
344 IEEE TRANSACTIONS O N KNOWLEDGE AND DATA ENGINEERING, VOL. 1. NO. 3. SEPTEMBER 1989

Design and Implementation of a Semantic
Okmizer

SREEKUMAR T. SHENOY AND

AWracf-In this paper we describe a scheme to utilize semantic
knowledge in optimizing a user specified query. The semantics is rep-
resented as function-free clauses in predicate logic. The scheme uses a
graph theoretic approach to identify redundant joins and restrictions
present in a given query. An optimization algorithm is presented which
eliminates redundant nonprofitable specifications from a query while
adding additional profitable specifications to it. Dynamic and heuristic
interaction of three entities-schema, semantics, and query-forms the
basis of the algorithm. The implementation architecture of the algo-
rithm and test results on a representative set of data are presented.
Issues associated with updating of semantic constraints are addressed
and an algorithm for semantic maintenance is introduced.

Index Terms-Algorithms, graph theory, heuristics, implication in-
tegrity constraints, query optimization, redundancy, relational data-
bases, secondary index, semantic rules, subset integrity constraints.

I. INTRODUCTION

Q UERY optimization in relational databases continues
to be an active issue in both academic and commer-

cia fields for quite a long time now. The relevance for
optimization stems from the flexibility provided by mod-
em user-interfaces to databases. The interfaces and non-
procedural query languages facilitate the users to specify
queries which may be computationally costly and ineffi-
cient to process. It then becomes not only meaningful but
also important to reformulate the user specified query be-
fore executing it to an equivalent form that is computa-
tionally more efficient.

Query optimization can be formally defined as a pro-
cess of transforming a query into an equivalent form (that
produces the same result as the original one for all data-
base states) which can be evaluated more efficiently.

Optimization in its conventional sense utilizes syntactic
knowledge of the operations and storage details of the re-
lations. The syntactic knowledge includes algebraic trans-
formations and operator resequencing, whereas the stor-
age details include indexes and clustering of storage.
Several query processing algorithms are proposed in the
literature-[l]-[4], [8], [iO],-[ll], [14], [17]5 [21], [23],
[27], [3 11, [36], [39]-[41]. Most of the major commercial
database management systems utilize these techniques to
some extent to answer the ad hoc user queries.

Manuscript received July 14, 1989.
The authors are with the Department of Computer Engineering and Sci-

ence and the Center for Automation and Intelligence, Case Western Re-
serve University, Cleveland, OH 44106.

IEEE Log Number 8930722.

ZEHRA MERAL OZSOYOGLU

Semantic processing adds a relatively new dimension
to query optimization. Instead of just resequencing the
operators or incorporating the indexed access of data files,
it tries to exploit any available knowledge about the data.
For instance, it utilizes knowledge about the domains of
relations, nature of data, and constraints associated with
database instances. Such relevant pieces of knowledge
available to the optimizer, combined with its potential
ability to intelligently process it, helps its generation of
more optimal forms of the user specified query from an
execution point of view.

Significance of semantic optimization can be made more
apparent by certain inherent limitations of syntactic op-
timization techniques. Since syntactic optimizers lack the
entire body of semantic knowledge assured to be satisfied
by all the instances of a particular database, in many cases
they produce suboptimal forms ofthe query for execution.
Certain queries that can be answered without any relation
scans cannot be detected by syntactic optimizers, thus re-
sulting in redundant database access. Cases where queries
contain dangling relations cannot be identified by syntac-
tic techniques alone, thus forcing redundant joins to be
performed. Also, syntactic optimizers cannot detect and
eliminate semantically redundant restrictions or joins from
user specified queries, and for the same reason they fail
to introduce semantically redundant restrictions or joins
which could, in turn, reduce the overall cost of the query.

Semantic query optimization is based on the semantic
equivalence rather than the syntactic equivalence between
different queries. Two queries are syntactically equivalent
if their answers are the same for all the instances of the
database. Two queries, possibly syntactically nonequiv-
alent, are semantically equivalent if their answers are the
same for all the instances of the database that satisfy the
specified set of semantic rules. Semantic equivalence does
not imply syntactic equivalence while syntactic equiva-
lence trivially implies a semantic one. As an example, the
two queries “retrieve (emp.all) where emp.Sal>40K”
and ‘ ‘retrieve (emp . all) where emp . Sal > 40K and
emp. Job = ‘Manager’ ” are not syntactically equivalent,
but are semantically equivalent under the semantic rule
‘emp . Sal > 40K + emp.Job=“Manager” ‘. Since the se-
mantic equivalence between queries depends only on the
database schema and the semantic rule set, the different
queries can interchangeably be used to get the same re-
sults, provided the schema and the semantics are unal-
tered. Moreover, since these syntactically nonequivalent

1041-4347/89/0900-0344$01 .OO 0 1989 IEEE

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER 345

queries can independently be optimized by a conventional
syntactic optimizer, semantic processing does in fact ex-
pand the spectrum of equivalent forms of the specified
query. Thus, the semantic query optimization is the pro-
cess of finalizing, among all the possible syntactically and
semantically equivalent forms of the query, the one which
can be executed most efficiently.

There are various issues involved in semantic query
processing. First, query and schema should be dynami-
cally used to select the relevant semantics for optimiza-
tion without an exhaustive search of semantic rule base.
Second, there should be some mechanism to merge the
selected semantics with the query. Third, there should be
a cost analyzer to evaluate the costs of equivalent queries
and rank them accordingly. Fourth, there should be a set
of heuristics to guide the whole process in a meaningful
way without a combinatorial explosion.

This paper is organized as follows. Section II presents
a brief discussion on the related previous work. In Section
III we discuss clausal representations of query as well as
various types of constraints that constitute a semantic rule
base for the optimizer. We introduce a simplified and gen-
eralized representation of implication constraints. Section
IV addresses the issues related to the maintenance of se-
mantic constraints. A maintenance algorithm is presented
in this section with its associated data structures. Section
V illustrates the role of heuristics as inference rules. Dif-
ferent graph schemes used to represent and transform the
query are introduced in Section VI. A detailed discussion
on various stages of semantic query transformation ap-
pears in Section VII. In Section VIII we present the trans-
formation algorithm, its implementation architecture, and
the implementation results. Section IX concludes the pa-
per.

II. PREVIOUS WORK

Semantic optimization has recently been the subject of
detailed analysis from two different perspectives. Refer-
ence [181 formally introduced the issue in an artificial in-
telligence context and introduced a set of heuristics for
query transformation. Reference [12] analyzed the prob-
lem in a database point of view.

Major heuristics discussed in [181 were index introduc-
tion, join introduction, scan reduction, and join elimina-
tion. Index introduction tries to obtain a constraint on an
attribute of a relation which is restricted in the query and
which has a clustered indexed attribute that is not re-
stricted in the query. According to the strategy of join
introduction, a relation should be a constraint target if it
has a clustering link into a much larger relation that is
constrained in the query, even if the relation itself is not
in the original query. This heuristic contemplates addition
of a join to the query, referred to as join introduction. In
the case of scan reduction, the objective is to reduce the
number of inner scans of the join by obtaining additional
restrictions prior to the cross referencing part of the op-
eration. Join elimination becomes possible if a relation is
joined to just one other relation and none of its attributes
contribute to the answer.

Later, a substantial amount of research followed, re-
lated to the theory and implementation of semantic rules
for query processing [5]-[7], [15], [16], [22], [26], [34],
[351.

Two of the above papers, [5] and [151, have maximum
relevance to our current work. Reference [5] introduces
the concept of semantic compilation, where all the rele-
vant semantic rules are explicitly associated with each re-
lation or view definitions. This allows any query on that
relation or view to be semantically transformed with only
a limited search of the rule base. The result of interaction
of a query with compiled relations or views is a group of
semantically equivalent queries, each of which can be po-
tentially optimized using a syntactic optimizer. Reference
[15] describes a graph theoretic approach integrated with
tableau techniques and syntactic simplification algorithms
to optimize queries containing inequality constraints.
Referential integrity constraints like key dependencies,
functional dependencies, and value bounds are used by
the algorithm. The graph is used to unify attribute values
based on referential constraints, to detect cycles that im-
ply equal values for different attributes, and to predict
queries with null answers.

Both of the above methods have certain limitations.
Reference [5] fails to clearly categorize a given piece of
semantic information as a rule or as a view. Also, no
method is available to select or prioritize the rules asso-
ciated with a relation or view in a query context. More-
over, no mechanism is available to quantify the profit-
ability of a rule for a relation in a query context. In other
words, integration of semantic rules with relations is con-
sidered in isolation with query context. In [151, explicit
representation of arbitrary semantic rules is not sup-
ported. Prolog like view characterization is used to ex-
press a limited type of constraints on the variables appear-
ing in view definitions. Since semantic details are
integrated with view definitions, it becomes the respon-
sibility of the end user to keep track of the semantics as-
sociated with each view. Since the constraints are hard-
wired to view definitions, they become unsharable by the
similar attributes originating from the query. Also, any
changes in the constraints at a later stage makes the main-
tenance of these views difficult.

In [32] we try to address the above difficulties by using
explicit clausal representation [20] of integrity constraints
as in [5], and by devising a mechanism for dynamic in-
teraction between relations and constraints in a query con-
text. Among the valid constraints selected for such inter-
action, only the profitable ones are finally used,
profitability being decided by heuristic rules, global pa-
rameters, and some assumptions.

III. CLAUSAL FORMS OF QUERY AND SEMANTIC
CONSTRAINTS

In this section we discuss the clausal representation
[20], [37], [39] which provides a theoretical basis for
specifying query as well as semantic constraints. After
introducing the notations of clausal form, we describe the

346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 3. SEPTEMBER 198’)

specific representational details of query and semantic
constraints.

A. Clausal Representation
A clause is an expression of the form “A,, . . . A,, +

4, . * * 7 B,” where A,, . . . , A,, B,, . . . , B, are atoms
(or atomic formulas), IZ 1 0 and m I 0. An atom (or
atomic formula) is an expression of the form ‘ ‘p (tl,
. . . , tj)” where p is a j-place predicate symbol, tI, . . . ,
tj are terms, andj B 1. A term, in its most general form,
is a variable, a constant symbol, or a functionf (tl, . . . ,
tk) where f is a k-place function symbol, tl, . . . , tk are
terms, and k > 0.

In our discussion we consider only function-free terms.
A function-free atomic formula, p (tl, . . . , 5), denotes
either a relation or an evaluable (built-in) predicate: If it
is a relation, it is the relation of its predicate restricted for
equality by any constant appearing in a component and
for equality between components that have the same vari-
able. If it is an evaluable predicate, it is a binary com-
parison (arithmetic or set) predicate of the form =, # ,
>, 1, “contains”, etc. We follow the usual infix nota-
tion X > Y, instead of > (X, Y), to represent the evalu-
able predicates.

A literal is either an atomic formula or a negated atomic
formula. A nonnegated atomic formula is positive literal,
and a negated one is a negative literal. A clause, thus, is
a sum (logical OR) of literals. A clause with at most one
positive literal is called a Horn clause, which can be of
one of the following categories.

I) Integrity Constraint: No positive literal, one or
more negative literals (m = 0, 12 > 0).

2) Unit Clause or Fact: A single positive literal, no
negative literals (m = 1, n = 0).

3) Rule: A single positive literal, one or more negative
literals (m = 1, n > 0).

The set of negative literals A,, . . . , A, of the above
clause is sometimes referred to as the body of the clause,
and the set of positive literals B1, . . . , B, as its head.
The atoms appearing in the body are the joint (conjunc-
tive) conditions of the clause, and the ones in its head are
the alternative (disjunctive) conclusions. The conditions
are sometimes referred to as antecedent atoms and the
conclusions as consequent atoms.

B. Query
A simple query q, expressed in the context of a database

scheme D, is syntactically similar to a unit clause (fact).
The difference is that a unit clause asserts that a goal is
true, whereas a query asks whether the goal is true. The
variables appearing in a query are implicitly existentially
quantified. Shared variables are used as a means of con-
straining a simple query by restricting the range of a vari-
able.

A substitution is a finite set of pairs of the form Xi =
tj, where Xi is a variable and tj is term, and Xi # Xj for
every i # j, and Xi does not occur in tj, for any i, j. The
result of applying a substitution @ to a term A, denoted
by A@, is the term obtained by replacing every occur-
rence of X in A by t, for every pair X = t in @. B is an

instance of A if there is substitution @ such that A@ =
B. Answering a query is the process of finding all the facts
that are instances of the query. All such instances form
the solution of the query.

Conjunctive queries are practically more relevant than
the simple ones. A conjunctive query Q specifies a con-
junction of goals posed as a query. Shared variables are
used to specify equality restrictions as well as equijoins
between terms in conjunctive queries. Inequality restric-
tions and inequality joins are specified by explicit terms.
The explicit inequality operators used in our discussion
are from { # , > , 1 }. The operators < and 5 are not
explicitly considered because a < b and a I b can be
represented by b > a and b I a, respectively. Similarly,
a = b can be represented by the conjunction of a 1 b and
b 1 a.

C. Semantic Constraints
Constraints are laws or expressions associated with the

database that represent certain required properties of the
data. There are two broad classifications of constraints,
i.e., state constraints and transition constraints [28]. In
this paper, we restrict our discussion to state constraints.
The state constraints can be further classified into con-
ventional dependencies and semantic constraints. Con-
ventional dependencies include functional (and key) de-
pendencies, value bounds, referential constraints, etc. A
detailed discussion can be found in [39]. Semantic con-
straints represent inter-relationships between chunks of
data across the database relations.

In this work, we utilize two types of semantic con-
straints, viz. subset constraints S and implication con-
straints I, defined over the database scheme D. In other
words our complete semantic specijication has three com-
ponents, D, S, and I. Clausal forms are used to represent
both types of constraints. Both types of the semantic con-
straints of our interest can be represented by integrity con-
straints (conjunctions of negated predicates). In other
words, we do not consider the other variants of horn
clauses (“facts” or “rules”) for constraint specification.
Usually, semantic integrity constraints contain relational
predicates as well as evaluable predicates.

D. Subset Constraints
Dejinition 3.1: The set of subset constraints S is a

superset-subset relationship between the domains of two
different attributes of possibly two different relations.

A subset constraint is represented by an integrity con-
straint (a conjunction of negated predicates) having two
relational predicates and one evaluable predicate. The
evaluable predicate specifies a set comparison between
two attributes of the relations. Note that no restriction
(constant substitution) is allowed on any attribute varia-
bles of the relational predicates.

An example of a subset constraint is “r, (X,, Y,, 2,),
rz(X2, Y2, Z,), X, G X2 -+“, which is the same as
“t-,.X1 E rz.X, +” if we decide to prefix the attributes
by the relation names. This constraint states that the con-
dition “r,.X, G t-*.X2” is always false. In other words,
it restricts the domain of r2. X, to be a subset of the do-

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER

main of r, . Xi. If the evaluable predicate is complemented
and moved to the head, the specification becomes “+
r2.X2 G r,.X,“, equivalent to saying that domain of rl. X1
is a superset of that of r,. X,. Note that, as in a query,
shared variables can be used in a subset constraint to spec-
ify equality implicitly.

A classic example of subset constraint is: “all man-
agers are employees”.

E. Implication Constraints
Formally, an implication constraint is represented by a

clausal integrity constraint (a horn clause with no positive
literal, and one or more negative literals), which is a con-
junction of negated predicates. In the most basic form,
these predicates could be relational predicates or evalu-
able predicates. The relational predicates represent the
database relations (or views), whereas the evaluable pred-
icates represent comparison between a variable and a con-
stant, simple comparison between two variables, or com-
parison between two variables with an offset [13], [30].

Implication constraints restrict the relative domains of
attributes. They specify valid ranges of values that certain
attributes can have when some other attributes are re-
stricted in the same or a different relation.

As an example, the constraint “Only managers make
more than 40K” on the employee relation can be repre-
sented as

employee(Ssn,Name,Dept,Job,Grade,Sal,Bonus,Age),
Sal > 40K + Job = “Manager”

Here, “employee(. . .)” is the relational predicate and
the other two are the evaluable ones. In our discussion,
we eliminate the explicit representation of relational pred-
icates and prefix the attributes with relation names for im-
proving the readability without losing any generality. The
above example with such a representation would be

employee. Sal > 40K + employee.Job = “Manager”.

Here we introduce a simple generalization to the above
representation. We complement and move the “conse-
quent” predicate (employee.Job = “Manager”) to the
“antecedent” side, thus making it a “true” clausal integ-
rity constraint (with no positive literal). The resultant rep-
resentation in our example is

employee.Sal > 40K, employee.Job # “Manager” -+.

The constraint now can be read as ‘there is no tuple in the
employee relation with Sal > 40K and Job # “Man-
ager” ’ . There are two definite advantages to this modi-
fication. First, it simplifies the syntax of the constraint by
associating it to a simple conjunctive set of predicates,
thus eliminating the classification of “antecedent-conse-
quent” atoms. Second, it generalizes the semantics of the
constraint as any of the predicates in the conjunctive set
qualifies to be the consequent one when complemented
and moved to the “consequent” side. For example, from
the above conjunctive set, we can also derive

employee.Job # “Manager” -+ employee.Sal I 40K

347

Semantically, an implication constraint represents an
impossible conjunctive combination. From the database
point of view, the conjunction represented by an impli-
cation constraint always evaluates to be false.

An implication constraint is said to be local if all its
relational predicates refer to the same relation. Otherwise
it is called a cross constraint because, in such cases, the
implication relates more than one relation. The cross im-
plication constraints involve at least one join specification
between relations.

F, Example Database and Constraints
As a running example throughout the paper, we use the

following schema and constraints.
Schema and Relation Sizes: (Indexed attributes are

underlined)

employee (Ssn, Name, Dept, Job, Grade, Sal, Bonus,
Age) [size: 37043 tuples]

storage (Dept, Material, Qty) [size: 1601 tuples]
material (Material, Risk, Storage-Limit) [size 1801

tuples]

Subset Constraints:

storage.Material is a subset of material.Material

Implication Constraints, Implicative and Conjunctive
Forms:

ZCi: Only managers make more than 40K.

employee.Sal > 40K + employee.Job = “Manager”.
employee.Sal > 40K, employee.Job # “Manager” -+ .

ZC,: All managers are of grade 20 or higher.

employee.Job = “Manager” -+ employee.Grade I 20.
employee. Job = ‘ ‘Manager’ ’ , employee. Grade < 20 -+ .

ZC,: All materials stored in department dl are of risk
greater than 3.

storage.Dept = “dl”, storage.Material =
material.Material + material.Risk > 3.

storage.Dept = “dl”, storage.Material =
material.Material, material.Risk I 3 + .

ZC,: Benzene is always stored in quantities more than
500.

storage.Material = “Benzene” -+ storage.Qty > 500.
storage.Material = “Benzene”, storage.Qty I

500 +.

ZCs: Employees of any department that stores anything
in > 600 are of age > 35.

storage.Qty > 600, storage.Dept = employee.Dept +
employee.Age > 35

storage.Qty > 600, storage.Dept = employee.Dept,
employee.Age I 35 +.

IV. MAINTENANCE ALGORITHM FOR INTEGRITY
CONSTRAINTS

Maintenance of semantic integrity constraints repre-
sents an isolated but important component of any seman-

348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 3. SEPTEMBER 1989

tic query optimization system [29]. Even though the se-
mantic constraints are relatively less frequently updated
in comparison to the data itself, an efficient module to
manage the semantic modifications is an important part of
the optimizer.

A. Subset Constraints
Maintenance of subset constraints is relatively simple.

Subset constraints contain exactly two relational attri-
butes and one of the set-comparison operators { C , E }.

Task: Accept a subset constraint if and only if it is not
redundant and contradicting. The constraint is said to be
redundant if it can be derived from the existing constraint
set. It is said to be contradicting if, when combined with
one or more existing constraints, it produces a null result.

As an example, if “-+ r.A C r. B” and “-t r. B C
r. C ” are present in the existing set, a new constraint “ -+
r. A C r.C” is redundant. On the other hand, the con-
straint “ --t r.C C r. A” is contradicting.

Assumption: It is assumed that the existing set of sub-
set constraints is free from redundancy and contradiction.
This assumption is trivially true for a null constraint~set.

Data Structures: A directed and labeled graph, G, =
(V,, E,), represents the subset constraints. V, is the set of
relational attributes involved in any of the existing subset
constraints. A directed edge e exists in E, from u1 to v2
(for vl, v2 in V,) iff the subset constraint “ -+ v2 G vl”
or “-a 23 c v2” is present in the existing subset con-
straint set. The label is used to denote the operator C or
C . If there are parallel directed edges of the same label
between two vertices, they are replaced by a single edge
with the same direction and the same label. If they are of
different labels, they are replaced by a single edge with
the same direction and “ c ” label. Label “ c ” is said to
predominate the label “ s “. A directed path in the graph
is a sequence of directed edges. A path is said to be of
c -type if all the edges in that path are labeled “ G ’ ’ .
Otherwise, it is called a C-type path.

Algorithm:
Add the vertices vl, v2, corresponding the new edge

(from vl to v2) to the graph, unless they are already pres-
ent.

If the new edge forms a directed loop with at least
one “ C ” edge, it is a contradicting one.

If there already exists a directed path from vi to v2 of
the same or predominating type, then the new edge is re-
dundant .

An edge is accepted to the graph (and the correspond-
ing constraint to the semantic set) iff it is neither contra-
dicting nor redundant.

B. Zmplication Constraints
From here onwards, we denote an integrity constraint

by its conjunctive representation and use the words “con-
straint” and “conjunction” interchangeably, even though
the constraint corresponding to the conjunction “C” is
“C +.“. Also, we just use “C” in place of “C +” to
designate a constraint whenever the meaning is unambig-

uous. In any case, “C” represents a conjunction of ne-
gated evaluable predicates (a clausal integrity constraint).
If a set of predicates c is removed from a conjunction C,
the resulting conjunction is denoted as C - c. Negation
of a conjunction of predicates c is denoted as 1 c.

1) Deduction System for New Constraints: Using var-
ious rules of the first order predicate calculus, we can de-
duce new (redundant) constraints from the existing con-
straint set. Below we list a set of axioms and inference
rules for a deduction system, adapted from Gentzens’
work [9], [24], which is sometimes referred to as a natural
deduction system for first order predicate calculus. The
inference rules are divided into two parts: 1) the axioms
and basic rules; and 2) rules for the connectives. Each
rule is of the form A * B, where A and B are conjunctions
of predicates, stating that the conjunction B is an integrity
constraint if the conjunction A is an integrity constraint.

The rules listed below are from [24] with a slightly
modified notation.

The Axioms and Basic Rules:
1) (A-‘) = (LB-‘)

(clause introduction)
2) (A,B-,MlA,B+) * (B-1

(clause elimination)

Rules for the Connectives:
3) (A-+) * CAB-‘)

(& introduction)
4) (A,Cj),(B,Cj),(lAjvlB-)~ (C-1

(& elimination)
5) (A+),(B-,) =+ (AvB+)

(V introduction)
6) (A VB) * (A -+)

(V elimination)
7) (41B+MAB+) * (+lA)

(1 introduction)
8) W-MA+) * C-'B)

(1 elimination)

It is important to note that the above set of rules rep-
resents a complete deduction system for propositional cal-
culus [25], [24]. In other words, every valid implication
integrity constraint C, with respect to a given constraint
set S, can be deduced using the above inference rules. It
is possible to derive other inference rules (e.g., transitiv-
ity of implication) from the above basic set. Refer to [24]
for a detailed discussion.

In the above list, the connectivity rules 3)-8) can be
derived from the set of basic rules l), 2), definition of
implication operation (i.e., A -+ B can be defined as 1 A
V B), and DeMorgan’s laws. The rules of the basic set
itself belong to two categories, augmentation and transi-
tivity .

Augmentation (Rule 1) refers to the uninteresting pro-
cess of appending arbitrary predicates to an existing con-
junction. Since the existing conjunction-being an integ-
rity constraint-always evaluates to false, all of its
superset conjunctions also evaluate to false, thus techni-
cally qualifying to be integrity constraints. In rule 1, “A”

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER 349

represents the existing conjunction and “B” represents a
conjunction of arbitrary predicates. As an example, con-
sider an integrity constraint ‘employee.Sal > 40 K, em-
ployee.Job # “Manager” ’ which states that everyone
who makes more than 40K is a manager. It is trivial to
generate the constraint by combining the predicate ‘em-
ployee.Age > 40’ to the above constraint to get “em-
ployee.Sal > 40K, employee.Age > 40, employee.Job
“Manager” ‘, which states that everyone who makes
more than 40K and is over 40 years is a manager.

Transitivity (Rule 2) the other way of generating new
constraints depends on the transitivity of the implication
operation. Two constraints, Ci and C,, can be used to
transitively generate a new one if there exists conjunc-
tions cl, c2, where cl is a subset of Ci and c2 a subset of
C2, such that cl and c2 are complements of each other.
The new constraint C is defined as the conjunction of all
the predicates from Ci and C2 excluding the ones in ci
and c2. In rule 2, “A, B” and “1 A, B” represent Ci and
C,, respectively, with “A” representing ci and “1 A”
representing c2, to generate a new constraint “B” repre-
senting C. For example, consider the constraints ZCi and
IC’, of the example database

IC, : employee.Sal > 40K, employee.Job # “Man-
ager” -+.

ZC, : employee. Job = ‘ ‘Manager’ ’ , employee. Grade
<20+.

ZC, and IC, can be used (with cl = ‘employee.Job #
“Manager”’ and c2 ‘employee.Job = “Man-
ager” ‘) to obtain

C: employee.Sal > 40K, employee.Grade < 20 -+ .

The proof that C is an integrity constraint is as follows:
Since C, is an integrity constraint, it is true that (Ci -

Cl) -+ 1 (Cl).
Since C, is an integrity constraint, it is true that (c2) -+

1 cc2 - C2).
Since c2 = 1 cl, and by transitivity, it is true that (Ci

- Cl) -+ 1 cc2 - c2).

In other words, “(C, - ct), (C, - c2)“, which is C,
is an integrity constraint.

Generating weaker constraints from the existing ones
can be technically considered as a special case of transi-
tivity involving tautology conjunctions. Tautology con-
junctions are the ones that are always satisfiable as integ-
rity constraints, independent of the database context. For
example, the conjunction “employee.Grade > 20, em-
ployee.Grade < 18” is a tautology, as it represents the
implication “employee.Grade > 20 + employee.Grade
> 18”, or equivalently, “employee.Grade < 18 + em-
ployee.Grade < 20”. This tautology conjunction can be
used with ‘employee. Job = “Manager”, employee.
Grade < 20’ to generate a weaker constraint ‘em-
ployee.Job = “Manager”, employee.Grade < 18’

It is also easy to observe from the above discussion that
a conjunction C is implied by a set of conjunctions S iff a
subset of C is implied by S.

DeJnition: A conjunction of predicates (integrity con-
straint) C is said to be in contradiction with respect to a
set of conjunctions or predicates S if 1 (C) is implied by
Is.

2) Maintenance of Implication Constraints: The task
of constraint maintenance is to ensure that the constraint
set is always free from redundancy and contradiction. This
assumption is trivially true with empty constraint sets. If
S is the existing set of constraints and C is the new con-
straint, C is tested for redundancy (i.e., S + C) and con-
tradiction (i.e., S -+ 1 C) before acceptance. If accepted,
existing constraints are tested for redundancy with C, and
removed from the set if found redundant. As an example,
assume the following two constraints exist in the semantic
set

employee.Sal > 40K -+ employee.Job = “Manager”
employee. Sal > 40K + employee.Grade > 20

Consider a new constraint ‘employee.Job = “Manager”
--* employee.Grade > 20’) which is neither redundant
nor contradicting. However, when added to the set, it
makes the constraint ‘employee.Sal > 40K -+ em-
ployee . Grade > 20’ redundant.

Since the constraint set may contain constraints that do
not contribute to making the new constraint redundant (or
contradicting), we first identify the relevant subset of con-
straint set for this purpose. This identification restricts the
constraints to be considered for redundancy/contradiction
checking, thus, reducing its complexity. As a first step,
the existing constraint set is partitioned into equivalence
classes.

Equivalence Classes: The set S = { ZCi, IC,, . . . ,
ZC,, } of existing constraints is partitioned into equiva-
lence classes such that any two constraints belong to the
same equivalence class iff they have at least one variable
(relational attribute) in common.

A variable (relational attribute) is said to belong to an
equivalence class iff it belongs to a constraint that belongs
to that equivalence class.

The example constraint set of the previous section can
be partitioned into two equivalence classes, E,, E2, as

El Containing Constraints:

ZCi: employee.Sal > 40K, employee.Job
“Manager” +

ZC,: employee.Job = “Manager”, employee.Grade
< 20 +

E2 Containing Constraints:

ZC, : storage. Dept = d 1, storage. Material
= material. Material, material.Risk I 3 ---)

IC,: storage. Material = ‘ ‘Benzene’ ’ , storage. Qty
I 500 +

ZC, : storage. Qty > 600, storage. Dept = em-
ployee.Dept, employee.Ages 35 -+

Variables belonging to E, are

employee.Job, employee.Grade, employee.Sal

350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO 3. SEPTEMBER IYXY

and those belonging to E2 are

employee.Dept, employee.Age, storage.Dept, stor-
age. Material,

storage.Qty, material.Material, material.Risk

Lemma 4. I: If C’ is a minimal subset of a constraint C
(or 1 C) implied by S, then it is implied by the constraints
belonging to the one and only equivalence class that con-
tains all the variables appearing in that subset.

Proof Since C’ is the minimal subset of C implied
by S, it is not generated by augmentations. So C’ is an
existing constraint itself, or is generated by transitivity.
If it is an existing constraint, the proof is trivial. Assume
that it is a transitively generated one. No constraints from
different equivalence classes can transitively interact be-
cause they do not have any variables in common. In other
words, all the constraints contributing to the redundancy
of C’ must belong to a single equivalence class-the one
that contains all the variables of C’ .

Set of Relevant Constraints: We now identify a set of
relevant constraints S, (from S) for C such that S --* C
(orlC)iffS,-+ C(orlC).

Case I: All variables of C belong to the same equiva-
lence class.

The set of relevant constraints for C is E (C).
Case 2: Variables of C belong to more than one equiv-

alence class, say E,, . . . , E,,.
There are two types of predicates in C.
Type 1: Predicates with all the variables from the same

equivalent class.
Type 2: Predicates with variables from different equiv-

alent classes.
Let PO be the set of all the type-2 predicates.
Partition C - PO to P1, . . . , P, such that all variables

of each Pi belong to exactly one equivalence class.
Let the equivalence class containing the variables of Pi

be denoted by E(Pi), for 1 I i I n.
The set of relevant constraints for Pi is E (Pi), 1 I i

I n.
The following is a set of illustrative examples.
Example 1:

Let C be ‘employee.Sal > 40K, employee.Grade <
20’.
All the variables of C belong to one equivalent class
E(C), i.e., El.

Note that E, is
IC,: ‘employee.Sal > 40K, employee.Job #
“Manager” + ’ ,
IC,: ‘employee.Job = ‘ ‘Manager’ ’ , em-
ployee.Grade < 20 -+ ’

The task is to verify whether El + C.
If E, + C, the constraint C is redundant.
In this particular example, since E, ---* C, the constraint
C is redundant.

Example 2:

Let C be ‘employee.Dept = storage.Dept, em-
ployee.Age > 40, employee.grade < 18’

Variables of C belong to different equivalent classes.
Type 1 predicates: employee.Age > 40, em-
ployee.Grade < 18
Type 2 predicates: employee.Dept = storage.Dept
PO: employee. Dept = storage .Dept
P,: employee.Age > 40
P2: employee.Grade < 18

Note that E(P,) is El, i.e.,
ICI: employee.Sal > 40K, employee.Job # “Man-
ager” +
IC,: employee.Job = “Manager”, employee.Grade <
20 +

Note that E(P,) is E2, i.e.,
IC, : storage.Dept=dl, storage.Material=material.
Material, material. Risk I 3 -+
I&: storage.Material = “Benzene”, storage.Qty I
500 -+
IC, : storage.Qty > 600, storage. Dept = em-
ployee.Dept, employee.Age I 35 +

The task is to verify whether El + P, or E2 -+ P2.
If El -+ P1 or E2 + Pz, the constraint C is redundant.

In this example, since neither of the above implications
are true, the constraint C is not redundant.

3) Constraint Derivationffom the Relevant Set: Once
the set of relevant constraints for implication checking is
identified, the task is to verify whether the subset actually
implies the new constraint (or its complement).

Let the set of relevant constraints contain ‘C, -+ ‘, * . * ,
+ ‘. If the new constraint ‘C-+ ’ is implied by this set,

&I), * * - > 1 CC,) -+ 1 CC) must be a tautology or,
in other words, 1 (Cl), . . . , 1 (C,), C must be unsatis-
fiable. Since Ci’s are conjunctions of predicates, “1 (Ci),
. . . , 1 (C,)” is a conjunction of disjunctions and can be
rewritten as a disjunction of conjunctions of predicates
from Ci’S. Each of the conjunctions will contain n predi-
cates, and there will be tr* . . . *t, such conjunctions in
the disjunction, where ti is the number of predicates in Ci.
When C is conjuncted with disjunction, the resulting dis-
junction will have the same number of conjunctions, i.e.,
t1

* . . . “t each with n + t predicates each, where t is
the numbe;‘of predicates in C.

Similarly, testing whether the set of sufficient con-
straints implies the complement of the new constraint is
equivalent to testing the unsatisfiability of “1 (Ci),
. . .) 1 CC,>, 1 CC>“. Th is represents a disjunction of
conjunctions from Ci’s and C. Each conjunction will have
n + 1 predicates, and there will be tl* * * * *t,,* t such
conjunctions in the disjunction.

In both of these cases, the number of conjunctions in-
creases exponentially with the number of constraints in
the set, whereas the number of predicates in each con-
junction has a linear growth.

For illustration, let C be

‘employee.Sal > 40K, employee.Bonus > 25K, em-
ployee.grade < 18’

PO: ‘employee.Bonus > 25K’

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER

P,: ‘employee.Sal > 40K, employee.Grade < 20’
E(P,), which is E,:

‘employee.Sal > 40K, employee.Job = “Man-
ager’ ’ ’ ,

‘employee.Job # “Manager”, employee.Grade
< 20’

The new constraint C is redundant iff the following is un-
satisfiable: (Note: we drop the relation prefix “em-
ployee” for improved readability.)

1 (Sal > 40K, Job = “Manager”),
1 (Job # “Manager”, Grade < 20),
(Sal > 40K, Grade < 18)

This can be simplified by eliminating the predicates ap-
pearing in the negated conjunctions which have equiva-
lent ones in the nonnegated conjunction. The result is

1 (Job = “Manager”),
1 (Job # “Manager”, Grade < 20),
(Sal < 40K, Grade < 18)

This is the same as

(Job # “Manager”),
(Job = “Manager” OR Grade > 20),
(Sal > 40K, Grade < 18)

which is

(Job # “Manager”, Job= “Manager”, Sal > 40K,
Grade < 18) OR

(Job # “Manager”, Grade 2 20, Sal > 40K,
Grade < 18)

Here, both the conjunctions in the disjunction evaluate
to be false, thus making the disjunction unsatisfiable. This
indicates that the new constraint is redundant.

Checking Unsatisjability: Unsatisfiability of the dis-
junction depends on unsatisfiability of its conjunctions.
Here we sketch a simple algorithm for checking the un-
satisfiability of a conjunction.

The conjunction is represented by a directed graph G
= (V, E). The vertex set V represents the variables, con-
stants, and all the unique combinations of the variables
and constants present in the conjunction. Note that we use
distinct vertices for different constants belonging to the
same domain as well as for the same variable in combi-
nation with different constants. The edge set E represents
explicit as well as implicit comparisons. Explicit compar-
isons are the ones present in the conjunction. Implicit
comparisons are between constants of the same domain
and between the same variables in combination with the
constants of the same domain.

The edges are labeled by their comparison operator. As
discussed in the previous section, the operators are re-
strictedto >, >,and #.The“>“and“>“edgesare
directed, their direction representing the direction of the
comparison operator, whereas the “ # ” are undirected.
Distinct vertices are used to represent different constants
even though they belong to the same domain. This rep-
resentation eliminates the need to assign weights to the
edges as in [30], [15].

351

Fig. 1. A conjunction graph.

The graph representing the first conjunction of the above
example is presented in Fig. 1. Note that the constants
(18, 40) are represented by distinct vertices. Also, note
the (implicit) edges between the vertices “18” and “40”.

A directed path from vertex u to vertex 2, is the se-
quence of directed edges el, . . . , ek, k I 1, such that
there exists a corresponding sequence of vertices vo, zll,
. . . > UP (u = uO, u = UP) satisfying ek = (ok-i, uk), for
O<k<p.

We claim that the graph (and the conjunction) is un-
satisfiable if and only if any of the following conditions
is true.

1) For any “ > ” edge, say from vertex a to vertex b,
there is a directed path from vertex b to vertex a.

2) For any “ # ” edge, say between the vertices a and
b, equality between a and b is implied by the conjunction,
by a directed cycle of “ 2 ” edges involving a and b.

It is obvious that any of these conditions is sufficient to
imply unsatisfiability . To see the necessity of these con-
ditions for unsatisfiability, consider a graph where none
of these conditions is true. Existence of no “ > ” edge is
in contradiction because the only way for such a contra-
diction is a reverse directed path. For “ # ” edges, it is
easy to see that no two edges interact to generate new
information. (In other words, “u # b” and “b # c” do
not imply anything between “a” and “c”.) The only sit-
uation where a “ # ” edge can contribute to contradiction
is when it is shunted by an (implied) equality between its
vertices. Assuming that the size of the domain of the vari-
ables is much larger than the number of variables itself,
we can always assign different values to the variables to
simultaneously satisfy all the inequalities.

Verification of both of the above conditions basically
requires verifying reachability of a specific vertex from
another one using selected types of edges. This can be
achieved in various ways, by finding transitive closure,
shortest paths, or transitive reduction [42], all of which
take time proportional to 0 (n3) where n is the number of
vertices in the graph.

A related method is discussed in [30]. In that paper
[30, theorems 21, 22, p. 701, a proof is sketched to show

352 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 3. SEPTEMBER 1989

that satisfiability of conjunction is NP complete when (and
only when) “ # ” comparison is allowed between the
variables. In that proof, satisfiability of the subgraph con-
taining only “ # ” edges is reduced to k-colorability, thus
concluding the NP completeness. However, reduction to
k-colorability holds only if the cardinality of the domain
of the variables is less than the number of variables in the
subgraph-an assumption which is rarely true in any prac-
tical situation. If the cardinality of the domain is greater
than or equal to the number of variables in the subgraph,
colorability (and hence satisfiability) of the subgraph be-
comes polynomial-by assigning all different colors to dif-
ferent vertices, since we have sufficiently different colors.
Satisfiability of general conjunctive predicates (with in-
equality comparisons) is shown to be polynomial in [191,
when the size of the domain of attributes is greater than
the number of variables used in the query for that domain.
Reference [38] discusses various cases of the implication
problem by converting them into a satisfiability problem,
based on the above-mentioned results from [30].

V. HEURISTICS AND INFERENCE RULES

Before formally describing the utilization of constraints
in semantic query transformation, we present a brief over-
view of various heuristic and inference rules used in se-
mantic optimization. The illustrations are based on the
example database presented in Section III-F.

We use four heuristic rules as suggested in [181,
namely, restriction elimination, index introduction, scan
reduction, and join elimination. The heuristic strategy of
join introduction as in [181 is not used in our approach.
In the following illustration we use a quel-like language
[36] for expressing queries.

Restriction Elimination: Remove a restriction from the
query, if found redundant.

Query Ql: List all the departments that store benzene
in more qty more than 400.

Quel Form: retrieve (storage.Dept) where
storage.Material = “Benzene” and
storage.Qty > 400.

Rule(s): storage.Material = “Benzene” -+ stor-
age.Qty > 500.

Query Q, ‘: retrieve (storage.Dept) where
storage.Material = ‘ ‘Benzene”.

Result: The unnecessary restriction on the attrib-
ute “qty” of the relation “storage” is
eliminated.

Index Introduction: Introduce a restriction on an in-
dexed attribute, if implied by the query.

Query Q2: Find all the employees who make more
than 42K.

Quel Form: retrieve (employee.Ssn, employee.Name)
where

Rule(s):
employee. Salary > 42K.
employee.Sa1ar-y > 42K -+ employee.job
= “Manager’ ’ .

Query Q2 ‘: retrieve (employee. Ssn, Name) where
employee.Salary > 42K and
employee.Job = “Manager”.

Result: A new constraint is obtained on the in-
dexed attribute “Job” of the relation
“employee”.

Scan Reduction: Reduce the number of inner scans of
the join by obtaining additional restrictions prior to the
cross referencing operation.

Query Q3:

Quel Form:

Rule(s):

Query Q3 ‘:

Result:

List all employees working in departments
storing anything in > 625.
retrieve (employee.Ssn, employee. Name)
where
employee. Dept = storage. Dept and
storage.Qty > 625.
storage.Qty > 600, storage.Dept = em-
ployee.Dept -+ employee.Age > 35.
retrieve (employee.Ssn, employee.Name)
where
employee.Dept = storage.Dept and
storage.Qty > 625 and
employee. Age > 35.
The new constraint on attribute “Age” of
relation “employee” can be applied to the
relation prior to the cross matching step of
its join to the relation “storage”, thus re-
ducing the qualifying tuples from the re-
lation “employee” and hence the number
of scans of the relation “storage.”

Join Elimination: Eliminate a relation if it is joined to
just another relation and none of its attributes contribute
to the output.

Query Q4: Get all the materials stored in ‘ ‘d 1 “, in
qty > 400, of risk > 2.

Quel Form: retrieve (storage.material) where

Rule (s) :

storage.dept G “d 1” and
storage.qty > 400 and
storage.Material = material.Material and
material.Risk > 2.
storage.Dept = “dl”, storage.Material =
material. Material +
material.Risk > 3
material.Material is a superset of stor-
age. Material

Query Q4

Result:

retrieve (storage. Material) where
storage.Dept = “dl” and
storage.Qty > 625.
Join with the relation “material” is elim-
inated .

VI. GRAPH REPRESENTATIONS OF A QUERY

A query Q is a conjunction of join specifications of the
form “r,.Al op r2.A2” and the restriction specifications
of the form “I~. Al op k” where rl, r2 are relations, A,,
A2 are attributes, k is a constant, and op is one of the
comuarison ouerators I # , 1, > I. The ouerators “ < ”

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER 353

and “ I ” are not explicitly considered because a 4 b
and a < b are the same as b I a and b > a, respectively.
Similarly, the equality operator “ = ” is not explicitly rep-
resented because a = b can be replaced by the conjunc-
tion of a 1 b and b 2 a. This limits the set of operators
to have only “f”, “z”, and “>“. The answer of a
query Q is the set of all tuples of the relations referenced
in Q that satisfy Q, projected on the specified target attri-
butes of Q.

Query Graph G,: A query Q is represented by a query
graph G4 which is a directed graph whose vertices are the
attributes of the relations (attribute vertices) as well as the
constants (constant vertices) involved in Q. The edges of
Gg are the join and restriction specifications in Q. A join
specification “rl. A, op r2. A,” is represented by an edge
from rl. A, to r2. A2 with a label op. Similarly, a restric-
tion specification “r,. A, op k” is represented by an edge
from r, . A, to the constant k with a label op. The direction
of an edge identifies the left and right operands of the
label associated with it. The edges representing a join
specification are referred to as ‘join edges” whereas the
ones denoting the restrictions are called “restriction (con-
stant) edges”.

Consider the query Q4 of Section V for Fig. 2.

Query QJ: Get all the materials stored in “dl”, in
qty > 400, of risk > 2.

Quel Form: retrieve (storage.Material) where

Graph G4:

storage.Dept = “dl” and
storage.Qty > 400 and
storage. Material = material. Material and
material.Risk > 2.
(Indexed attributes are underlined, target
attributes are identified by “?“. For the
sake of clarity, equalities are represented
by undirected single edges rather than
pairs of “ I ” edges of opposite direc-
tions .)

Canonical Condensed Graph G,: Since a given query
can have syntactically different, but semantically equiv-
alent, forms and hence different equivalent query graphs,
it becomes necessary to arrive at a canonical form of rep-
resentation before processing the query. We adopt the no-
tion of a condensed graph G, as the canonical represen-
tation of a query. In its condensed form, a query graph is
represented by a minimal set of join and restriction edges.

The condensed graph G, is derived from the query graph
G4 by first grouping the attribute vertices of G4 into equiv-
ulence classes. Any two vertices of G4 belong to the same
equivalence class if they are connected by explicit equal-
ity edges or if there is a directed cycle of join edges in-
cident with both the vertices. A vertex forms an equiva-
lence class by itself if it is not a part of any equijoin.

The equivalence classes (as well as the constant ver-
tices) of G, are mapped as vertices in G, as follows.

The nonequijoin (1, >) edges of G4 that are not part
of an equality specification are represented in G, by their
transitive reduction. The transitive reduction [42] of a

dl

400

.lJept storaae

storage.Material(?) storage.0t.y

=I materia1.Riz.k

material.Material

Fig. 2. Query graph G,.

400

[F) y

Fig. 3. Canonical condensed graph G,.

/
storage.Qty

material.Risk

>
\ 2

query graph with only join edges is a graph with the few-
est number of join edges among all such query graphs
having the same transitive closure. The transitive reduc-
tion is obtained by first mapping all the nonequijoin edges
from G4 to G, for the corresponding equivalence class
vertices, removing all the redundant edges from G,, and
then replacing any multiple edges between two vertices
by an equivalent single edge.

The restriction (constant) edges of G4 are represented
in G, by their transitive reduction over the join edges. For
this, first each restriction edge of G4 is mapped into G, to
restrict the vertex corresponding to the equivalence class.
It is possible that addition of restriction edges could lead
to the merger of equivalence classes. W ith each such ad-
dition, all the restriction and join edges in that connected
component are tested for syntactic redundancy, and the
redundant ones are removed from the graph. For exam-
ple, with an existing join edge of “A > B”and a restric-
tion edge of “A < 3”, the addition of the restriction edge
“B > 3” makes the existing restriction edge “A < 3”
syntactically redundant and removable.

The condensed graph G, for the query graph Gg illus-
trated above is shown in Fig. 3. The result of this con-
densation is that the vertices (storage.material, mate-
rial .material) and (storage.dept, dl) that are connected
with equality edges in G4 form single multimember nodes
in G,.

VII. SEQUENTIAL PHASES OF SEMANTIC
TRANSFORMATION

Semantic query transformation is the process of obtain-
ing alternative query forms that are semantically equiva-
lent to the original one. The motivation of semantic op-
timization is to arrive at a more profitable query yielding

354 IEEE TRANSACTIONS O N KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 3. SEPTEMBER 1989

the same answer, which could be syntactically different
from the original query.

In our approach, semantic optimization of a query con-
sists of two major phases, namely, semantic expansion,
and semantic reduction. Semantic reduction is composed
of two stages, namely, relation elimination and edge
elimination. These as well as other auxiliary steps are de-
scribed below.

A. Derivation of Canonical Condensed Form
This first step, as described in the previous section, ob-

tains a canonical representation G, of the query through
transitive reduction of join and restriction edges present
in G4. The transitive reduction property of the graph is
then retained by the query transformation algorithm in all
its following stages by removing syntactically redundant
edges and/or merging the equivalent classes. This first
stage is independent of any semantic details and depends
only on the query and the operator syntax. Besides arriv-
ing at a canonical form of the query, this stage facilitates
any early detection of contradictions in join or restriction
specifications that could lead to a null answer.

B. Semantic Expansion
Semantic expansion iteratively adds any new restriction

or join edges implied by the combination of (condensed)
query graph and semantic implication constraints. This is
achieved by identifying the implication constraints whose
antecedent atom(s) are satisfied by the graph and adding
the restriction or join edges corresponding to their con-
sequent atom to the query. Each time, the transitive re-
duction property of the graph is restored if the added edge
happens to violate it. From the original form, addition of
each such edge takes the query graph through various se-
mantically equivalent forms until it reaches a stage G,,,
where no more new restrictions or joins could be implied.

The purpose of semantic expansion is to incorporate any
useful restrictions (possibly on indexed attributes) or joins
that are not present in the original query. This assures’that
the query contains a semantically maximal (and syntacti-
cally minimal) set of edges that satisfy both the query and
implication constraints.

Semantic expansion of the condensed graph is illus-
trated in Fig. 4. Both the antecedent atoms of the second
implication constraint (i.e., “storage.Dept = dl” and
‘ ‘storage. Material = material. Material’ ‘) are satisfied by
the condensed graph, thus making it possible to add the
corresponding consequent atom (i.e., “material.Risk >
3”) to the graph. Due to the transitive reduction property
of the graph, the added edge “material.Risk > 3”
supersedes, and hence eliminates the existing one “ma-
terial.Risk > 2”.

C. Relation Elimination
Relation elimination stage identifies all semantically re-

dundant relations from G,,,. Relations identified to be re-
dundant, if any, are removed from the query graph. A

400

;YijiKGq 1, I

storage.Material(?) storage.cJty

material.Materis.1

material.Risk

Fig. 4. Semantic expansion G,.

relation is considered to be redundant if it becomes dan-
gling so that none of its attributes or restrictions contrib-
ute to the answer. Since the query graph is connected,
elimination of a relation leads to the removal of its join
to the rest of the query graph. A relation elimination is
hence considered to be profitable because it eliminates the
need of performing a join. The graph, when all the re-
dundant relations are removed from G,, is denoted by G,,

There are various conditions that a relation should sat-
isfy in order for it to be classified as redundant. First of
all, it should be free from any target attributes of the query
because a relation containing target attributes cannot be
removed from a query. The second condition is that all
the restrictions on nonjoin attributes should be redundant.
By this, all such restrictions could be removed without
altering the query semantics. In this stage, the relation
will have restrictions, if any, only on join attributes. The
third condition is that the relation should have at most one
join vertex, and the fourth condition is that the relation
does not have any nonequijoins. The third and fourth con-
ditions allow the transfer of all the restrictions on the only
join attribute to the other side of the respective joins. This
makes the relation free from all restrictions. Finally, there
should be at least one other relation with a join attribute,
say “XB”, in the equivalence class containing the join
attribute of this relation, say “R.A”, such that the subset
constraint ‘ ‘R. A is a super set of S. B” holds.

More formally, a relation R is redundant if it satisfies
all of the following conditions.

a) R is target-free.
b) All the restriction edges on nonjoin vertices of R are

redundant.
c) R has at most one join attribute.
d) R does not have any nonequijoins.
e) There is at least one other relation with a join attrib-

ute, say “S.B”, in the join class containing the join at-
tribute of R, say “R.A”, such that the subset constraint
“R.A is a super set of S.B” holds.

Relation elimination of the graph G,,, illustrated above
is as shown in Fig. 5. The relation “material” gets qual-
ified as redundant due to the conditions described above.
It is free from any target attributes [condition a], and the
restriction “material.risk > 3” is semantically redundant
[condition b]. The only join attribute of the relation is
“material.material” [condition c] and it is an equijoin
[condition d]. The subset constraint “material.material is
a superset of storage.material” [condition e] completes

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER

storage.tlaterial(?)

400

I::“‘““““‘) i’

storage.Qty

Fig. 5. Relation elimination G,,

the requirements for making the relation “material” se-
mantically redundant, and hence removable from the
query.

D. Edge Elimination
A restriction or join edge is redundant if it is satisfied

by the consequent atom of an implication constraint of
which all the antecedent atoms are satisfied by the query.
Semantically redundant join edges can always be removed
from the graph, since their basic purpose is to aid seman-
tic expansion by providing additional paths for informa-
tion flow. The strategy of removing a redundant restric-
tion edge from a relation largely depends on whether
selections will be performed in that relation before joins.
This, in turn, depends on whether the join attribute in that
relation is indexed or not. If the relation has at least one
indexed join attribute, it is assumed that the restrictions
in that relation will be performed along with the join, and
not before it. This is because, with a given set of match-
ing values for the join attribute, location of tuples be-
comes easy through the (indexed) join attribute and the
restriction(s) could be checked during the same time. On
the other hand, if no join attribute of the relation is in-
dexed, we assume that the selections in that relation will
be performed before joins.

In the cases where selections are performed before
joins, locally redundant restriction edges on indexed at-
tributes become profitable provided none of the anteced-
ent atoms of the corresponding local implication con-
straint are on indexed attributes. This is because the
redundant restriction introduces an indexed scan to re-
place the sequential scan of the relation. Similarly, all the
cross redundant restrictions become profitable if selec-
tions are performed before joins. The reason is that such
a restriction additionally limits the effective size of the
relation before the join operation, thus resulting in a scan
reduction. A restriction, even though redundant, is con-
sidered to be profitable if it is on a join attribute since it
may provide a better join strategy.

The graph resulting from deleting all nonprofitable
edges from G,, is denoted as Gr2. For the query graph G,,
shown in the above example, no edge is qualified for
elimination. That is, Gr2 is the same as G,, in this case.

Unlike in the case of relation elimination where all the
redundant joins are removed, redundant edges are re-
tained if they are found profitable. But identifying a re-
striction to be profitable, as mentioned above, depends
mainly on the estimation of the sequence of selections and
joins. This sequence, in reality, is determined by various
factors outside the scope of this work, like relation sizes,
optimizer statistics, optimizer intelligence, and sequence

355

of specification of equality joins. This might result in er-
roneous classification of profitable restriction at times. But
by and large, this strategy provides a simple and reliable
method to achieve the identification.

E. Conversion from the Condensed Query Graph
When the semantic expansion and reduction are com-

pleted, the query graph is converted back from its con-
densed form to the original one. This is achieved by re-
placing each multimember node of Gr2 by any spanning
tree on its attribute vertices connected by equijoin edges.
Any one attribute vertex, an indexed one if available, of
the multimember node is chosen for joining the spanning
tree to other spanning trees or single attribute vertices.
Also, the restriction(s) on the multimember node are
mapped as restriction(s) on all the attribute vertices. This
form of the graph, being the final one, is denoted by GP

Note that, as in the case of restriction elimination, this
strategy of graph conversion could also produce subopti-
ma1 results. The cost of equijoins involving three or more
attribute vertices depends on the edges in the correspond-
ing spanning tree as well as the order in which they are
considered for join. Similarly, selecting an attribute ver-
tex in the spanning tree to join with other vertices could
also make a difference in cost. For example, while se-
lecting the edges of the spanning tree, priorities are given
to the attributes of these relations which have one or more
other joins between them. In general, issues like relation
sizes and selectivities should also be considered in se-
lecting the spanning tree for multimember equivalence
classes.

The converted form Gf of the graph G,, is as illustrated
in Fig. 6. The result is the replacement of the multimem-
ber node (storage.dept, dl) by its spanning tree. This fi-
nal graph can be translated to a quel statement:

retrieve (storage.material) where
storage.dept = dl and
storage.qty > 400

The end result of the query transformation process, in this
example, is elimination of the relation “material” from
the original user-specified query.

VIII. TRANSFORMATION ALGORITHM AND
IMPLEMENTATION DETAILS

In this section we formalize the algorithm for semantic
transformation, and discuss its correctness and cost sav-
ing. We also present its implementation architecture and
examine the test results.

A. Algorithm for Query Transformation
I* Stage 1: Obtain canonical condensed form-Con-

struct G, from G4: *I
a) (Map the Vertex Set): For each connected com-

ponent c in G4, partition the vertices into equivalence
classes so that any two vertices are in the same equivalent
class if they are connected by an explicit equijoin edge or
if there is a directed join cycle with only “ 1” edges in-

356 IEEE TRANSACTIONS O N KNOWLEDGE AND DATA ENGINEERING. VOL. I. NO. 3, SEPTEMBER lY8Y

dl

I

=

400

storaqe.oept >

/
storage.Material(?i storage.cxy

Fig. 6. Converted form Gy

cident at both of them. A vertex forms an equivalence
class by itself if it is not a part of any equijoins. These
equivalence classes (as well as constants) of G4 are
mapped as vertices of G,.

b) (Map the Edge Set): For any two equivalence
classes Ei, Ej, i # j, in G4, let S be the set of edges be-
tween the vertices in Ei and the ones in Ej. Let Z)i, Uj be
the vertices in G, corresponding to Ei, Ej. If S, is empty,
then there is no edge between ui and vj in G,. If all the
edges in S, have the same label “ I ’ ’ , or “ > ’ ’ , then
there is a single edge with the same label from vi to z/j in
G,. If S, contains edges with different labels, then there
is a single edge with the “ > ” label between Vi and Vj
(unless there is a contradiction).

c) (Remove the Redundant Edges): The edges in
each connected component of G, are successively exam-
ined in any order, and those implied by transitivity are
removed.

/* Stage 2: Obtain semantic expansion, G,: */
a) Mark any unmarked implication constraints whose

all predicates but one are currently implied by G,. (We
denote this predicate as an unimplied predicate.) Termi-
nate the stage if no new implication constraint gets qual-
ified for marking.

b) If there is at least one marked but unused impli-
cation constraint, add an edge corresponding to its un-
implied predicate to GC.

c) If any edges are added in step b), restore G, to its
transitive reduction. This may include removal of syn-
tactically redundant edges and/or merger of vertices. Re-
peat step a).

/* Stage 3: Eliminate redundant relations to obtain G,,:
“I

While there is a relation R that satisfies the following:
a) R is target-free.
b) All the restriction edges on nonjoin vertices of R

are redundant.
c) R has at most one join attribute.
d) R does not have any nonequijoins.
e) There is at least one other relation with a join at-

tribute, say “XB”, in the join class containing the join
attribute of R, say “R.A”, such that the subset depen-
dency “R.A 2 S. B” holds.

eliminate R from the query graph.
/* Stage 4: Eliminate redundant edges, to obtain Gr2:

“I
remove all the redundant (those implied by rest of the

query graph) join edges.

remove all the redundant (those implied by rest of the
query graph) restrictions if they are not profitable.

a) A redundant restriction on a join attribute is prof-
itable.

b) If no join attribute of the relation is indexed, then
all the cross redundant restrictions in that relation are prof-
itable.

c) If no join attribute of the relation is indexed, then
all locally redundant restrictions in that relation are prof-
itable only if they are on indexed attributes and the cor-
responding antecedent restrictions of the implication con-
straints are on nonindexed attributes.

/* Stage 5: Expand multimember nodes of Gr2 to obtain
G,-: “I

a) Replace each multimember node of G, by a span-
ning tree on its attribute vertices connected by equijoin
edges. While selecting vertices of the spanning tree, as-
sign priorities for attributes of those relations which have
one or more other joins between them.

b) Select any attribute vertex, an indexed one if
available, of the multimember node for joining the span-
ning tree to other spanning trees or single attribute ver-
tices.

c) Map the restriction(s) of the multimember node as
the restriction(s) on all the attribute vertices.

B. Correctness of the Algorithm

Let the original form of the query be denoted by Qa.
the expanded form on completion of the expansion stage
of the algorithm by Q,, and the final transformed form by
Q ,

Theorem I: The query forms Q,, Q,, and Qr are se-
mantically equivalent.

Proof Q, H Q,,,:
The semantic transformation from Q, to Q,,, takes place

in the expansion stage due to the addition of edges to G,
from the consequent atoms of the implication constraints.
(Note that initial conversion from G, to G, does not alter
the query semantics.) Addition of each such edge to G,
can be assumed to transform the graph to a new query
form. The transformation from Q, to Q,,, thus constitutes
a chain, Q, -+ Q,, + Qo2 + * * * -+ Q,.

Here, the difference between two consecutive forms Qa,
and Q,i + 1 is at most one edge, say ej (apart from any
differences resulted by restoring the graph to its transitive
reduction, which does not alter any semantics of the
query). Introduction of ei to Qai is due to the presence of
a set of edges Ei and Qi such that there exists an impli-
cation constraint Ei -+ ei. SO addition of ei to Qoi does not
alter the semantics of Q,;. In other words, Qai and Qai +
1 are semantically equivalent. Extending the argument for
the entire chain of transformations, it can be seen that Qa
and Q, are semantically equivalent.

Proof: Q, w Qf:
The transformation from Q,,, to Qf is accomplished in

the elimination stage of the algorithm. As above, let us
assume that the transformation from Q, to Q, can be rep-

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER

resented by a chain, say Q, + Q,, + Qm2 --* * . * +
Qf

The transformation from Q,i to Q,i + 1 can be due to
elimination of a relation (join) or removal of an edge by
the semantic reduction stage of the algorithm.

All the relations and edges qualified for elimination are
the ones found semantically redundant, and hence their
removal does not alter the semantics of the query. Hence,
we conclude that Q,i and Qmi + 1 are semantically equiv-
alent, implying the semantic equivalence of Q, and Q,

C. Cost Comparison of Query Forms
Theorem 2: Cost (Qf) < Cost (Qa) provided the es-

timation of the selection-join sequence is valid.
If Qf is different from Q,, let this difference be repre-

sented by three components: 1) set of edges Ef’ that are
present in Q, but not in Q,; 2) set of edges Eof that are
present in Q, but not in Qf ; 3) set of relations R; that are
present in Q, but not in Q,

The edges in Ef’ are syntactically or semantically re-
dundant since they have been added by the algorithm to
the initial graph during initial conversion (to G,) or se-
mantic expansion. The fact that they were not eliminated
during the semantic reduction implies that they belong to
the “profitable” category, provided the estimated selec-
tion-join sequence holds good. In this context they rep-
resent an additional profit for Qfas compared to Q,.

All the edges in Ei are also syntactically or semanti-
cally redundant because otherwise they would have been
retained in Qr too. The reason for their removal by the
semantic reduction stage was that they were not found to
be profitable. In other words, the edges in Ei represent
an elimination of the nonprofitable part from the original
query, if the estimations on the selection-join sequence
holds good.

In short, as compared to Q,, Eof represents the edges
lost, whereas Ef’ represents the edges gained by Qf. The
strategy of adding and eliminating the edges always con-
centrates on adding profitable edges and removing non-
profitable ones. Both these components thus represent
profit provided the sequence estimation of selections and
joins are valid.

The set Rof represents a clear profit for Qf because Q,
does not have the corresponding joins.

To conclude, the cost advantage of Qf over Q, can be
represented by C = uI*IEf’l + a2*\EJj + a3*1ROfI,
where al, a*, a3 are scaling factors to reflect the relative
importance of components as well as validity of the as-
sumption of the selection-join sequence. If these assump-
tions are valid, C represents a positive quantity, and in
that case the larger the sets Ef’, E:, R,f are, the higher is
the resulting cost advantage.

D. implementation Architecture
The optimization algorithm has been implemented on a

Vax 8530 running VMS (version 4). The core implemen-
tation language is C, supplemented with some used inter-

351

faces and screen utilities (ABF, OSL, Vifred) available
with Ingres (version 5).

The optimizer consists of three main modules-speci-
fication module, maintenance module, and processing
module.

The specification module is an interface for end users
to specify queries in an interactive mode and get the se-
mantically optimized query form back. For an ordinary
user, this is the only interface to the optimization system.
The frame associated with this module has two major sec-
tions, one for specifying the initial query form and the
other for displaying the optimized form. In both sections,
a query is defined to be a combination of two sets, namely,
a set of target attributes and a set of qualifications. Both
of these sets are entered and displayed in individual tab-
ular fields capable of scrolling independently, thus allow-
ing the handling of any number of target attributes and
qualifications. This module also supports an exhaustive
error management scheme. Target attributes and qualifi-
cation specifications entered by the user are validated
against the schema details, and any error is reported be-
fore passing the information to the processing module.
The specification frame has another section for displaying
the run time statistics from the processing module. This
statistic includes relative time spent by the processing
module on various components of the optimization algo-
rithm. Fig. 7 illustrates the frame associated with the
specification module. This module is implemented using
the Ingres utilities Vifred, ABF, and OSL.

The maintenance module is a background module which
is generally invisible to the normal user. A user with
maintenance privilege can use this module to change the
details of schema, index information, and semantics (i.e.,
relations and rules). The data dictionary containing rela-
tion names, their attributes, and index information as well
as the semantic details containing implication constraints
and subset constraints are stored in data structures similar
to tables. Tabular fields with independent scrolling fea-
tures are used to display them on the frame. This module
also has comprehensive error checking mechanisms to
make sure that all the semantics specified by the user are
valid for the existing schema definition. The frame asso-
ciated with the maintenance module is illustrated in Fig.
8. This module is also implemented using the Ingres util-
ities Vifred, ABF, and OSL.

The processing module implements the optimization
part of the algorithm. The information entered by the user
in the specification module is passed to this module after
some syntactic analysis and preliminary error checking.
This information (query) is analyzed by the processing
module in the context of existing schema and semantic
details (relations and rules). The processing module then
transforms the query through various sequential stages of
the algorithm, namely, transitive reduction, compressed
graph formation, semantic expansion, relation elimina-
tion, restriction elimination, and spanning tree genera-
tion. Errors and contradictions detected at any stage are
reported to the specification module, and processing is

358 IEEE TRANSACTIONS O N KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 3. SEPTEMBER I989

111 SPECIFlCNloi FM Z
SPECIFID iARlXT SET: SPECIFIU) GNLIFICNI[N SU: RW WE PROCESS STPTISIICS:
,--t----t +----.+----f~-+f ------+--------+ CD” dir
IRelation IAttribute I Iklatian IAttribute lCunstantlOprlRelatian IAttrubute IConstant Read from Screen:
+----LA- +----+ -____ --+----t-t----+---+--+ Initialize & :
lstaraye imm I Istorage ldept i I= I I Id I start sea Expn :
I I I Istoraye Iqty I I) I I ,400 I Start Rein Redcn:
I I I Istorage Imm I I= Imaterial lmnme I 1 Start Restr Elmn:
I I I Imaterial lrisk I I) I I 12 I start Span. Tree:
I I I I I I I I I I I kite to Screen :
I I I I I I I I I I I Finish Writing :
e---+----t t+----+---+----t--t----+
tWlFIED TARGET SEl: KUFIED WIFICATICN SET: Tot Optimization:
t----t-----t t---t---+----t-f--f---t---t
IRelation IAttribute I IRelation IAttribute ICanstan:lOprlRelation IAttribute IConstant
p-----t-t----t---c--e
Istorage IWarC I lstarage idept I I= I I Idl I
I I I Istorage IVY I I) I I 1400 I
I I I I I I I I I I I
I I I I I I I I I I I
I I

I I
I I I I I I I

I I I I I I I I I
+-----+----i --+---++-f----+----+- ---- +

Help(ff2) Hail(pF4) File Sche;la Blank(O) Inrertrcu(*F) Deleterou(*D) b(Enter) Exit(-)

Fig. 7. Query specification frame.

km 6S
623 6.53
6240 64.5
6270 672
63M 678
6340 6R4
6390 6%
6500 m:

168 zl

3 QXtt4 spECIFIC4TICtd Fb% 1
RELATIrn LIST Relation : IM’LIcATIU4 CXttXUfrCn
i t t---+---t 1 : : t--t-----t---+---+
IRelations I IAttribute IType lIndex?l It IA/CIRelation IAttribute ICenstantlDprlRelation IAttribute Ihstati
t t ----ti:: I ----t-----+-----4
leaployee I I I I I II la I -JPIOW Idaly I I) I I 140 I
Iaaterial I I I I I Ii Ic leaDlow ljob I I= I I I tW+?GER I imy i I I I I 12 la Istorage rdqt I
I I I I I I 12 la Istorage llylane I
I I I I I 12 lc Imaaterial lrisk I
I I I I I I 13 la Istorage Imane I
I I I I I I I3 Ic Istorage IVY I
I I I I I I I4 la Istorage ldw I
I I I I I I I4 la Istorage IVY I
t t t t 14 Ic kQploy* Iage l
PxFEmrIAL CXTPAIHIS I I I I I
~--~-t----t I I I I I
IRelation IAttribote I)!Relation l&tribute I I I I I I
t t---t I I I I I
Imaterial IMaP‘? I Istorage lenme II I I I I
I I I I I I I I i I I
I I I I I II I I I I
t ; : ------+---f ++-+----f---+-

lielp(pi2) Ml(FF4) Add&l R&e1 Expand(Enter) Insertrcu(*F) Deleterw(*D) f&(-1

Fig. 8. Schema maintenance frame.

I= I
I= Inaterial
I) I
I= I
I1 I
I= lqdoyee
I) I
I) I
I I
I I
I I
I I
I I

I I
+-+-------

I lrn I
lanaw I I
I I3
I lt?WM/
I 1500 I
ldept I
I 1600 I
I 135 I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

+--------+----.A

aborted in such cases. As the processing proceeds, the
module also collects various run time statistics. The final
form of the query as well as the collected statistics is
passed to the specification module upon completion of the
processing. The major portion of the processing module
is implemented in C language. A small portion is written
in Equel (query language supported by Ingres) to com-
municate with the storage tables where the schema and
semantics details are stored.

Currently, all the inter module communication uses
stored tables as the main data structures. Access to the
stored information is minimized in the processing module
due to efficiency considerations. On the other hand, the
other two modules assign importance to human factors and
user friendliness rather than operating speed. Manage-
ment of errors is uniform and exhaustive in all three mod-
ules, and the errors handled range from simple specifica-
tion mistakes to complex semantic contradictions.

E. Implementation Results
As a basic test of the implementation of the semantic

query optimizer, we selected the database scheme, se-

mantic rules, and query set introduced in Section III-F,
which are repeated below.

Schema and Relation Sizes (Indexed attributes are
underlined) :

employee (ssn, fname, lname, dept, job, salary, age)
[size: 37043 tuples]
storage (dept, material, qty) [size: 160 1 tuples]
material (material, risk) [size: 1801 tuples]

Semantics:
employee.salary > 40K - employee.job = “Man-

ager’ ’ .
storage. dept = dl, storage. material = mate-

rial.material + material.risk > 3.
storage.material = “Benzene” + storage.qty > 500.
storage.qty > 600, storage.dept = employee.dept -+

employee.age > 35.

Original and Optimized Queries:
Restriction Elimination:
QI: retrieve (storage. dept) where

storage. material = “BENZENE” and
storage.qty > 400

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER

Q;: retrieve (storage.dept) where
storage. material = ‘ ‘BENZENE’ ’

Index Introduction:
Qs retrieve (employee. lname, employee.fname)

where employee. salary > 42K

Q{: retrieve (employee. lname, employee. fname)
where employee.salary > 42K and
employee .job = ‘ ‘MANAGER”

Scan Reduction:
QG retrieve (employee. lname. employee.fname)

where employee.dept = storage.dept and
storage.qty > 625

Q;: retrieve (employee.lname. employee. fname)
where employee. dept = storage. dept and
storage.qty > 625 and
employee.age > 35

Relation Elimination:
Q4:

Q;:

retrieve (storage.material) where
storage.dept = “dl”and
storage.qty > 400 and
storage. material = material .material and
material.risk > 2

retrieve (storage.material) where
storage.dept = “Dl” and
storage.qty > 400

Test Procedure and Results: The employee table was
populated by actual data from a payroll file, and then
modified to ensure anonymity. The storage table was filled
by a random number generator. The material table was
loaded from a chemical data file. All the tables were then
extensively modified manually to be consistent with the
semantic rules. The relation “employee” had a primary
index (B-tree) on the attribute “job”, and “storage” had
a secondary index on (isam) on “dept”.

The four original queries (Q,, . . , Q4) and their opti-
mized counterparts (Q] . . , Qi) represent each of the four
transformation heuristics. Several tests were performed to
study the optimization costs and execution costs of the
above query pairs. Both these costs were measured in
terms of two resources consumed by the Ingres process,
-cpu-ms (CPU time in milliseconds) and dio cnt (direct
I/O requests). Since these parameters are highly influ-
enced by hardware configuration, we do not stress any
units. For us, the matter of relevance is only the relative
magnitude of these parameters.

All four queries (Q,, . . , Q4) were fed to the semantic
optimizer to generate the optimized forms (Q;, . . , Qi).
This process was repeated several times for each of the
queries to measure the optimization cost. The optimiza-e
tion cost (in terms of -cpu-ms and -die-cnt) did nc~ seem
to vary much from query to query and we obtained an
average of about 180 cpu-ms and 30-die-cnt.

Then the four original queries and the corresponding
four semantically optimized ones were run against the da-
tabase tables repeatedly, about 15 times. During each ex-

Fig. 9. Test results of semantic optimization.

ecution, cost of the query was monitored using the above
two parameters. Fig. 9 is a consolidation of the average
values from these 15 tests.

It can be observed from the above results that optimized
versions of the queries take less execution time (in terms
of CPU time and direct I/O requests) as compared to the
original ones. The magnitude of saving depends on the
size of the tables involved as well as the amount of po-
tential optimization possible. This saving is partially off-
set by the optimization cost which, as reported above, is
about 180 - cpu-ms and 30 -die-cnt. In most circum-
stances these values are much smaller than the saving in
execution cost, thus justifying semantic optimization. On
the other hand, if the original query is already in the op-
timized form, the optimization cost becomes an addition
to the execution cost. This is the situation with Q,, where
the execution cost of the optimized query added to the
optimization cost is larger than the execution cost of the
original query. In such cases, semantic optimization may
not be worth the effort.

The savings in the execution cost due to semantic op-
timization grows with the data size involved in answering
the query, whereas the optimization cost remains the
same. Hence, it is reasonable to assume the optimizaton
cost to be negligible as compared to the savings in the
execution cost with very large data sets. Also, if the op-
timized query is expected to be executed a multiple num-
ber of times, the optimization cost can be assumed to be
amortized over those executions.

If optimization cost becomes comparable to the execu-
tion cost, it becomes important to consider a compromise
between those two. A detailed analysis of such a trade-
off between optimization and execution costs is reported
in [33]. -

IX. CONCLUSION AND FUTURE EXTENSIONS
In this paper we have proposed and described a scheme

for utilizing semantic constraints for optimizing a data-
base query. We have tried to quantify the factors that de-
cide the profit of a query and have illustrated how rela-
tions, rules, and query can interact to arrive at an optimum
query form. The major contribution of the work is a
scheme that dynamically selects from a large collection of
rules only the profitable ones for a relation in a query con-
text.

An algorithm is introduced to transform the initial query
to a semantically equivalent one. The algorithm has its

360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 3. SEPTEMBER 1989

best performance if the estimations of selection-join se-
quences holds good in reality. Certain major factors like
elimination of redundant joins are independent of these
assumptions anyway. Cases where a query can be an-
swered just using semantic rules and the ones where query
conditions and/or semantic constraints imply a null an-
swer are also handled efficiently by the algorithm. In other
cases, semantic rules aid the query processing by gener-
ating useful additional constraints or by eliminating ex-
isting redundant constraints.

The algorithm is implemented with necessary user in-
terface modules and tested with real data of reasonable
volume. The test results are very encouraging, thus re-
vealing the potential savings a semantic optimizer can
provide.

Also an algorithm is devised to maintain semantic im-
plication constraints. The related maintenance scheme as-
sures that the semantic rule set is free from contradiction
and redundancy.

We are currently studying some additional types of con-
straints and optimization strategies to incorporate in the
algorithm. Usage of conventional constraints like func-
tional dependencies along with the semantic constraints
requires further analysis. Methods like introducing an ad-
ditional join to the original query (join introduction) as
an optimizing scheme [18] also needs further investiga-
tion from an implementation point of view.

Two possible future extensions to the system currently
under investigation are semantic categorization and par-
tial optimization. Both these extensions are more relevant
to programmed (repetitive) queries rather than interactive
ones. Statistically, more than 80 percent of all the data-
base queries are preprogrammed and highly repetitive. In
such a situation, it is quite sensible to optimize the queries
only once and save the optimized form for all future uses.
But such saved forms are valid only when the relevant
semantics (that used for optimization) remains un-
changed. Any change in the semantics mandates a repro-
cessing of those queries that used the changed semantics
for optimization.

In semantic categorization, semantic rules are given
weights according to their volatility. This categorization
is highly dependent on the nature of data and represents
only an approximate stability of different rules. The as-
sumption is that if a rule is more volatile, there are more
chances for an optimized query form that used the rule to
become invalid within a given time frame, thus mandating
a reoptimization. If the rules are categorized, the semantic
optimizer can then analyze them before using in an opti-
mization, in terms of profitability and volatility. These
factors can be weighed against each other to arrive at an
appropriate selection of optimization rules.

The second extension, partial optimization, becomes
useful in the case where a semantic information used to
optimize a query is subjected to change. In such a situa-
tion, we are studying the possibilities of avoiding a total
reprocessing of the user specified query. Reflecting the
semantic changes into the previously processed queries

without reprocessing them from the original form could
be profitable especially if semantic processing is costly.

Also, we are conducting more experiments using the
optimizer with various practical situations. Our studies
involve different table sizes, various storage structures and
secondary indexes, and different query patterns.

ACKNOWLEDGMENT

The authors are grateful to Prof. G. Ozsoyoglu for his
suggestions on constraint maintenance.

REFERENCES

[l] A. V. Aho, Y. Sagiv, and .I. D. Ullman, “Equivalences among re-
lational expressions,” SZAMJ. Cornput., vol. 8, pp. 218-246, 1979.

[2] M. M. Astrahan et al., “SYSTEM R: A relational approach to da-
tabase management, ” ACM TODS, vol. 1, June 1976.

[3] P. A. Bernstein et al., “Query processing in systems for distributed
databases (SDD-I),” ACM TODS, vol. 6, pp. 602-625, Dec. 1981.

[4] M. W. Blasgen and K. P. Eswaran, “Storage access in relational da-
tabases,” IBMSyst. J., vol. 16, no. 4, 1977.

[5] U. S. Chakravarthy, D. H. Fishman, and J. Minker, “Semantic query
optimization in expert systems and database systems,” in Proc. 1st
Int. Con& Expert Database Syst., Kiawah IsI., SC, Oct. 1984, pp.
326-341.

[6] U. S. Chakravarthy and J. Minker, “Multiple query processing in
deductive databases,” Lmiv. Maryland, Tech. Rep. TR-1154, Aug.
1985.

[7] U. S. Chakravarthy, J. Minker, and J. Grant, “Semantic query op-
timization: Additional constraints and contrail strategies,” in Proc.
1st Int. Conf. Expert Database Syst., Charleston, SC, L. Kershberg.
Ed., Apr. 1986, pp. 259-269.

[8] R. Epstein, M. Stonebraker, and E. Wong, “Distributed query pro-
cessing in database systems, ” in Proc. ACM SIGMOD, Austin. TX.
June 1978, pp. 169-180.

[9] G. Gentzen, “Untersuchugen iiber das logische schliessen,” in The
Collected Papers of Gerhard Gentzen, M. E. Szabo,
Ed. Amsterdam; The Netherlands: North-Holland, 1934, pp. 68-
132.

[IO] J. Grant and J. Minker, “Optimization in deductive and conventional
database systems, ” in Advances in Database Theory, Vol. I, H. Gal-
laire, J. Minker, and J. M. Nicolas, Eds. New York: Plenum, 1980.

[l l] L. R. Gotlieb, “Computing joins of relations,” ACM SIGMOD int.
Symp. Management Data, 1975, pp. 55-63.

[12] M. Hammer and S. B. Zdonik, Jr., “Knowledge based query pro-
cessing, ” in Proc. VLDB, 1980, pp. 137-147.

[13] H. B. Hunt and D. J. Rosenkrantz, “The complexity of testing pred-
icate locks,” in Proc. ACM SIGMOD, 1979, pp. 127-133.

[14] A. R. Hevner and S. B. Yao, “Query processing in distributed da-
tabase systems,” IEEE Trans. Sofrware Eng., vol. 5, pp. 177- 187,
May 1979.

[15] M. Jarke, “External semantic query simplification: A graph-theoretic
approach and its implementation in Prolog,” in Proc. 1st Int. Conf.
Expert Database Syst., Kiawah, Isl., SC, Oct. 1984, pp. 467-482.

[16] M. Jarke, J. Clifford, and Y. Vassiliou, “An optimizing Prolog front
end to a relational query system, ” in Proc. ACM SIGMOD, Boston,
1984, pp. 296-306.

[17] W. Kim, “Relational database systems,” ACM Comput. Surveys, vol.
3, pp. 185-212, Sept. 1979.

[18] J. J. King, “QUIST: A system for semantic query optimization in
relational databases,” in Proc. VLDB, 1981, pp. 510-517.

[19] A. Klug, “On conjunctive queries containing inequalities,” JACM.
vol. 35, pp. 146-160, Jan. 1988.

[20] R. Kowalski, “Logic for problem solving,” Artificial Intelligence Se-
ries, The Computer Science Library, 1983.

[21] R. Krishnamurthy, H. Bond, and C. Zaniolo, “Efficient optimization
of nonrecursive queries, ” in Proc. VLDB, 1986.

[22] R. Kung, E. Hanson, Y. Ioannidis, T. Sellis, L. Shapiro, and M.
Stonebraker, “Heuristic search in database systems,” in Proc. fst
Znt. Conf. Expert Database Syst., Kiawah Isl., SC, Oct. 1984, pp.
96-107.

[23] D. Maier, The Theory of Relational Databases. New York: Com-
puter Science, 1983.

SHENOY AND OZSOYOGLU: SEMANTIC QUERY OPTIMIZER 361

[24] 2. Manna, Mathematical Theory of Computat ion. New York:
McGraw-Hill, 1974. PP. 109-l 11. . .

[25] E. Mendelson, Introduction to Mathematical Logic. Princeton, NJ:
Van Nostrand, 1964.

1261 M. Mogenstem, “The role of constraints in database, expert sys-
tems, and knowledge representation, ” in Proc. 1st Int. Conf Expert
Database Syst., Kiawah Isl., SC, Oct. 1984, pp. 207-223.

[27] F. P. Palermo, “A database search problem,” in Information Systems
COINS IV, J. T. Tou, Ed. New York: Plenum.

1281 J. M. Nicholas and K. Yazdanian, “Integrity checking in deductive
databases,” in Logic and Databases, H. Galliere and J. Minker,
Eds. New York: Plenum, 1978.

[29] X. Qian and D. R. Smith, “Reformulation: an approach to efficient
constraint validation,” in Proc. VLDB. 1987.

[30] D. J. Rosenkrantz and H. B. Hunt, “Processing conjunctive predi-
cates and queries, ” in Proc. VLDB, 1980, pp. 64-72.

1311 T. K. Sellis, “Global query optimization,” in Proc. ACM SZGMOD,
May 1986, pp. 191-205.

1321 S. T. Shenoy and Z. M. Ozsoyoglu, “A system for semantic query
optimization, ” in Proc. ACM SZGMOD, May 1987, pp. 181-195.

1331 S. Shekar, J. Srivastava, and S. Dutta, “A formal mode1 of trade-off
between optimization and execution costs in semantic query optimi-
zation,” in Proc. VLDB, Aug. 1988, pp. 457-467.

[34] M. Siegel, “Automatic rule derivation for semantic query optimi-
zation,” Boston Univ., Tech. Rep. 87-012, 1987.

(351 -, “Automatic rule derivation for semantic query optimization,”
in Proc. 2nd Int. Conf. Expert Database Syst., Tysons Comers, VA,
1988, pp. 371-385.

]36] M. R. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design
and implementat ion of INGRES,” ACM TODS, vol. 1, Sept. 1976,
pp. 189-222.

[37] L. Sterling and E. Shapiro, The Art of Prolog. Cambridge, MA:
M.I.T. Press, 1986.

1381 X. Sun, N. Kamel, and L. M. Ni, “Solving implication problems in
database applications,” in Proc. ACMSIGMOD, May 1989, pp. 185-
192.

[39] J. D. Ullman, Principles of Database Systems, 2nd ed. New York:
Computer Science, 1978.

[40] E. W o n g and K. Youssefi, “Decomposit ion: A strategy for query pro-
cessing,” ACM TODS, vol. 1, pp. 223-241, Sept. 1976.

[41] S. B. Yao, ‘“Optimization of query evalulation algorithms,” ACM
TODS, vol. 4, no. 2, pp. 133-155.

[42] T. C. Yu and Z. M. Ozsoyoglu, “On determining tree query mem-
bership of a distributed query,” in Proc. INFOR, Aug. 1983, pp.
261-281.

Sreekumar T. Shenoy was born in Quilon, India.
He received the Bachelor of Engineering degree
in electronics and communicat ion from the Col-
lege of Engineering, Trivandrum, India, the
M.Tech degree in computer science from the In-
dian Institute of Technology, Madras, India, in
1982, and is complet ing the Ph.D. degree in com-
puter science from Case Western Reserve Univer-
sity, Cleveland, OH, in 1989.

Currently, he is a Database Consultant to Brit-
ish Petroleum America, Cleveland, OH. Previ-

ously, he was a member of the Software Development Team at Keltron,
Trivandrum, India. His research interests include semantic query process-
ing, fourth generat ion database languages, software engineering, and in-
telligent user interfaces.

Zehra Meral Ozsoyoglu received the B.Sc. de-
gree in electrical engineering, and the M.Sc. de-
gree in computer science from the Middle East
Technical University, Ankara, Turkey, in 1973
and 1975, respectively, and the Ph.D. degree in
computer science from the University of Alberta,
Alberta, Canada, in 1980.

In 1980, she was an Assistant Professor in the
Department of Computer Engineering and Sci-
ence, Case Western Reserve University, Cleve-
land, OH. Currently, she is an Associate Profes-

sor at the same university. Her research interests include nested relations
and complex objects in database systems, query optimization, and logic
based systems.

Dr. Ozsoyoglu is a member of the Association for Comput ing Machin-
ery and an Editor of IEEE Database Engineering, and was a recipient of
the IBM Faculty Development Award in 1983.

