used to represent and transform the 
query are introduced in Section VI. A detailed discussion 
on various stages of semantic query transformation ap- 
pears in Section VII. In Section VIII we present the trans- 
formation algorithm, its implementation architecture, and 
the implementation results. Section IX concludes the pa- 
per. 

II. PREVIOUS WORK 

Semantic optimization has recently been the subject of 
detailed analysis from two different perspectives. Refer- 
ence [ 181 formally introduced the issue in an artificial in- 
telligence context and introduced a set of heuristics for 
query transformation. Reference [12] analyzed the prob- 
lem in a database point of view. 

Major heuristics discussed in [ 181 were index introduc- 
tion, join introduction, scan reduction, and join elimina- 
tion. Index introduction tries to obtain a constraint on an 
attribute of a relation which is restricted in the query and 
which has a clustered indexed attribute that is not re- 
stricted in the query. According to the strategy of join 
introduction, a relation should be a constraint target if it 
has a clustering link into a much larger relation that is 
constrained in the query, even if the relation itself is not 
in the original query. This heuristic contemplates addition 
of a join to the query, referred to as join introduction. In 
the case of scan reduction, the objective is to reduce the 
number of inner scans of the join by obtaining additional 
restrictions prior to the cross referencing part of the op- 
eration. Join elimination becomes possible if a relation is 
joined to just one other relation and none of its attributes 
contribute to the answer. 

Later, a substantial amount of research followed, re- 
lated to the theory and implementation of semantic rules 
for query processing [5]-[7], [15], [16], [22], [26], [34], 
[351. 

Two of the above papers, [5] and [ 151, have maximum 
relevance to our current work. Reference [5] introduces 
the concept of semantic compilation, where all the rele- 
vant semantic rules are explicitly associated with each re- 
lation or view definitions. This allows any query on that 
relation or view to be semantically transformed with only 
a limited search of the rule base. The result of interaction 
of a query with compiled relations or views is a group of 
semantically equivalent queries, each of which can be po- 
tentially optimized using a syntactic optimizer. Reference 
[15] describes a graph theoretic approach integrated with 
tableau techniques and syntactic simplification algorithms 
to optimize queries containing inequality constraints. 
Referential integrity constraints like key dependencies, 
functional dependencies, and value bounds are used by 
the algorithm. The graph is used to unify attribute values 
based on referential constraints, to detect cycles that im- 
ply equal values for different attributes, and to predict 
queries with null answers. 

Both of the above methods have certain limitations. 
Reference [5] fails to clearly categorize a given piece of 
semantic information as a rule or as a view. Also, no 
method is available to select or prioritize the rules asso- 
ciated with a relation or view in a query context. More- 
over, no mechanism is available to quantify the profit- 
ability of a rule for a relation in a query context. In other 
words, integration of semantic rules with relations is con- 
sidered in isolation with query context. In [ 151, explicit 
representation of arbitrary semantic rules is not sup- 
ported. Prolog like view characterization is used to ex- 
press a limited type of constraints on the variables appear- 
ing in view definitions. Since semantic details are 
integrated with view definitions, it becomes the respon- 
sibility of the end user to keep track of the semantics as- 
sociated with each view. Since the constraints are hard- 
wired to view definitions, they become unsharable by the 
similar attributes originating from the query. Also, any 
changes in the constraints at a later stage makes the main- 
tenance of these views difficult. 

In [32] we try to address the above difficulties by using 
explicit clausal representation [20] of integrity constraints 
as in [5], and by devising a mechanism for dynamic in- 
teraction between relations and constraints in a query con- 
text. Among the valid constraints selected for such inter- 
action, only the profitable ones are finally used, 
profitability being decided by heuristic rules, global pa- 
rameters, and some assumptions. 

III. CLAUSAL FORMS OF QUERY AND SEMANTIC 
CONSTRAINTS 

In this section we discuss the clausal representation 
[20], [37], [39] which provides a theoretical basis for 
specifying query as well as semantic constraints. After 
introducing the notations of clausal form, we describe the 
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specific representational details of query and semantic 
constraints. 

A. Clausal Representation 
A clause is an expression of the form “A,, . . . A,, + 

4, . * * 7 B,” where A,, . . . , A,, B,, . . . , B, are atoms 
(or atomic formulas), IZ 1 0 and m I 0. An atom (or 
atomic formula) is an expression of the form ‘ ‘p ( tl, 
. . . , tj )” where p is a j-place predicate symbol, tI, . . . , 
tj are terms, andj B 1. A term, in its most general form, 
is a variable, a constant symbol, or a functionf ( tl, . . . , 
tk) where f is a k-place function symbol, tl, . . . , tk are 
terms, and k > 0. 

In our discussion we consider only function-free terms. 
A function-free atomic formula, p ( tl, . . . , 5 ), denotes 
either a relation or an evaluable (built-in) predicate: If it 
is a relation, it is the relation of its predicate restricted for 
equality by any constant appearing in a component and 
for equality between components that have the same vari- 
able. If it is an evaluable predicate, it is a binary com- 
parison (arithmetic or set) predicate of the form =, # , 
>, 1, “contains”, etc. We follow the usual infix nota- 
tion X > Y, instead of > (X, Y ), to represent the evalu- 
able predicates. 

A literal is either an atomic formula or a negated atomic 
formula. A nonnegated atomic formula is positive literal, 
and a negated one is a negative literal. A clause, thus, is 
a sum (logical OR) of literals. A clause with at most one 
positive literal is called a Horn clause, which can be of 
one of the following categories. 

I) Integrity Constraint: No positive literal, one or 
more negative literals (m = 0, 12 > 0). 

2) Unit Clause or Fact: A single positive literal, no 
negative literals (m = 1, n = 0). 

3) Rule: A single positive literal, one or more negative 
literals (m = 1, n > 0). 

The set of negative literals A,, . . . , A, of the above 
clause is sometimes referred to as the body of the clause, 
and the set of positive literals B1, . . . , B, as its head. 
The atoms appearing in the body are the joint (conjunc- 
tive) conditions of the clause, and the ones in its head are 
the alternative (disjunctive) conclusions. The conditions 
are sometimes referred to as antecedent atoms and the 
conclusions as consequent atoms. 

B. Query 
A simple query q, expressed in the context of a database 

scheme D, is syntactically similar to a unit clause (fact). 
The difference is that a unit clause asserts that a goal is 
true, whereas a query asks whether the goal is true. The 
variables appearing in a query are implicitly existentially 
quantified. Shared variables are used as a means of con- 
straining a simple query by restricting the range of a vari- 
able. 

A substitution is a finite set of pairs of the form Xi = 
tj, where Xi is a variable and tj is term, and Xi # Xj for 
every i # j, and Xi does not occur in tj, for any i, j. The 
result of applying a substitution @ to a term A, denoted 
by A@, is the term obtained by replacing every occur- 
rence of X in A by t, for every pair X = t in @. B is an 

instance of A if there is substitution @ such that A@ = 
B. Answering a query is the process of finding all the facts 
that are instances of the query. All such instances form 
the solution of the query. 

Conjunctive queries are practically more relevant than 
the simple ones. A conjunctive query Q specifies a con- 
junction of goals posed as a query. Shared variables are 
used to specify equality restrictions as well as equijoins 
between terms in conjunctive queries. Inequality restric- 
tions and inequality joins are specified by explicit terms. 
The explicit inequality operators used in our discussion 
are from { # , > , 1 }. The operators < and 5 are not 
explicitly considered because a < b and a I b can be 
represented by b > a and b I a, respectively. Similarly, 
a = b can be represented by the conjunction of a 1 b and 
b 1 a. 

C. Semantic Constraints 
Constraints are laws or expressions associated with the 

database that represent certain required properties of the 
data. There are two broad classifications of constraints, 
i.e., state constraints and transition constraints [28]. In 
this paper, we restrict our discussion to state constraints. 
The state constraints can be further classified into con- 
ventional dependencies and semantic constraints. Con- 
ventional dependencies include functional (and key) de- 
pendencies, value bounds, referential constraints, etc. A 
detailed discussion can be found in [39]. Semantic con- 
straints represent inter-relationships between chunks of 
data across the database relations. 

In this work, we utilize two types of semantic con- 
straints, viz. subset constraints S and implication con- 
straints I, defined over the database scheme D. In other 
words our complete semantic specijication has three com- 
ponents, D, S, and I. Clausal forms are used to represent 
both types of constraints. Both types of the semantic con- 
straints of our interest can be represented by integrity con- 
straints (conjunctions of negated predicates). In other 
words, we do not consider the other variants of horn 
clauses (“facts” or “rules”) for constraint specification. 
Usually, semantic integrity constraints contain relational 
predicates as well as evaluable predicates. 

D. Subset Constraints 
Dejinition 3.1: The set of subset constraints S is a 

superset-subset relationship between the domains of two 
different attributes of possibly two different relations. 

A subset constraint is represented by an integrity con- 
straint (a conjunction of negated predicates) having two 
relational predicates and one evaluable predicate. The 
evaluable predicate specifies a set comparison between 
two attributes of the relations. Note that no restriction 
(constant substitution) is allowed on any attribute varia- 
bles of the relational predicates. 

An example of a subset constraint is “r, (X,, Y,, 2, ), 
rz(X2, Y2, Z,), X, G X2 -+“, which is the same as 
“t-,.X1 E rz.X, +” if we decide to prefix the attributes 
by the relation names. This constraint states that the con- 
dition “r,.X, G t-*.X2” is always false. In other words, 
it restricts the domain of r2. X, to be a subset of the do- 
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main of r, . Xi. If the evaluable predicate is complemented 
and moved to the head, the specification becomes “+ 
r2.X2 G r,.X,“, equivalent to saying that domain of rl. X1 
is a superset of that of r,. X,. Note that, as in a query, 
shared variables can be used in a subset constraint to spec- 
ify equality implicitly. 

A classic example of subset constraint is: “all man- 
agers are employees”. 

E. Implication Constraints 
Formally, an implication constraint is represented by a 

clausal integrity constraint (a horn clause with no positive 
literal, and one or more negative literals), which is a con- 
junction of negated predicates. In the most basic form, 
these predicates could be relational predicates or evalu- 
able predicates. The relational predicates represent the 
database relations (or views), whereas the evaluable pred- 
icates represent comparison between a variable and a con- 
stant, simple comparison between two variables, or com- 
parison between two variables with an offset [13], [30]. 

Implication constraints restrict the relative domains of 
attributes. They specify valid ranges of values that certain 
attributes can have when some other attributes are re- 
stricted in the same or a different relation. 

As an example, the constraint “Only managers make 
more than 40K” on the employee relation can be repre- 
sented as 

employee(Ssn,Name,Dept,Job,Grade,Sal,Bonus,Age), 
Sal > 40K + Job = “Manager” 

Here, “employee(. . . )” is the relational predicate and 
the other two are the evaluable ones. In our discussion, 
we eliminate the explicit representation of relational pred- 
icates and prefix the attributes with relation names for im- 
proving the readability without losing any generality. The 
above example with such a representation would be 

employee. Sal > 40K + employee.Job = “Manager”. 

Here we introduce a simple generalization to the above 
representation. We  complement and move the “conse- 
quent” predicate (employee.Job = “Manager”) to the 
“antecedent” side, thus making it a  “true” clausal integ- 
rity constraint (with no positive literal). The resultant rep- 
resentation in our example is 

employee.Sal > 40K, employee.Job # “Manager” -+. 

The constraint now can be read as ‘there is no tuple in the 
employee relation with Sal > 40K and Job # “Man- 
ager” ’ . There are two definite advantages to this modi- 
fication. First, it simplifies the syntax of the constraint by 
associating it to a simple conjunctive set of predicates, 
thus eliminating the classification of “antecedent-conse- 
quent” atoms. Second, it generalizes the semantics of the 
constraint as any of the predicates in the conjunctive set 
qualifies to be the consequent one when complemented 
and moved to the “consequent” side. For example, from 
the above conjunctive set, we can also derive 

employee.Job # “Manager” -+ employee.Sal I 40K 
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Semantically, an implication constraint represents an 
impossible conjunctive combination. From the database 
point of view, the conjunction represented by an impli- 
cation constraint always evaluates to be false. 

An implication constraint is said to be local if all its 
relational predicates refer to the same relation. Otherwise 
it is called a cross constraint because, in such cases, the 
implication relates more than one relation. The cross im- 
plication constraints involve at least one join specification 
between relations. 

F, Example Database and Constraints 
As a running example throughout the paper, we use the 

following schema and constraints. 
Schema and Relation Sizes: (Indexed attributes are 

underlined) 

employee (Ssn, Name, Dept, Job, Grade, Sal, Bonus, 
Age) [size: 37043 tuples] 

storage (Dept, Material, Qty) [size: 1601 tuples] 
material (Material, Risk, Storage-Limit) [size 1801 

tuples] 

Subset Constraints: 

storage.Material is a  subset of material.Material 

Implication Constraints, Implicative and Conjunctive 
Forms: 

ZCi: Only managers make more than 40K. 

employee.Sal > 40K + employee.Job = “Manager”. 
employee.Sal > 40K, employee.Job # “Manager” -+ . 

ZC,: All managers are of grade 20 or higher. 

employee.Job = “Manager” -+ employee.Grade I 20. 
employee. Job = ‘ ‘Manager’ ’ , employee. Grade < 20 -+ . 

ZC,: All materials stored in department dl are of risk 
greater than 3. 

storage.Dept = “dl”, storage.Material = 
material.Material + material.Risk > 3. 

storage.Dept = “dl”, storage.Material = 
material.Material, material.Risk I 3  + . 

ZC,: Benzene is always stored in quantities more than 
500. 

storage.Material = “Benzene” -+ storage.Qty > 500. 
storage.Material = “Benzene”, storage.Qty I 

500 +. 

ZCs: Employees of any department that stores anything 
in > 600 are of age > 35. 

storage.Qty > 600, storage.Dept = employee.Dept + 
employee.Age > 35 

storage.Qty > 600, storage.Dept = employee.Dept, 
employee.Age I 35 +. 

IV. MAINTENANCE ALGORITHM FOR INTEGRITY 
CONSTRAINTS 

Maintenance of semantic integrity constraints repre- 
sents an isolated but important component of any seman- 
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tic query optimization system [29]. Even though the se- 
mantic constraints are relatively less frequently updated 
in comparison to the data itself, an efficient module to 
manage the semantic modifications is an important part of 
the optimizer. 

A. Subset Constraints 
Maintenance of subset constraints is relatively simple. 

Subset constraints contain exactly two relational attri- 
butes and one of the set-comparison operators { C , E }. 

Task: Accept a subset constraint if and only if it is not 
redundant and contradicting. The constraint is said to be 
redundant if it can be derived from the existing constraint 
set. It is said to be contradicting if, when combined with 
one or more existing constraints, it produces a null result. 

As an example, if “-+ r.A C r. B” and “-t r. B C 
r. C ” are present in the existing set, a new constraint “ -+ 
r. A C r.C” is redundant. On the other hand, the con- 
straint “ --t r.C C r. A” is contradicting. 

Assumption: It is assumed that the existing set of sub- 
set constraints is free from redundancy and contradiction. 
This assumption is trivially true for a null constraint~set. 

Data Structures: A directed and labeled graph, G, = 
( V,, E,), represents the subset constraints. V, is the set of 
relational attributes involved in any of the existing subset 
constraints. A directed edge e exists in E, from u1 to v2 
(for vl, v2 in V,) iff the subset constraint “ -+ v2 G vl” 
or “-a 23 c v2” is present in the existing subset con- 
straint set. The label is used to denote the operator C or 
C . If there are parallel directed edges of the same label 
between two vertices, they are replaced by a single edge 
with the same direction and the same label. If they are of 
different labels, they are replaced by a single edge with 
the same direction and “ c ” label. Label “ c ” is said to 
predominate the label “ s “. A directed path in the graph 
is a sequence of directed edges. A path is said to be of 
c -type if all the edges in that path are labeled “ G ’ ’ . 
Otherwise, it is called a C-type path. 

Algorithm: 
Add the vertices vl, v2, corresponding the new edge 

(from vl to v2) to the graph, unless they are already pres- 
ent. 

If the new edge forms a directed loop with at least 
one “ C ” edge, it is a contradicting one. 

If there already exists a directed path from vi to v2 of 
the same or predominating type, then the new edge is re- 
dundant . 

An edge is accepted to the graph (and the correspond- 
ing constraint to the semantic set) iff it is neither contra- 
dicting nor redundant. 

B. Zmplication Constraints 
From here onwards, we denote an integrity constraint 

by its conjunctive representation and use the words “con- 
straint” and “conjunction” interchangeably, even though 
the constraint corresponding to the conjunction “C” is 
“C +.“. Also, we just use “C” in place of “C +” to 
designate a constraint whenever the meaning is unambig- 

uous. In any case, “C” represents a conjunction of ne- 
gated evaluable predicates (a clausal integrity constraint). 
If a set of predicates c is removed from a conjunction C, 
the resulting conjunction is denoted as C - c. Negation 
of a conjunction of predicates c is denoted as 1 c. 

1) Deduction System for New Constraints: Using var- 
ious rules of the first order predicate calculus, we can de- 
duce new (redundant) constraints from the existing con- 
straint set. Below we list a set of axioms and inference 
rules for a deduction system, adapted from Gentzens’ 
work [9], [24], which is sometimes referred to as a natural 
deduction system for first order predicate calculus. The 
inference rules are divided into two parts: 1) the axioms 
and basic rules; and 2) rules for the connectives. Each 
rule is of the form A * B, where A and B are conjunctions 
of predicates, stating that the conjunction B is an integrity 
constraint if the conjunction A is an integrity constraint. 

The rules listed below are from [24] with a slightly 
modified notation. 

The Axioms and Basic Rules: 
1) (A-‘) = (LB-‘) 

( clause introduction ) 
2) (A,B-,MlA,B+) * (B-1 

( clause elimination ) 

Rules for the Connectives: 
3) (A-+) * CAB-‘) 

( & introduction ) 
4) (A,Cj),(B,Cj),(lAjvlB-)~ (C-1 

(& elimination) 
5) (A+),(B-,) =+ (AvB+) 

(V introduction) 
6) (A VB) * (A -+) 

( V elimination ) 
7) (41B+MAB+) * (+lA) 

(1 introduction) 
8) W-MA+) * C-'B) 

( 1 elimination) 

It is important to note that the above set of rules rep- 
resents a complete deduction system for propositional cal- 
culus [25], [24]. In other words, every valid implication 
integrity constraint C, with respect to a given constraint 
set S, can be deduced using the above inference rules. It 
is possible to derive other inference rules (e.g., transitiv- 
ity of implication) from the above basic set. Refer to [24] 
for a detailed discussion. 

In the above list, the connectivity rules 3)-8) can be 
derived from the set of basic rules l), 2), definition of 
implication operation (i.e., A -+ B can be defined as 1 A 
V B), and DeMorgan’s laws. The rules of the basic set 
itself belong to two categories, augmentation and transi- 
tivity . 

Augmentation (Rule 1) refers to the uninteresting pro- 
cess of appending arbitrary predicates to an existing con- 
junction. Since the existing conjunction-being an integ- 
rity constraint-always evaluates to false, all of its 
superset conjunctions also evaluate to false, thus techni- 
cally qualifying to be integrity constraints. In rule 1, “A” 
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represents the existing conjunction and “B” represents a 
conjunction of arbitrary predicates. As an example, con- 
sider an integrity constraint ‘employee.Sal > 40 K, em- 
ployee.Job # “Manager” ’ which states that everyone 
who makes more than 40K is a manager. It is trivial to 
generate the constraint by combining the predicate ‘em- 
ployee.Age > 40’ to the above constraint to get “em- 
ployee.Sal > 40K, employee.Age > 40, employee.Job 
# “Manager” ‘, which states that everyone who makes 
more than 40K and is over 40 years is a manager. 

Transitivity (Rule 2) the other way of generating new 
constraints depends on the transitivity of the implication 
operation. Two constraints, Ci and C,, can be used to 
transitively generate a new one if there exists conjunc- 
tions cl, c2, where cl is a  subset of Ci and c2 a subset of 
C2, such that cl and c2 are complements of each other. 
The new constraint C is defined as the conjunction of all 
the predicates from Ci and C2 excluding the ones in ci 
and c2. In rule 2, “A, B” and “1 A, B” represent Ci and 
C,, respectively, with “A” representing ci and “1 A” 
representing c2, to generate a new constraint “B” repre- 
senting C. For example, consider the constraints ZCi and 
IC’, of the example database 

IC, : employee.Sal > 40K, employee.Job # “Man- 
ager” -+. 

ZC, : employee. Job = ‘ ‘Manager’ ’ , employee. Grade 
<20+. 

ZC, and IC, can be used (with cl = ‘employee.Job # 
“Manager”’ and c2 ‘employee.Job = “Man- 
ager” ‘) to obtain 

C: employee.Sal > 40K, employee.Grade < 20 -+ . 

The proof that C is an integrity constraint is as follows: 
Since C, is an integrity constraint, it is true that (Ci - 

Cl) -+ 1 (Cl). 
Since C, is an integrity constraint, it is true that ( c2) -+ 

1 cc2 - C2). 
Since c2 = 1 cl, and by transitivity, it is true that (Ci 

- Cl) -+ 1 cc2 - c2). 

In other words, “(C, - ct), (C, - c2)“, which is C, 
is an integrity constraint. 

Generating weaker constraints from the existing ones 
can be technically considered as a special case of transi- 
tivity involving tautology conjunctions. Tautology con- 
junctions are the ones that are always satisfiable as integ- 
rity constraints, independent of the database context. For 
example, the conjunction “employee.Grade > 20, em- 
ployee.Grade < 18” is a tautology, as it represents the 
implication “employee.Grade > 20 + employee.Grade 
> 18”, or equivalently, “employee.Grade < 18 + em- 
ployee.Grade < 20”. This tautology conjunction can be 
used with ‘employee. Job = “Manager”, employee. 
Grade < 20’ to generate a weaker constraint ‘em- 
ployee.Job = “Manager”, employee.Grade < 18’ 

It is also easy to observe from the above discussion that 
a conjunction C is implied by a set of conjunctions S iff a  
subset of C is implied by S. 

DeJnition: A conjunction of predicates (integrity con- 
straint) C is said to be in contradiction with respect to a 
set of conjunctions or predicates S if 1  ( C ) is implied by 
Is. 

2) Maintenance of Implication Constraints: The task 
of constraint maintenance is to ensure that the constraint 
set is always free from redundancy and contradiction. This 
assumption is trivially true with empty constraint sets. If 
S is the existing set of constraints and C is the new con- 
straint, C is tested for redundancy (i.e., S + C ) and con- 
tradiction (i.e., S -+ 1 C ) before acceptance. If accepted, 
existing constraints are tested for redundancy with C, and 
removed from the set if found redundant. As an example, 
assume the following two constraints exist in the semantic 
set 

employee.Sal > 40K -+ employee.Job = “Manager” 
employee. Sal > 40K + employee.Grade > 20 

Consider a new constraint ‘employee.Job = “Manager” 
--* employee.Grade > 20’) which is neither redundant 
nor contradicting. However, when added to the set, it 
makes the constraint ‘employee.Sal > 40K -+ em- 
ployee . Grade > 20’ redundant. 

Since the constraint set may contain constraints that do 
not contribute to making the new constraint redundant (or 
contradicting), we first identify the relevant subset of con- 
straint set for this purpose. This identification restricts the 
constraints to be considered for redundancy/contradiction 
checking, thus, reducing its complexity. As a first step, 
the existing constraint set is partitioned into equivalence 
classes. 

Equivalence Classes: The set S = { ZCi, IC,, . . . , 
ZC,, } of existing constraints is partitioned into equiva- 
lence classes such that any two constraints belong to the 
same equivalence class iff they have at least one variable 
(relational attribute) in common. 

A variable (relational attribute) is said to belong to an 
equivalence class iff it belongs to a constraint that belongs 
to that equivalence class. 

The example constraint set of the previous section can 
be partitioned into two equivalence classes, E,, E2, as 

El Containing Constraints: 

ZCi: employee.Sal > 40K, employee.Job 
# “Manager” + 

ZC,: employee.Job = “Manager”, employee.Grade 
< 20 + 

E2 Containing Constraints: 

ZC, : storage. Dept = d 1, storage. Material 
= material. Material, material.Risk I 3  ---) 

IC,: storage. Material = ‘ ‘Benzene’ ’ , storage. Qty 
I 500 + 

ZC, : storage. Qty > 600, storage. Dept = em- 
ployee.Dept, employee.Ages 35 -+ 

Variables belonging to E, are 

employee.Job, employee.Grade, employee.Sal 
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and those belonging to E2 are 

employee.Dept, employee.Age, storage.Dept, stor- 
age. Material, 

storage.Qty, material.Material, material.Risk 

Lemma 4. I: If C’ is a minimal subset of a constraint C 
(or 1 C ) implied by S, then it is implied by the constraints 
belonging to the one and only equivalence class that con- 
tains all the variables appearing in that subset. 

Proof Since C’ is the minimal subset of C implied 
by S, it is not generated by augmentations. So C’ is an 
existing constraint itself, or is generated by transitivity. 
If it is an existing constraint, the proof is trivial. Assume 
that it is a transitively generated one. No constraints from 
different equivalence classes can transitively interact be- 
cause they do not have any variables in common. In other 
words, all the constraints contributing to the redundancy 
of C’ must belong to a single equivalence class-the one 
that contains all the variables of C’ . 

Set of Relevant Constraints: We now identify a set of 
relevant constraints S, (from S ) for C such that S --* C 
(orlC)iffS,-+ C(orlC). 

Case I: All variables of C belong to the same equiva- 
lence class. 

The set of relevant constraints for C is E ( C ). 
Case 2: Variables of C belong to more than one equiv- 

alence class, say E,, . . . , E,,. 
There are two types of predicates in C. 
Type 1: Predicates with all the variables from the same 

equivalent class. 
Type 2: Predicates with variables from different equiv- 

alent classes. 
Let PO be the set of all the type-2 predicates. 
Partition C - PO to P1, . . . , P, such that all variables 

of each Pi belong to exactly one equivalence class. 
Let the equivalence class containing the variables of Pi 

be denoted by E( Pi ), for 1 I i I n. 
The set of relevant constraints for Pi is E ( Pi ), 1 I i 

I n. 
The following is a set of illustrative examples. 
Example 1: 

Let C be ‘employee.Sal > 40K, employee.Grade < 
20’. 
All the variables of C belong to one equivalent class 
E(C), i.e., El. 

Note that E, is 
IC,: ‘employee.Sal > 40K, employee.Job # 
“Manager” + ’ , 
IC,: ‘employee.Job = ‘ ‘Manager’ ’ , em- 
ployee.Grade < 20 -+ ’ 

The task is to verify whether El + C. 
If E, + C, the constraint C is redundant. 
In this particular example, since E, ---* C, the constraint 
C is redundant. 

Example 2: 

Let C be ‘employee.Dept = storage.Dept, em- 
ployee.Age > 40, employee.grade < 18’ 

Variables of C belong to different equivalent classes. 
Type 1 predicates: employee.Age > 40, em- 
ployee.Grade < 18 
Type 2 predicates: employee.Dept = storage.Dept 
PO: employee. Dept = storage .Dept 
P,: employee.Age > 40 
P2: employee.Grade < 18 

Note that E(P,) is El, i.e., 
ICI: employee.Sal > 40K, employee.Job # “Man- 
ager” + 
IC,: employee.Job = “Manager”, employee.Grade < 
20 + 

Note that E(P,) is E2, i.e., 
IC, : storage.Dept=dl, storage.Material=material. 
Material, material. Risk I 3 -+ 
I&: storage.Material = “Benzene”, storage.Qty I 
500 -+ 
IC, : storage.Qty > 600, storage. Dept = em- 
ployee.Dept, employee.Age I 35 + 

The task is to verify whether El + P, or E2 -+ P2. 
If El -+ P1 or E2 + Pz, the constraint C is redundant. 

In this example, since neither of the above implications 
are true, the constraint C is not redundant. 

3) Constraint Derivationffom the Relevant Set: Once 
the set of relevant constraints for implication checking is 
identified, the task is to verify whether the subset actually 
implies the new constraint (or its complement). 

Let the set of relevant constraints contain ‘C, -+ ‘, * . * , 
+ ‘. If the new constraint ‘C-+ ’ is implied by this set, 

&I), * * - > 1 CC,) -+ 1 CC) must be a tautology or, 
in other words, 1 (Cl), . . . , 1 (C,), C must be unsatis- 
fiable. Since Ci’s are conjunctions of predicates, “1 ( Ci ), 
. . . , 1 (C,)” is a conjunction of disjunctions and can be 
rewritten as a disjunction of conjunctions of predicates 
from Ci’S. Each of the conjunctions will contain n predi- 
cates, and there will be tr* . . . *t, such conjunctions in 
the disjunction, where ti is the number of predicates in Ci. 
When C is conjuncted with disjunction, the resulting dis- 
junction will have the same number of conjunctions, i.e., 
t1 

* . . . “t each with n + t predicates each, where t is 
the numbe;‘of predicates in C. 

Similarly, testing whether the set of sufficient con- 
straints implies the complement of the new constraint is 
equivalent to testing the unsatisfiability of “1 ( Ci ), 
. . . ) 1 CC,>, 1 CC>“. Th is represents a disjunction of 
conjunctions from Ci’s and C. Each conjunction will have 
n + 1 predicates, and there will be tl* * * * *t,,* t such 
conjunctions in the disjunction. 

In both of these cases, the number of conjunctions in- 
creases exponentially with the number of constraints in 
the set, whereas the number of predicates in each con- 
junction has a linear growth. 

For illustration, let C be 

‘employee.Sal > 40K, employee.Bonus > 25K, em- 
ployee.grade < 18’ 

PO: ‘employee.Bonus > 25K’ 
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P,: ‘employee.Sal > 40K, employee.Grade < 20’ 
E(P,), which is E,: 

‘employee.Sal > 40K, employee.Job = “Man- 
ager’ ’ ’ , 

‘employee.Job # “Manager”, employee.Grade 
< 20’ 

The new constraint C is redundant iff the following is un- 
satisfiable: (Note: we drop the relation prefix “em- 
ployee” for improved readability.) 

1  (Sal > 40K, Job = “Manager”), 
1  (Job # “Manager”, Grade < 20), 
(Sal > 40K, Grade < 18) 

This can be simplified by eliminating the predicates ap- 
pearing in the negated conjunctions which have equiva- 
lent ones in the nonnegated conjunction. The result is 

1  (Job = “Manager”), 
1  (Job # “Manager”, Grade < 20), 
(Sal < 40K, Grade < 18) 

This is the same as 

(Job # “Manager”), 
(Job = “Manager” OR Grade > 20), 
(Sal > 40K, Grade < 18) 

which is 

(Job # “Manager”, Job= “Manager”, Sal > 40K, 
Grade < 18) OR 

(Job # “Manager”, Grade 2 20, Sal > 40K, 
Grade < 18) 

Here, both the conjunctions in the disjunction evaluate 
to be false, thus making the disjunction unsatisfiable. This 
indicates that the new constraint is redundant. 

Checking Unsatisjability: Unsatisfiability of the dis- 
junction depends on unsatisfiability of its conjunctions. 
Here we sketch a simple algorithm for checking the un- 
satisfiability of a  conjunction. 

The conjunction is represented by a directed graph G 
= ( V, E ). The vertex set V represents the variables, con- 
stants, and all the unique combinations of the variables 
and constants present in the conjunction. Note that we use 
distinct vertices for different constants belonging to the 
same domain as well as for the same variable in combi- 
nation with different constants. The edge set E represents 
explicit as well as implicit comparisons. Explicit compar- 
isons are the ones present in the conjunction. Implicit 
comparisons are between constants of the same domain 
and between the same variables in combination with the 
constants of the same domain. 

The edges are labeled by their comparison operator. As 
discussed in the previous section, the operators are re- 
strictedto >, >,and #.The“>“and“>“edgesare 
directed, their direction representing the direction of the 
comparison operator, whereas the “ # ” are undirected. 
Distinct vertices are used to represent different constants 
even though they belong to the same domain. This rep- 
resentation eliminates the need to assign weights to the 
edges as in [30], [15]. 
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Fig. 1. A conjunction graph. 

The graph representing the first conjunction of the above 
example is presented in Fig. 1. Note that the constants 
(18, 40) are represented by distinct vertices. Also, note 
the (implicit) edges between the vertices “18” and “40”. 

A directed path from vertex u to vertex 2, is the se- 
quence of directed edges el, . . . , ek, k I 1, such that 
there exists a corresponding sequence of vertices vo, zll, 
. . . > UP (u = uO, u = UP) satisfying ek = (ok-i, uk), for 
O<k<p. 

We  claim that the graph (and the conjunction) is un- 
satisfiable if and only if any of the following conditions 
is true. 

1) For any “ > ” edge, say from vertex a to vertex b, 
there is a directed path from vertex b to vertex a. 

2) For any “ # ” edge, say between the vertices a and 
b, equality between a and b is implied by the conjunction, 
by a directed cycle of “ 2 ” edges involving a and b. 

It is obvious that any of these conditions is sufficient to 
imply unsatisfiability . To see the necessity of these con- 
ditions for unsatisfiability, consider a graph where none 
of these conditions is true. Existence of no “ > ” edge is 
in contradiction because the only way for such a contra- 
diction is a reverse directed path. For “ # ” edges, it is 
easy to see that no two edges interact to generate new 
information. (In other words, “u # b” and “b # c” do 
not imply anything between “a” and “c”.) The only sit- 
uation where a “ # ” edge can contribute to contradiction 
is when it is shunted by an (implied) equality between its 
vertices. Assuming that the size of the domain of the vari- 
ables is much larger than the number of variables itself, 
we can always assign different values to the variables to 
simultaneously satisfy all the inequalities. 

Verification of both of the above conditions basically 
requires verifying reachability of a  specific vertex from 
another one using selected types of edges. This can be 
achieved in various ways, by finding transitive closure, 
shortest paths, or transitive reduction [42], all of which 
take time proportional to 0 ( n3 ) where n is the number of 
vertices in the graph. 

A related method is discussed in [30]. In that paper 
[30, theorems 21, 22, p. 701, a proof is sketched to show 
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that satisfiability of conjunction is NP complete when (and 
only when) “ # ” comparison is allowed between the 
variables. In that proof, satisfiability of the subgraph con- 
taining only “ # ” edges is reduced to k-colorability, thus 
concluding the NP completeness. However, reduction to 
k-colorability holds only if the cardinality of the domain 
of the variables is less than the number of variables in the 
subgraph-an assumption which is rarely true in any prac- 
tical situation. If the cardinality of the domain is greater 
than or equal to the number of variables in the subgraph, 
colorability (and hence satisfiability) of the subgraph be- 
comes polynomial-by assigning all different colors to dif- 
ferent vertices, since we have sufficiently different colors. 
Satisfiability of general conjunctive predicates (with in- 
equality comparisons) is shown to be polynomial in [ 191, 
when the size of the domain of attributes is greater than 
the number of variables used in the query for that domain. 
Reference [38] discusses various cases of the implication 
problem by converting them into a satisfiability problem, 
based on the above-mentioned results from [30]. 

V. HEURISTICS AND INFERENCE RULES 

Before formally describing the utilization of constraints 
in semantic query transformation, we present a brief over- 
view of various heuristic and inference rules used in se- 
mantic optimization. The illustrations are based on the 
example database presented in Section III-F. 

We use four heuristic rules as suggested in [ 181, 
namely, restriction elimination, index introduction, scan 
reduction, and join elimination. The heuristic strategy of 
join introduction as in [ 181 is not used in our approach. 
In the following illustration we use a quel-like language 
[36] for expressing queries. 

Restriction Elimination: Remove a restriction from the 
query, if found redundant. 

Query Ql: List all the departments that store benzene 
in more qty more than 400. 

Quel Form: retrieve (storage.Dept) where 
storage.Material = “Benzene” and 
storage.Qty > 400. 

Rule(s): storage.Material = “Benzene” -+ stor- 
age.Qty > 500. 

Query Q, ‘: retrieve (storage.Dept) where 
storage.Material = ‘ ‘Benzene”. 

Result: The unnecessary restriction on the attrib- 
ute “qty” of the relation “storage” is 
eliminated. 

Index Introduction: Introduce a restriction on an in- 
dexed attribute, if implied by the query. 

Query Q2: Find all the employees who make more 
than 42K. 

Quel Form: retrieve (employee.Ssn, employee.Name) 
where 

Rule(s): 
employee. Salary > 42K. 
employee.Sa1ar-y > 42K -+ employee.job 
= “Manager’ ’ . 

Query Q2 ‘: retrieve (employee. Ssn, Name) where 
employee.Salary > 42K and 
employee.Job = “Manager”. 

Result: A new constraint is obtained on the in- 
dexed attribute “Job” of the relation 
“employee”. 

Scan Reduction: Reduce the number of inner scans of 
the join by obtaining additional restrictions prior to the 
cross referencing operation. 

Query Q3: 

Quel Form: 

Rule(s): 

Query Q3 ‘: 

Result: 

List all employees working in departments 
storing anything in > 625. 
retrieve (employee.Ssn, employee. Name) 
where 
employee. Dept = storage. Dept and 
storage.Qty > 625. 
storage.Qty > 600, storage.Dept = em- 
ployee.Dept -+ employee.Age > 35. 
retrieve (employee.Ssn, employee.Name) 
where 
employee.Dept = storage.Dept and 
storage.Qty > 625 and 
employee. Age > 35. 
The new constraint on attribute “Age” of 
relation “employee” can be applied to the 
relation prior to the cross matching step of 
its join to the relation “storage”, thus re- 
ducing the qualifying tuples from the re- 
lation “employee” and hence the number 
of scans of the relation “storage.” 

Join Elimination: Eliminate a relation if it is joined to 
just another relation and none of its attributes contribute 
to the output. 

Query Q4: Get all the materials stored in ‘ ‘d 1 “, in 
qty > 400, of risk > 2. 

Quel Form: retrieve (storage.material) where 

Rule (s) : 

storage.dept G “d 1” and 
storage.qty > 400 and 
storage.Material = material.Material and 
material.Risk > 2. 
storage.Dept = “dl”, storage.Material = 
material. Material + 
material.Risk > 3 
material.Material is a superset of stor- 
age. Material 

Query Q4 

Result: 

retrieve (storage. Material) where 
storage.Dept = “dl” and 
storage.Qty > 625. 
Join with the relation “material” is elim- 
inated . 

VI. GRAPH REPRESENTATIONS OF A QUERY 

A query Q is a conjunction of join specifications of the 
form “r,.Al op r2.A2” and the restriction specifications 
of the form “I~. Al op k” where rl, r2 are relations, A,, 
A2 are attributes, k is a constant, and op is one of the 
comuarison ouerators I # , 1, > I. The ouerators “ < ” 
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and “ I ” are not explicitly considered because a 4 b 
and a < b are the same as b I a  and b > a, respectively. 
Similarly, the equality operator “ = ” is not explicitly rep- 
resented because a = b can be replaced by the conjunc- 
tion of a  1 b and b 2 a. This limits the set of operators 
to have only “f”, “z”, and “>“. The answer of a  
query Q is the set of all tuples of the relations referenced 
in Q that satisfy Q, projected on the specified target attri- 
butes of Q. 

Query Graph G,: A query Q is represented by a query 
graph G4 which is a directed graph whose vertices are the 
attributes of the relations (attribute vertices) as well as the 
constants (constant vertices) involved in Q. The edges of 
Gg are the join and restriction specifications in Q. A join 
specification “rl. A, op r2. A,” is represented by an edge 
from rl. A, to r2. A2 with a label op. Similarly, a  restric- 
tion specification “r,. A, op k” is represented by an edge 
from r, . A, to the constant k with a label op. The direction 
of an edge identifies the left and right operands of the 
label associated with it. The edges representing a join 
specification are referred to as ‘join edges” whereas the 
ones denoting the restrictions are called “restriction (con- 
stant) edges”. 

Consider the query Q4 of Section V for Fig. 2. 

Query QJ: Get all the materials stored in “dl”, in 
qty > 400, of risk > 2. 

Quel Form: retrieve (storage.Material) where 

Graph G4: 

storage.Dept = “dl” and 
storage.Qty > 400 and 
storage. Material = material. Material and 
material.Risk > 2. 
(Indexed attributes are underlined, target 
attributes are identified by “?“. For the 
sake of clarity, equalities are represented 
by undirected single edges rather than 
pairs of “ I ” edges of opposite direc- 
tions .) 

Canonical Condensed Graph G,: Since a given query 
can have syntactically different, but semantically equiv- 
alent, forms and hence different equivalent query graphs, 
it becomes necessary to arrive at a  canonical form of rep- 
resentation before processing the query. We  adopt the no- 
tion of a  condensed graph G, as the canonical represen- 
tation of a  query. In its condensed form, a query graph is 
represented by a minimal set of join and restriction edges. 

The condensed graph G, is derived from the query graph 
G4 by first grouping the attribute vertices of G4 into equiv- 
ulence classes. Any two vertices of G4 belong to the same 
equivalence class if they are connected by explicit equal- 
ity edges or if there is a directed cycle of join edges in- 
cident with both the vertices. A vertex forms an equiva- 
lence class by itself if it is not a part of any equijoin. 

The equivalence classes (as well as the constant ver- 
tices) of G, are mapped as vertices in G, as follows. 

The nonequijoin ( 1, > ) edges of G4 that are not part 
of an equality specification are represented in G, by their 
transitive reduction. The transitive reduction [42] of a  
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query graph with only join edges is a graph with the few- 
est number of join edges among all such query graphs 
having the same transitive closure. The transitive reduc- 
tion is obtained by first mapping all the nonequijoin edges 
from G4 to G, for the corresponding equivalence class 
vertices, removing all the redundant edges from G,, and 
then replacing any multiple edges between two vertices 
by an equivalent single edge. 

The restriction (constant) edges of G4 are represented 
in G, by their transitive reduction over the join edges. For 
this, first each restriction edge of G4 is mapped into G, to 
restrict the vertex corresponding to the equivalence class. 
It is possible that addition of restriction edges could lead 
to the merger of equivalence classes. W ith each such ad- 
dition, all the restriction and join edges in that connected 
component are tested for syntactic redundancy, and the 
redundant ones are removed from the graph. For exam- 
ple, with an existing join edge of “A > B”and a restric- 
tion edge of “A < 3”, the addition of the restriction edge 
“B > 3” makes the existing restriction edge “A < 3” 
syntactically redundant and removable. 

The condensed graph G, for the query graph Gg illus- 
trated above is shown in Fig. 3. The result of this con- 
densation is that the vertices (storage.material, mate- 
rial .material) and ( storage.dept, dl ) that are connected 
with equality edges in G4 form single multimember nodes 
in G,. 

VII. SEQUENTIAL PHASES OF SEMANTIC 
TRANSFORMATION 

Semantic query transformation is the process of obtain- 
ing alternative query forms that are semantically equiva- 
lent to the original one. The motivation of semantic op- 
timization is to arrive at a  more profitable query yielding 
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the same answer, which could be syntactically different 
from the original query. 

In our approach, semantic optimization of a query con- 
sists of two major phases, namely, semantic expansion, 
and semantic reduction. Semantic reduction is composed 
of two stages, namely, relation elimination and edge 
elimination. These as well as other auxiliary steps are de- 
scribed below. 

A. Derivation of Canonical Condensed Form 
This first step, as described in the previous section, ob- 

tains a canonical representation G, of the query through 
transitive reduction of join and restriction edges present 
in G4. The transitive reduction property of the graph is 
then retained by the query transformation algorithm in all 
its following stages by removing syntactically redundant 
edges and/or merging the equivalent classes. This first 
stage is independent of any semantic details and depends 
only on the query and the operator syntax. Besides arriv- 
ing at a canonical form of the query, this stage facilitates 
any early detection of contradictions in join or restriction 
specifications that could lead to a null answer. 

B. Semantic Expansion 
Semantic expansion iteratively adds any new restriction 

or join edges implied by the combination of (condensed) 
query graph and semantic implication constraints. This is 
achieved by identifying the implication constraints whose 
antecedent atom(s) are satisfied by the graph and adding 
the restriction or join edges corresponding to their con- 
sequent atom to the query. Each time, the transitive re- 
duction property of the graph is restored if the added edge 
happens to violate it. From the original form, addition of 
each such edge takes the query graph through various se- 
mantically equivalent forms until it reaches a stage G,,, 
where no more new restrictions or joins could be implied. 

The purpose of semantic expansion is to incorporate any 
useful restrictions (possibly on indexed attributes) or joins 
that are not present in the original query. This assures’that 
the query contains a semantically maximal (and syntacti- 
cally minimal) set of edges that satisfy both the query and 
implication constraints. 

Semantic expansion of the condensed graph is illus- 
trated in Fig. 4. Both the antecedent atoms of the second 
implication constraint (i.e., “storage.Dept = dl” and 
‘ ‘storage. Material = material. Material’ ‘) are satisfied by 
the condensed graph, thus making it possible to add the 
corresponding consequent atom (i.e., “material.Risk > 
3”) to the graph. Due to the transitive reduction property 
of the graph, the added edge “material.Risk > 3” 
supersedes, and hence eliminates the existing one “ma- 
terial.Risk > 2”. 

C. Relation Elimination 
Relation elimination stage identifies all semantically re- 

dundant relations from G,,,. Relations identified to be re- 
dundant, if any, are removed from the query graph. A 
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Fig. 4. Semantic expansion G,. 

relation is considered to be redundant if it becomes dan- 
gling so that none of its attributes or restrictions contrib- 
ute to the answer. Since the query graph is connected, 
elimination of a relation leads to the removal of its join 
to the rest of the query graph. A relation elimination is 
hence considered to be profitable because it eliminates the 
need of performing a join. The graph, when all the re- 
dundant relations are removed from G,, is denoted by G,, 

There are various conditions that a relation should sat- 
isfy in order for it to be classified as redundant. First of 
all, it should be free from any target attributes of the query 
because a relation containing target attributes cannot be 
removed from a query. The second condition is that all 
the restrictions on nonjoin attributes should be redundant. 
By this, all such restrictions could be removed without 
altering the query semantics. In this stage, the relation 
will have restrictions, if any, only on join attributes. The 
third condition is that the relation should have at most one 
join vertex, and the fourth condition is that the relation 
does not have any nonequijoins. The third and fourth con- 
ditions allow the transfer of all the restrictions on the only 
join attribute to the other side of the respective joins. This 
makes the relation free from all restrictions. Finally, there 
should be at least one other relation with a join attribute, 
say “XB”, in the equivalence class containing the join 
attribute of this relation, say “R.A”, such that the subset 
constraint ‘ ‘R. A is a super set of S. B” holds. 

More formally, a relation R is redundant if it satisfies 
all of the following conditions. 

a) R is target-free. 
b) All the restriction edges on nonjoin vertices of R are 

redundant. 
c) R has at most one join attribute. 
d) R does not have any nonequijoins. 
e) There is at least one other relation with a join attrib- 

ute, say “S.B”, in the join class containing the join at- 
tribute of R, say “R.A”, such that the subset constraint 
“R.A is a super set of S.B” holds. 

Relation elimination of the graph G,,, illustrated above 
is as shown in Fig. 5. The relation “material” gets qual- 
ified as redundant due to the conditions described above. 
It is free from any target attributes [condition a], and the 
restriction “material.risk > 3” is semantically redundant 
[condition b]. The only join attribute of the relation is 
“material.material” [condition c] and it is an equijoin 
[condition d]. The subset constraint “material.material is 
a superset of storage.material” [condition e] completes 
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Fig. 5. Relation elimination G,, 

the requirements for making the relation “material” se- 
mantically redundant, and hence removable from the 
query. 

D. Edge Elimination 
A restriction or join edge is redundant if it is satisfied 

by the consequent atom of an implication constraint of 
which all the antecedent atoms are satisfied by the query. 
Semantically redundant join edges can always be removed 
from the graph, since their basic purpose is to aid seman- 
tic expansion by providing additional paths for informa- 
tion flow. The strategy of removing a redundant restric- 
tion edge from a relation largely depends on whether 
selections will be performed in that relation before joins. 
This, in turn, depends on whether the join attribute in that 
relation is indexed or not. If the relation has at least one 
indexed join attribute, it is assumed that the restrictions 
in that relation will be performed along with the join, and 
not before it. This is because, with a given set of match- 
ing values for the join attribute, location of tuples be- 
comes easy through the (indexed) join attribute and the 
restriction(s) could be checked during the same time. On 
the other hand, if no join attribute of the relation is in- 
dexed, we assume that the selections in that relation will 
be performed before joins. 

In the cases where selections are performed before 
joins, locally redundant restriction edges on indexed at- 
tributes become profitable provided none of the anteced- 
ent atoms of the corresponding local implication con- 
straint are on indexed attributes. This is because the 
redundant restriction introduces an indexed scan to re- 
place the sequential scan of the relation. Similarly, all the 
cross redundant restrictions become profitable if selec- 
tions are performed before joins. The reason is that such 
a restriction additionally limits the effective size of the 
relation before the join operation, thus resulting in a scan 
reduction. A restriction, even though redundant, is con- 
sidered to be profitable if it is on a join attribute since it 
may provide a better join strategy. 

The graph resulting from deleting all nonprofitable 
edges from G,, is denoted as Gr2. For the query graph G,, 
shown in the above example, no edge is qualified for 
elimination. That is, Gr2 is the same as G,, in this case. 

Unlike in the case of relation elimination where all the 
redundant joins are removed, redundant edges are re- 
tained if they are found profitable. But identifying a re- 
striction to be profitable, as mentioned above, depends 
mainly on the estimation of the sequence of selections and 
joins. This sequence, in reality, is determined by various 
factors outside the scope of this work, like relation sizes, 
optimizer statistics, optimizer intelligence, and sequence 
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of specification of equality joins. This might result in er- 
roneous classification of profitable restriction at times. But 
by and large, this strategy provides a simple and reliable 
method to achieve the identification. 

E. Conversion from the Condensed Query Graph 
When the semantic expansion and reduction are com- 

pleted, the query graph is converted back from its con- 
densed form to the original one. This is achieved by re- 
placing each multimember node of Gr2 by any spanning 
tree on its attribute vertices connected by equijoin edges. 
Any one attribute vertex, an indexed one if available, of 
the multimember node is chosen for joining the spanning 
tree to other spanning trees or single attribute vertices. 
Also, the restriction(s) on the multimember node are 
mapped as restriction(s) on all the attribute vertices. This 
form of the graph, being the final one, is denoted by GP 

Note that, as in the case of restriction elimination, this 
strategy of graph conversion could also produce subopti- 
ma1 results. The cost of equijoins involving three or more 
attribute vertices depends on the edges in the correspond- 
ing spanning tree as well as the order in which they are 
considered for join. Similarly, selecting an attribute ver- 
tex in the spanning tree to join with other vertices could 
also make a difference in cost. For example, while se- 
lecting the edges of the spanning tree, priorities are given 
to the attributes of these relations which have one or more 
other joins between them. In general, issues like relation 
sizes and selectivities should also be considered in se- 
lecting the spanning tree for multimember equivalence 
classes. 

The converted form Gf of the graph G,, is as illustrated 
in Fig. 6. The result is the replacement of the multimem- 
ber node (storage.dept, dl ) by its spanning tree. This fi- 
nal graph can be translated to a quel statement: 

retrieve (storage.material) where 
storage.dept = dl and 
storage.qty > 400 

The end result of the query transformation process, in this 
example, is elimination of the relation “material” from 
the original user-specified query. 

VIII. TRANSFORMATION ALGORITHM AND 
IMPLEMENTATION DETAILS 

In this section we formalize the algorithm for semantic 
transformation, and discuss its correctness and cost sav- 
ing. We  also present its implementation architecture and 
examine the test results. 

A. Algorithm for Query Transformation 
I* Stage 1: Obtain canonical condensed form-Con- 

struct G, from G4: *I 
a) (Map the Vertex Set): For each connected com- 

ponent c in G4, partition the vertices into equivalence 
classes so that any two vertices are in the same equivalent 
class if they are connected by an explicit equijoin edge or 
if there is a directed join cycle with only “ 1” edges in- 
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Fig. 6. Converted form Gy 

cident at both of them. A vertex forms an equivalence 
class by itself if it is not a part of any equijoins. These 
equivalence classes (as well as constants) of G4 are 
mapped as vertices of G,. 

b) (Map the Edge Set): For any two equivalence 
classes Ei, Ej, i # j, in G4, let S be the set of edges be- 
tween the vertices in Ei and the ones in Ej. Let Z)i, Uj be 
the vertices in G, corresponding to Ei, Ej. If S, is empty, 
then there is no edge between ui and vj in G,. If all the 
edges in S, have the same label “ I ’ ’ , or “ > ’ ’ , then 
there is a single edge with the same label from vi to z/j in 
G,. If S, contains edges with different labels, then there 
is a single edge with the “ > ” label between Vi and Vj 
(unless there is a contradiction). 

c) (Remove the Redundant Edges): The edges in 
each connected component of G, are successively exam- 
ined in any order, and those implied by transitivity are 
removed. 

/* Stage 2: Obtain semantic expansion, G,: */ 
a) Mark any unmarked implication constraints whose 

all predicates but one are currently implied by G,. (We 
denote this predicate as an unimplied predicate.) Termi- 
nate the stage if no new implication constraint gets qual- 
ified for marking. 

b) If there is at least one marked but unused impli- 
cation constraint, add an edge corresponding to its un- 
implied predicate to GC. 

c) If any edges are added in step b), restore G, to its 
transitive reduction. This may include removal of syn- 
tactically redundant edges and/or merger of vertices. Re- 
peat step a). 

/* Stage 3: Eliminate redundant relations to obtain G,,: 
“I 

While there is a relation R that satisfies the following: 
a) R is target-free. 
b) All the restriction edges on nonjoin vertices of R 

are redundant. 
c) R has at most one join attribute. 
d) R does not have any nonequijoins. 
e) There is at least one other relation with a join at- 

tribute, say “XB”, in the join class containing the join 
attribute of R, say “R.A”, such that the subset depen- 
dency “R.A 2 S. B” holds. 

eliminate R from the query graph. 
/* Stage 4: Eliminate redundant edges, to obtain Gr2: 

“I 
remove all the redundant (those implied by rest of the 

query graph) join edges. 

remove all the redundant (those implied by rest of the 
query graph) restrictions if they are not profitable. 

a) A redundant restriction on a join attribute is prof- 
itable. 

b) If no join attribute of the relation is indexed, then 
all the cross redundant restrictions in that relation are prof- 
itable. 

c) If no join attribute of the relation is indexed, then 
all locally redundant restrictions in that relation are prof- 
itable only if they are on indexed attributes and the cor- 
responding antecedent restrictions of the implication con- 
straints are on nonindexed attributes. 

/* Stage 5: Expand multimember nodes of Gr2 to obtain 
G,-: “I 

a) Replace each multimember node of G, by a span- 
ning tree on its attribute vertices connected by equijoin 
edges. While selecting vertices of the spanning tree, as- 
sign priorities for attributes of those relations which have 
one or more other joins between them. 

b) Select any attribute vertex, an indexed one if 
available, of the multimember node for joining the span- 
ning tree to other spanning trees or single attribute ver- 
tices. 

c) Map the restriction(s) of the multimember node as 
the restriction(s) on all the attribute vertices. 

B. Correctness of the Algorithm 

Let the original form of the query be denoted by Qa. 
the expanded form on completion of the expansion stage 
of the algorithm by Q,, and the final transformed form by 
Q , 

Theorem I: The query forms Q,, Q,, and Qr are se- 
mantically equivalent. 

Proof Q, H Q,,,: 
The semantic transformation from Q, to Q,,, takes place 

in the expansion stage due to the addition of edges to G, 
from the consequent atoms of the implication constraints. 
(Note that initial conversion from G, to G, does not alter 
the query semantics.) Addition of each such edge to G, 
can be assumed to transform the graph to a new query 
form. The transformation from Q, to Q,,, thus constitutes 
a chain, Q, -+ Q,, + Qo2 + * * * -+ Q,. 

Here, the difference between two consecutive forms Qa, 
and Q,i + 1 is at most one edge, say ej (apart from any 
differences resulted by restoring the graph to its transitive 
reduction, which does not alter any semantics of the 
query). Introduction of ei to Qai is due to the presence of 
a set of edges Ei and Qi such that there exists an impli- 
cation constraint Ei -+ ei. SO addition of ei to Qoi does not 
alter the semantics of Q,;. In other words, Qai and Qai + 
1 are semantically equivalent. Extending the argument for 
the entire chain of transformations, it can be seen that Qa 
and Q, are semantically equivalent. 

Proof: Q, w Qf: 
The transformation from Q,,, to Qf is accomplished in 

the elimination stage of the algorithm. As above, let us 
assume that the transformation from Q, to Q, can be rep- 
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resented by a chain, say Q, + Q,, + Qm2 --* * . * + 
Qf 

The transformation from Q,i to Q,i + 1 can be due to 
elimination of a  relation (join) or removal of an edge by 
the semantic reduction stage of the algorithm. 

All the relations and edges qualified for elimination are 
the ones found semantically redundant, and hence their 
removal does not alter the semantics of the query. Hence, 
we conclude that Q,i and Qmi + 1 are semantically equiv- 
alent, implying the semantic equivalence of Q, and Q, 

C. Cost Comparison of Query Forms 
Theorem 2: Cost ( Qf ) < Cost (Qa) provided the es- 

timation of the selection-join sequence is valid. 
If Qf is different from Q,, let this difference be repre- 

sented by three components: 1) set of edges Ef’ that are 
present in Q, but not in Q,; 2) set of edges Eof that are 
present in Q, but not in Qf ; 3) set of relations R; that are 
present in Q, but not in Q, 

The edges in Ef’ are syntactically or semantically re- 
dundant since they have been added by the algorithm to 
the initial graph during initial conversion (to G,) or se- 
mantic expansion. The fact that they were not eliminated 
during the semantic reduction implies that they belong to 
the “profitable” category, provided the estimated selec- 
tion-join sequence holds good. In this context they rep- 
resent an additional profit for Qfas compared to Q,. 

All the edges in Ei are also syntactically or semanti- 
cally redundant because otherwise they would have been 
retained in Qr too. The reason for their removal by the 
semantic reduction stage was that they were not found to 
be profitable. In other words, the edges in Ei represent 
an elimination of the nonprofitable part from the original 
query, if the estimations on the selection-join sequence 
holds good. 

In short, as compared to Q,, Eof represents the edges 
lost, whereas Ef’ represents the edges gained by Qf. The 
strategy of adding and eliminating the edges always con- 
centrates on adding profitable edges and removing non- 
profitable ones. Both these components thus represent 
profit provided the sequence estimation of selections and 
joins are valid. 

The set Rof represents a clear profit for Qf because Q, 
does not have the corresponding joins. 

To conclude, the cost advantage of Qf over Q, can be 
represented by C = uI*IEf’l + a2*\EJj + a3*1ROfI, 
where al, a*, a3 are scaling factors to reflect the relative 
importance of components as well as validity of the as- 
sumption of the selection-join sequence. If these assump- 
tions are valid, C represents a positive quantity, and in 
that case the larger the sets Ef’, E:, R,f are, the higher is 
the resulting cost advantage. 

D. implementation Architecture 
The optimization algorithm has been implemented on a 

Vax 8530 running VMS (version 4). The core implemen- 
tation language is C, supplemented with some used inter- 
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faces and screen utilities (ABF, OSL, Vifred) available 
with Ingres (version 5). 

The optimizer consists of three main modules-speci- 
fication module, maintenance module, and processing 
module. 

The specification module is an interface for end users 
to specify queries in an interactive mode and get the se- 
mantically optimized query form back. For an ordinary 
user, this is the only interface to the optimization system. 
The frame associated with this module has two major sec- 
tions, one for specifying the initial query form and the 
other for displaying the optimized form. In both sections, 
a  query is defined to be a combination of two sets, namely, 
a  set of target attributes and a set of qualifications. Both 
of these sets are entered and displayed in individual tab- 
ular fields capable of scrolling independently, thus allow- 
ing the handling of any number of target attributes and 
qualifications. This module also supports an exhaustive 
error management scheme. Target attributes and qualifi- 
cation specifications entered by the user are validated 
against the schema details, and any error is reported be- 
fore passing the information to the processing module. 
The specification frame has another section for displaying 
the run time statistics from the processing module. This 
statistic includes relative time spent by the processing 
module on various components of the optimization algo- 
rithm. Fig. 7  illustrates the frame associated with the 
specification module. This module is implemented using 
the Ingres utilities Vifred, ABF, and OSL. 

The maintenance module is a background module which 
is generally invisible to the normal user. A user with 
maintenance privilege can use this module to change the 
details of schema, index information, and semantics (i.e., 
relations and rules). The data dictionary containing rela- 
tion names, their attributes, and index information as well 
as the semantic details containing implication constraints 
and subset constraints are stored in data structures similar 
to tables. Tabular fields with independent scrolling fea- 
tures are used to display them on the frame. This module 
also has comprehensive error checking mechanisms to 
make sure that all the semantics specified by the user are 
valid for the existing schema definition. The frame asso- 
ciated with the maintenance module is illustrated in Fig. 
8. This module is also implemented using the Ingres util- 
ities Vifred, ABF, and OSL. 

The processing module implements the optimization 
part of the algorithm. The information entered by the user 
in the specification module is passed to this module after 
some syntactic analysis and preliminary error checking. 
This information (query) is analyzed by the processing 
module in the context of existing schema and semantic 
details (relations and rules). The processing module then 
transforms the query through various sequential stages of 
the algorithm, namely, transitive reduction, compressed 
graph formation, semantic expansion, relation elimina- 
tion, restriction elimination, and spanning tree genera- 
tion. Errors and contradictions detected at any stage are 
reported to the specification module, and processing is 
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aborted in such cases. As the processing proceeds, the 
module also collects various run time statistics. The final 
form of the query as well as the collected statistics is 
passed to the specification module upon completion of the 
processing. The major portion of the processing module 
is implemented in C language. A small portion is written 
in Equel (query language supported by Ingres) to com- 
municate with the storage tables where the schema and 
semantics details are stored. 

Currently, all the inter module communication uses 
stored tables as the main data structures. Access to the 
stored information is minimized in the processing module 
due to efficiency considerations. On the other hand, the 
other two modules assign importance to human factors and 
user friendliness rather than operating speed. Manage- 
ment of errors is uniform and exhaustive in all three mod- 
ules, and the errors handled range from simple specifica- 
tion mistakes to complex semantic contradictions. 

E. Implementation Results 
As a basic test of the implementation of the semantic 

query optimizer, we selected the database scheme, se- 

mantic rules, and query set introduced in Section III-F, 
which are repeated below. 

Schema and Relation Sizes (Indexed attributes are 
underlined) : 

employee (ssn, fname, lname, dept, job, salary, age) 
[size: 37043 tuples] 
storage (dept, material, qty) [size: 160 1 tuples] 
material (material, risk) [size: 1801 tuples] 

Semantics: 
employee.salary > 40K - employee.job = “Man- 

ager’ ’ . 
storage. dept = dl, storage. material = mate- 

rial.material + material.risk > 3. 
storage.material = “Benzene” + storage.qty > 500. 
storage.qty > 600, storage.dept = employee.dept -+ 

employee.age > 35. 

Original and Optimized Queries: 
Restriction Elimination: 
QI: retrieve (storage. dept) where 

storage. material = “BENZENE” and 
storage.qty > 400 
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Q;: retrieve (storage.dept) where 
storage. material = ‘ ‘BENZENE’ ’ 

Index Introduction: 
Qs retrieve (employee. lname, employee.fname) 

where employee. salary > 42K 

Q{: retrieve (employee. lname, employee. fname) 
where employee.salary > 42K and 
employee .job = ‘ ‘MANAGER” 

Scan Reduction: 
QG retrieve (employee. lname. employee.fname) 

where employee.dept = storage.dept and 
storage.qty > 625 

Q;: retrieve (employee.lname. employee. fname) 
where employee. dept = storage. dept and 
storage.qty > 625 and 
employee.age > 35 

Relation Elimination: 
Q4: 

Q;: 

retrieve (storage.material) where 
storage.dept = “dl”and 
storage.qty > 400 and 
storage. material = material .material and 
material.risk > 2 

retrieve (storage.material) where 
storage.dept = “Dl” and 
storage.qty > 400 

Test Procedure and Results: The employee table was 
populated by actual data from a payroll file, and then 
modified to ensure anonymity. The storage table was filled 
by a random number generator. The material table was 
loaded from a chemical data file. All the tables were then 
extensively modified manually to be consistent with the 
semantic rules. The relation “employee” had a primary 
index (B-tree) on the attribute “job”, and “storage” had 
a secondary index on (isam) on “dept”. 

The four original queries (Q,, . . , Q4) and their opti- 
mized counterparts (Q] . . , Qi) represent each of the four 
transformation heuristics. Several tests were performed to 
study the optimization costs and execution costs of the 
above query pairs. Both these costs were measured in 
terms of two resources consumed by the Ingres process, 
-cpu-ms (CPU time in milliseconds) and dio cnt (direct 
I/O requests). Since these parameters are highly influ- 
enced by hardware configuration, we do not stress any 
units. For us, the matter of relevance is only the relative 
magnitude of these parameters. 

All four queries (Q,, . . , Q4) were fed to the semantic 
optimizer to generate the optimized forms ( Q;, . . , Qi ). 
This process was repeated several times for each of the 
queries to measure the optimization cost. The optimiza-e 
tion cost (in terms of -cpu-ms and -die-cnt) did nc~ seem 
to vary much from query to query and we obtained an 
average of about 180 cpu-ms and 30-die-cnt. 

Then the four original queries and the corresponding 
four semantically optimized ones were run against the da- 
tabase tables repeatedly, about 15 times. During each ex- 

Fig. 9. Test results of semantic optimization. 

ecution, cost of the query was monitored using the above 
two parameters. Fig. 9  is a consolidation of the average 
values from these 15 tests. 

It can be observed from the above results that optimized 
versions of the queries take less execution time (in terms 
of CPU time and direct I/O requests) as compared to the 
original ones. The magnitude of saving depends on the 
size of the tables involved as well as the amount of po- 
tential optimization possible. This saving is partially off- 
set by the optimization cost which, as reported above, is 
about 180 - cpu-ms and 30 -die-cnt. In most circum- 
stances these values are much smaller than the saving in 
execution cost, thus justifying semantic optimization. On 
the other hand, if the original query is already in the op- 
timized form, the optimization cost becomes an addition 
to the execution cost. This is the situation with Q,, where 
the execution cost of the optimized query added to the 
optimization cost is larger than the execution cost of the 
original query. In such cases, semantic optimization may 
not be worth the effort. 

The savings in the execution cost due to semantic op- 
timization grows with the data size involved in answering 
the query, whereas the optimization cost remains the 
same. Hence, it is reasonable to assume the optimizaton 
cost to be negligible as compared to the savings in the 
execution cost with very large data sets. Also, if the op- 
timized query is expected to be executed a multiple num- 
ber of times, the optimization cost can be assumed to be 
amortized over those executions. 

If optimization cost becomes comparable to the execu- 
tion cost, it becomes important to consider a compromise 
between those two. A detailed analysis of such a trade- 
off between optimization and execution costs is reported 
in [33]. - 

IX. CONCLUSION AND FUTURE EXTENSIONS 
In this paper we have proposed and described a scheme 

for utilizing semantic constraints for optimizing a data- 
base query. We  have tried to quantify the factors that de- 
cide the profit of a  query and have illustrated how rela- 
tions, rules, and query can interact to arrive at an optimum 
query form. The major contribution of the work is a 
scheme that dynamically selects from a large collection of 
rules only the profitable ones for a  relation in a query con- 
text. 

An algorithm is introduced to transform the initial query 
to a semantically equivalent one. The algorithm has its 
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best performance if the estimations of selection-join se- 
quences holds good in reality. Certain major factors like 
elimination of redundant joins are independent of these 
assumptions anyway. Cases where a query can be an- 
swered just using semantic rules and the ones where query 
conditions and/or semantic constraints imply a null an- 
swer are also handled efficiently by the algorithm. In other 
cases, semantic rules aid the query processing by gener- 
ating useful additional constraints or by eliminating ex- 
isting redundant constraints. 

The algorithm is implemented with necessary user in- 
terface modules and tested with real data of reasonable 
volume. The test results are very encouraging, thus re- 
vealing the potential savings a semantic optimizer can 
provide. 

Also an algorithm is devised to maintain semantic im- 
plication constraints. The related maintenance scheme as- 
sures that the semantic rule set is free from contradiction 
and redundancy. 

We are currently studying some additional types of con- 
straints and optimization strategies to incorporate in the 
algorithm. Usage of conventional constraints like func- 
tional dependencies along with the semantic constraints 
requires further analysis. Methods like introducing an ad- 
ditional join to the original query (join introduction) as 
an optimizing scheme [18] also needs further investiga- 
tion from an implementation point of view. 

Two possible future extensions to the system currently 
under investigation are semantic categorization and par- 
tial optimization. Both these extensions are more relevant 
to programmed (repetitive) queries rather than interactive 
ones. Statistically, more than 80 percent of all the data- 
base queries are preprogrammed and highly repetitive. In 
such a situation, it is quite sensible to optimize the queries 
only once and save the optimized form for all future uses. 
But such saved forms are valid only when the relevant 
semantics (that used for optimization) remains un- 
changed. Any change in the semantics mandates a repro- 
cessing of those queries that used the changed semantics 
for optimization. 

In semantic categorization, semantic rules are given 
weights according to their volatility. This categorization 
is highly dependent on the nature of data and represents 
only an approximate stability of different rules. The as- 
sumption is that if a rule is more volatile, there are more 
chances for an optimized query form that used the rule to 
become invalid within a given time frame, thus mandating 
a reoptimization. If the rules are categorized, the semantic 
optimizer can then analyze them before using in an opti- 
mization, in terms of profitability and volatility. These 
factors can be weighed against each other to arrive at an 
appropriate selection of optimization rules. 

The second extension, partial optimization, becomes 
useful in the case where a semantic information used to 
optimize a query is subjected to change. In such a situa- 
tion, we are studying the possibilities of avoiding a total 
reprocessing of the user specified query. Reflecting the 
semantic changes into the previously processed queries 

without reprocessing them from the original form could 
be profitable especially if semantic processing is costly. 

Also, we are conducting more experiments using the 
optimizer with various practical situations. Our studies 
involve different table sizes, various storage structures and 
secondary indexes, and different query patterns. 
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