Foundations of Databases

Datalog with Negation

(Slides by Thomas Eiter)

Foundations of Databases

The Issue |

e In While(*) and CALC(+)-,u, we have negation (—) as operator

e Thus, queries like complement of a relation, complement of transitive closure

can be easily expressed in these languages
e These queries can not be expressed in datalog (monotonicity)

e Desired: Extension of datalog with negation

Example: ready(D) «<— device(D), — busy(D)

e Giving a semantics is not straightforward because of possible cyclic definitions
Example:

single(X) <— man(X), — husband(X)
husband(X) <— man(X), — single(X)

Datalog with Negation

Foundations of Databases 2

Datalog ' Syntax

Defn. A datalog™ program P is a finite set of datalog™ rules r of the form

A« By,...,B, (1)

where n > 0 and

e Aisan atom Ry(Zy)

e Each B; is an atom R;(Z;) or a negated atom —R; (Z;)

e Ty, ..., T, are vectors of variables and constants (from dom)

e Every variable in Xy, . . ., Z,, must occur in some atom B; = R;(Z;) (‘safety”)

e the head of r is A, denoted H (7).

e the body of ris { By, . .., B, }, denoted B(r), and

B¥(r) ={R(%) | 3i B; = R(z)}, B~ (r) = {R(Z) | 3i B; = ~R(2)},

P has extensional and intensional relations, edb(P) resp. idb(P), like a datalog program.

Remarks: — “—"is as in LP often denoted by “not” (e.g., in DLV)

— Equality (=) and inequality (%, as — =) are usually available as built-ins, but usage must be “safe”

Datalog with Negation

Foundations of Databases 3

Datalog ' Semantics — The Problem

e |dea: Naturally extend the minimal-model semantics of datalog (equivalently, the least

fixpoint-semantics) to negation
e Generalize to this aim the immediate consequence operator
Tp(K) : inst(sch(P)) — inst(sch(P))

Defn. Given a datalog™ program P and K € inst(sch(P)), afact R(t) is an

immediate consequence for K and P, if either

~ R€edb(P)and R(t) € K, or

— there exists some ground instance 7 of a rule in P such that
x H(r) = R(t),
* BT(r) C K, and
* B~ (r)NnK = 0.

(That is, evaluate “—" w.r.t. K)

Datalog with Negation

Foundations of Databases

Problems with Least Fixpoints

e Natural trial: Define the semantics of datalog™ in terms of least fixpoint of T p.

e However, this suffers from several problems:

1. T p may not have a fixpoint:
P, = { known(a) « —known(a) }
2. T p may not have a least (i.e., single minimal) fixpoint:

P, =/ single(X) «<— man(X), ~husband(X)
husband(X) < man(X), —single(X) }

I = {man(dilbert)}

Datalog with Negation

Foundations of Databases

3. The least fixpoint of T p including I may not be constructible by fixpoint
iteration (i.e., not as limit T% (I) of {T%(I)};>0):

Py = Py U {husband(X) <« —husband(X), single(X)}
I = {man(dilbert)}) as above

Note: Operator T p is not monotonic!

Datalog with Negation

Foundations of Databases

Problems with Minimal Models

There are similar problems for model-theoretic semantics

e We can associate with P naturally a first-order theory > p as in the

negation-free case (write rules as implications):

R<f) — (ﬁ)Rl (fl)v s (_')Rn(fn)

VaVEy - VT, ((5) R (Z1) A+ A (7)) R (2,)) D R(T))

e stil, K € inst(sch(P)) is amodel of Xp iff Tp(K) C K (and models are

not necessarily fixpoints)

e However, multiple minimal models of > p containing I might exist (dilbert

example).

Datalog with Negation

Foundations of Databases

Solution Approaches

Different kinds of proposals have been made to handle the problems above
e Give up single fixpoint / model semantics: Consider alternative fixpoints (models),
and define results by intersection, called certain semantics.
Most well-known: Stable model semantics (Gelfond & Lifschitz, 1988;1991).
Still suffers from 1.
e Constrain the syntax of programs: Consider only fragment where negation can be
“naturally” evaluated to a single minimal model.

Most well-known: semantics for stratified programs (Apt, Blair & Walker, 1988), perfect

model semantics (Przymusinski, 1987).

Datalog with Negation

Foundations of Databases

e Give up 2-valued semantics: Facts might be true, false or unknown
Adapt and refine the notion of immediate consequence.

Most well-known: Well-founded semantics (Ross, van Gelder & Schlipf, 1991).

Resolves all problems 1-3

e Give up fixpoint / minimality condition: Operational definition of result.

Most well-known: Inflationary semantics (Abiteboul & Vianu, 1988)

Datalog with Negation

Foundations of Databases

Semi-Positive Datalog

“Easy” case: Datalog— programs where negation is applied only to edb relations.
e Such programs are called semi-positive
e For a semi-positive program, the operator T p is monotonic if the edb-part is
fixed, i.e., I|edb(P) = J]edb(P) implies Tp(I) C Tp(J)
Theorem . Let P be a semi-positive datalog program and I € inst(sch(P)). Then,

1. T p has a unique minimal fixpoint J such that I|edb(P) = J|edb(P).
Tp(I) € Tp(J)

2. X.p has a unique minimal model J such that Iledb(P) = J|edb(P).

Datalog with Negation

Foundations of Databases

Example

Semi-positive datalog can express the transitive closure of the complement of a
graph G:

neg-te(z,y) «— ~G(z,y)

neg-te(x, y) «— —G(x, z), neg-te(z,y)

Datalog with Negation

Foundations of Databases

| Stratified Semantics

e Intuition : For evaluating the body of a rule instance 7 containing —uR(f), the

value of the “negated” relation R(f} should be known.

1. Evaluate first R

2. if R(t) is false, then —R(£) is true,

3. if R(t) is true, then = R({) is false and the rule is not applicable.

e Example:

boring(chess) < —interesting(chess)

interesting(X) < difficult(X)
For I = {}, compute result { boring(chess)}.

e Note: this introduces procedurality (violates declarativity)!

Datalog with Negation

10

11

Foundations of Databases 12

Dependency graph for Datalog ' programs

Associate with each datalog™ program P a directed graph DEP(P) = (N, E),

called Dependency Graph, as follows:

e N = sch(P),i.e., the nodes are the relations.

e E={(R,R)|3Ire P:H(r)=RAR € B(r)},ie,acs R — R

from the relations in rule heads to the relations in the body.

e Mark each arc R — R’ with “*", if R(Z) is in the head of a rule in P whose

body contains — R/ (/)

Remark: edb relations are often omitted in the dependency graph

Datalog with Negation

Foundations of Databases 13

Example

P: husband(X) < man(X), married(X).
single(X) <« man(X), —husband(X).

husband~— “married
*
dep(P):
single "% man

Stratification Principle

fR=Ry— Ry — Ry — -+ R,_1 — R,, = R such that some R; — Rt

is marked with “*”, then R’ must be evaluated prior to .

Datalog with Negation

Foundations of Databases 14

Stratification

Defn. A stratification of a datalog program P is a partitioning

of sch(P) into nonempty, pairwise disjoint sets P; such that
@ifRe P, R € Pj,and R — R'isin DEP(P), theni > j;
()it R € P;, R' € Pj,and R — R'isin DEP(P) marked with “* then
1> 7.

Py, ..., P, are called the strata of P w.r.t. X..

Defn. A datalog program P is called stratified, if it has some stratification >_.

Datalog with Negation

Foundations of Databases 15

Evaluation Order

A stratification X gives an evaluation order for the relations in P, given I € inst(edb(P)):

1. First evaluate the relations in P; (which is —-free).

= All relations R in heads of P are defined. This yields J; € inst(sch(Py)).

2. Evaluate P, considering relations in edb(P) and P as edb(P;), where ~R(#) is true
if R(t)isfalsein T U Jy;
= All relations R in heads of P; are defined. This yields Jo € inst(sch(Py)).

3. Evaluate P; considering relations in edb(P) and Py, ..., P;_1 as edb(P;), where
—R(t)istrueif R()isfalse nTUJ, U--- U J;_1;

4. The result of evaluating P on I w.r.t. 3, denoted Py, (I), is givenby IUJ; U--- U J,,;

Datalog with Negation

Foundations of Databases

Example

P={ husband(X) «— man(X), married(X)
single(X) «— man(X), —husband(X) }

Stratification X:

Py = {man, married}, Py = {husband}, P3 = {single}

I = {man(dilbert)}:
1. Evaluate Pi: J; = {}
2. Evaluate Py: Jo = {}

3. Evaluate P3: J3 = {single(dilbert)}

e

Datalog with Negation

Foundations of Databases

Hence, P (I) = {man(dilbert)}, single(dilbert)}

Formal Definition of Stratified Semantics

Let P be a stratified Datalog™ program with stratification > = U?:l P;.

e Let P be the set of rules from P whose relations in the head are in F;, and set
edb(Py) = edb(P), edb(P;) = rels(U;;ll Pr)Uedb(P),i> 1.
e Forevery I € inst(edb(P)), let I3 = I and define

Iy

Iy

1=

IE

T4, (15)
T4, (I7)

T3 (L)

T (I%-1)

Ifp(Tpx (I5))
Ifp(Tpy (IT))

Ifp(Tpy(I71))

Ufp(Tpx (L;_1))

v 1

1V}

)

where T¢(J) = lim{T},(J)}i>o with T{,(J) = J and Tgl
and Ifp(Tq(J)) is the least fixpoint K of T such that K|edb(Q)) = J|edb(Q).

e Denote Py (I) = I

Datalog with Negation

b))
In—l

= To(T,(d)),

16

17

Foundations of Databases

Proposition. Foreveryi € {1,...,n},
o Ifp(Tpx(I})) exists,
o Ifp(Tp-(IX,)) = T%. (I} ;) holds,

o I¥ | C IV

Therefore, Py (I) is always well-defined.

Stratified semantics singles out a model, and in fact a minimal model.

Theorem. Py (I) is a minimal model K of P such that K|edb(P) = L.

Datalog with Negation

Foundations of Databases

Dilbert Example contd

P={ husband(X) «— man(X), married(X)
single(X) < man(X), —husband(X) }
edb(P) = {man}

Stratification 3: Py = {man, married}, P, = {husband}, Ps = {single}

L P={}
2. P, = {husband(X) «— man(X), married(X)}
3. P3 = {single(X) «— man(X), —husband(X)}

I = {man(dilbert)}:

1. IY = {man(dilbert)}
2. I3 = {man(dilbert)}
3. I¥ = {man(dilbert), single(dilbert)}

Hence, Ps(I) = {man(dilbert), single(dilbert)}

Datalog with Negation

18

19

Foundations of Databases

Stratification Theorem

e The stratification X2 above is not unique.

e Alternative stratification Y.’

Py = {man, married, husband}, P, = {single}

e Evaluation with respect to Y’ yields same result!
The choice of a particular stratification is irrelevant:

Stratification Theorem. Let P be a stratifiable datalog™ program. Then, for any
stratifications 3 and X" and I € inst(sch(P)), Ps(I) = Psx/(T).

e Thus, syntactic stratification yields semantically a canonical way of evaluation.

e The result Py, (1) is called the perfect model or stratified model of P for I.
Remark: Prolog features SLDNF — SLD resolution with (finite) negation as failure

Datalog with Negation

Foundations of Databases

Example: Railroad Network

Determine whether safe connections between locations in a railroad network

bis

olfe

e
quater

e Cutpoint ¢ for a and b: if ¢ fails, there is no connection between a and b
e Safe connection between «a and b: no cutpoints between a and b exist

e E.g., teris a cutpoint for olfe and semel, while quincy is not.

Datalog with Negation

20

21

Foundations of Databases 22

Relations:

has_icut_point(A, B):
safely_connected(A, B):

cutpoint(X, A, B):

link(X,Y):
linked(A, B):

direct connection from station X to Y (edb facts)
symmetric closure of [ink.
connected(A, B): there is path between A and B (one or more links)

each path from A to B goes through station X

there is at least one cutpoint between A and B.

A and B are connected with no cutpoint.

)
)
)
)
circumvent(X, A, B): there is a path between A and B not passing X
)
)
)

station(X): X is a railway station.

Datalog with Negation

Foundations of Databases 23

Railroad program P

Ry

Ro:
Rs:
Ry:
Rs:

Reg:
Ry
Rs:
Ro:

s linked(A, B) : —link(A, B).

linked(A, B) : —link(B, A).
connected(A, B) : —linked(A, B).
connected(A, B) : —connected(A, C), linked(C, B).
cutpoint(X, A, B) : — connected(A, B), station(X),

—circumvent(X | A, B).
circumvent(X, A, B) : —linked(A, B), X # A, station(X), X # B.
circumvent(X, A, B) : —circumvent(X, A, C), circumvent(X, C, B).
has_icut_point(A, B) : —cutpoint(X, A, B), X # A, X # B.
safely_connected(A, B) : — connected(A, B),

—has_icut_point(A, B).

Rio: station(X) : —linked(X, Y).

Remark: Inequality () is used here as built-in. It can be easily defined in stratified manner.

Datalog with Negation

Foundations of Databases 24

DEP(P):

station Q/”nked\“nk

circumvent

*
has_icut_point /connected
S~____= cutpoint

*

safely _connected

Stratification X2:

Py = {link, linked, station, circumvent, connected }
Py = {cutpoint, has_icut_point}

P3 = {safely_connected }

Datalog with Negation

Foundations of Databases 25

I(link) = { (semel, bis), (bis, ter), {ter,olfe), (ter, icsi), (ter, quincy),

(quincy,semel), (quincy,clote), (quincy,mamuk),..., (dalte,quater) }

Evaluation Py (I):
1. P = {link, linked, station, circumvent, connected }:

J1 = linked(semel, bis), linked (bis, ter), linked(ter, olfe), ...,
connected(semel, olfe), ..., circumvent(quincy, semel, bis), ...

2. Py = {cutpoint, has_icut_point }:
Jo = cutpoint(ter, semel, olfe), has_icut_point(semel, olfe) ...
3. P35 = {safely_connected}:

J3 = safely_connected(semel, bis), safely_connected(semel, ter)

But, safely_connected(semel, olfe) ¢ J3

Datalog with Negation

Foundations of Databases 26

Algorithm STRATIFY

Input: A datalog™— program P.
Output: A stratification > for P, or “no” if none exists.

1. Construct the directed graph G := DEP(P) (=(N, E)) with markers “*";
2. For each pair R, R’ € N do
if R reaches R’ via some path containing a marked arc
then begin F := EU{R — R’}; mark R — R’ with “**” end;
3. 7:=1;
4. Identify the set K of all vertices p in G s.t. no marked R — R’ isin E.
5. If K = () and G has vertices left, then output “no”
else begin output K as stratum P;;
Remove all vertices in K and corresponding arcs from G.
end;
6. If G has vertices left then begin % := 7 + 1; goto step 4 end
else stop.

Runs in polynomial time!

Datalog with Negation

Foundations of Databases 27

Inflationary Semantics for Datalog

Idea: A adopt a production-oriented view of datalog ', similar as in rule-base expert

systems

e A rule should be applied (fired) if the premises (=body literals) are satisfied with

respect to the current state

Rather than applying one rule at a time (as in expert systems), fire all applicable

rules in parallel

New facts may fire other rules

Repeat application of rules, until no more new facts are generated.

This amounts to the least fixpoint of the inflationary version of T p(K).

Datalog with Negation

Foundations of Databases

For any datalog ™ program P, let TS : inst(sch(P)) — inst(sch(P)) denote

the inflationary variant of T p:

TH(K) =KUTp(K)

Defn. Given a datalog™ program P and I € inst(edb(P)), the inflationary

semantics of P w.rt. I, denoted P, ¢(I), is the limit of the sequence
. 1 .
(T} (1)}iz0, where TH (I) = Land T5 7 (I) = TH(TE'(1)).

Notice:

inf (I) is well-defined for each program P and input database I.
inf(I) is a model of P containing I, but not necessarily a minimal model.

mf(I) is the not necessarily a minimal fixpoint of TJFF, containing I.

Datalog with Negation

Foundations of Databases

Example

P ={q(b) — —p(a), r(c)— —q(b) pla)r(c),~pb)}

Consider TJISi(I),i >0, for I = 0

0
T =1=)
The first two rules are applicable, as —p(a), ~q(b) are satisfied wrt. I,.

TH' (1) = {q(b),7(0)}.

The third rule is now applicable, as r(c), —p(b) are satisfied wrt. I;.

2
Tp (1) = {q(b),7(c), p(a)}.
No new facts can be obtained, as all rules have been applied.

Hence, Py, s (I) = TJISQ(I).

Note that P;,, ¢ (I) is not a minimal model of P containing /.

Datalog with Negation

28

29

Foundations of Databases 30

Example: One-Step-Behind Technique

Undirected graph G = (V, E), distanced : V2 — {0,1,2,...} U oo
(d(ac, y) = length of shortest path between x, y; oo if no path exists)

Define shorter(x,y,z',y") «q dist(z,y) < dist(z',y") < o0

Program P (edb(P) = {v, e}, where e is symmetric):

t(z,x) — v(x)
t,y) —t(z,2),e(2,y)
t1(x,y) —t(z,y)
shorter(z1,y1, 2, y2) < t1(x1,y1), t(z2,y2), ~t1(z2,92)

t1(x,y) is “one step behind” t(z, y)
i>0: t(z,y) € TJJSi(I) & dist(z,y) <i-—1,
tl(z,y) € ThH (I) & dist(x,y) <i—2

Datalog with Negation

Foundations of Databases 31

Inflationary vs Stratified Semantics

e Inflationary Semantics is well-defined for all datalog ' programs, not only for stratified

programs. It was used e.g. in the FLORID system.
e For semi-positive programs, inflationary and stratified semantics coincide.

e Datalog ' queries under stratified semantics are subsumed by inflationary semantics:

Theorem. For every stratified datalog™ program P with “output” relation R, there exists
a datalog ™ program P’ such that edb(P’) = edb(P) and for all I € inst(edb(P)),

Pz/nf (I)(R) = Pstrat(I> (R>

e The converse fails, i.e., there are datalog™ queries P under inflationary semantics

non-equivalent to any datalog ' query under stratified semantics (Kolaitis, 1991).

Intuitive reason: Stratified semantics has a static, fixed number of negation layers, while

inflationary semantics allows dynamically many.

Datalog with Negation

Foundations of Databases 32

| Stable Models Semantics

e Idea: Try to construct a (minimal) fixpoint by iteration from input

If the construction succeeds, the result is the semantics.

e Problem : Application of rules might be compromised.

Example:
P ={p(a) — —p(a), q(b) — p(a), p(a) «— q(b)}

(edb(P) is void, thus I is immaterial and omitted)

— T'p has the least fixpoint {p(a), ¢(b) }

Itis iteratively constructed T = {p(a), ¢(b)}
p(a) is included into T'% by the first rule, since p(a) ¢ T% = 0.

This compromises the rule application, and p(a) is not “foundedly” derived!

Note: T; = {p(a),q(b)}

Datalog with Negation

Foundations of Databases 33

Fixed Evaluation of Negation

e Reason: T p is not monotonic.

e Solution: Keep negation throughout fixpoint-iteration fixed.

Evaluation negation w.r.t. a fixed candidate fixpoint model J.

e Introduce for datalog ™ program and J € inst(sch(P)) a new immediate

consequence operator T'p j:

Datalog with Negation

Foundations of Databases

Immediate Consequences under Fixed Negation

Defn. Given a datalog™ program P and J, K € inst(sch(P)), a fact R(t) is an

immediate consequence for K and P under negation J, if either
e R € edb(P)and R(t) € K, or

e there exists some ground instance r of a rule in P such that
- H(r) = R(#),
- BT(r) CK, and
- B (r)nJ =10.

(That is, evaluate “—” under J instead of K)

Datalog with Negation

Foundations of Databases

Defn. For any datalog™ program P and J, K € inst(sch(P)), let
Tpi(K)={A| Ais an immediate consequence for K and P under negation J }
Notice:

e T p(K) coincides with T pk (K)

e T p ;3 is a monotonic operator, hence has for each K € inst(sch(P)) a least
fixpoint containing K, denoted Ifp(T p 5(K))

e Ifp(Tp(I)) coincides with I on edb(F) and is the limit T} y of the sequence

{T%5(I)}izo

where T ;(I) = T and T35 (I) = Tp (T} 5(I)).

Datalog with Negation

Foundations of Databases

Stable Models

Using TP7J, stable models are defined by requiring that J is reproduced by the
program:

Defn. Let P be a datalog™ program P and I € inst(edb(P)). Then, a stable
model for P and Lis any J € inst(sch(P)) such that

1. Jledb(P) =1, and

2. J=1fp(Tps(1)).

Notice: Monotonicity of TP7J ensures that at no point in the construction of
lfp(T p.3)(I) using fixpoint iteration from I, the application of a rule can be

compromised later.

Datalog with Negation

Foundations of Databases

Example

P={pla) = =pla), qO)—=pla), pla)—qd)}
(edb(P) is void, thus I is immaterial and omitted)

e Take J = {p(a),q(b)}. Then
- T%,J =0
- Tpy;=10
e Thus ifp(Tpy) =0 # J.
e Hence, the fixpoint J of T p is refuted.

e For P, no stable model exists; thus, it may be regarded as “inconsistent”.

Datalog with Negation

36

37

Foundations of Databases 38

Nondeterminism

e Problem : A datalog program may have multiple stable models:

P=/{ single(X) < man(X), ~husband(X)
husband(X) < man(X), -single(X) }

I = {man(dilbert)}

e Ji = {man(dilbert), single(dilbert)} is a stable model:
- T% 5, () = {man(dilbert)}
- T} 5, (I) = {man(dilbert), single(dilbert)} (apply 2nd rule)
- T}y, (I) = {man(dilbert), single(dilbert)} = T% 5 (T)

e Similarly, J; = {man(dilbert), husband(dilbert)} is a stable model
(symmetry)

Datalog with Negation

Foundations of Databases 39

| Stable Model Semantics — Definition

e Solution : Define stable semantics of P as the intersection of all stable models

(certain semantics):

Denote for a datalog™ program P and I € inst(edb(P)) by SM (P, I) the set of

all stable models for I and P.
Defn. The stable models semantics of a datalog ™ program P for

I € inst(edb(P)), denoted Py, (1), is given by

NSM(P,I), itSM(PTI)+#0,
Py, (T) =
B(P, 1), otherwise.

Datalog with Negation

Foundations of Databases 40

Examples

P=/{ single(X) «— man(X), “husband(X)
husband(X) «— man(X), —single(X) }

Psp({man(dilbert)}) = {man(dilbert)}

P ={p(a) « —p(a), q) —p(a), pla) — q(b)}

Psm(0) = {p(a),p(b),q(a),q(b)} = B(P,T).

Datalog with Negation

Foundations of Databases 41

Some Properties

e Proposition. Each J € SM(P,1I) is a minimal model K of P such that
Kledb(P) =1

e Proposition. Each J € SM (P, 1) is a minimal fixpoint K of T p such that
Kledb(P) =1

e Theorem. If P is a stratified program, than for every I € edb(P),
Psm(I) = Pstrat(I)-
Thus, stable model semantics extends stratified semantics to a larger class of

programs

e Evaluation of stable semantics is intractable: Deciding whether R(E) € Psm(I)

for given R(C) and I (while P is fixed) is coNP-complete.

Datalog with Negation

Foundations of Databases 42

Well-Founded Semantics

e Principle: Use three truth values: Some facts are true, some false, all others are

unknown.

e Intuition:
— Positive literals must be derived by applying rules whose body is true

— Conclude that a negated atom —A is true, if A can not be derived by

assuming that all facts which are not true are false.
Example :

Program P: q(a) - —p(a),r(a) 7(a)— —u(a)

I={}

Datalog with Negation

Foundations of Databases 43

Let H B(P,I) be the set of all possible facts with constants adom (P, I) for input I.
1. I'is a lower bound of the derivable positive facts J ..

2. Al other facts H B(P,I) \ I are an upper bound of the facts J_ which can’t be derived

(and thus are safely false), denoted U—.

3. Thus, the consequences for I and P under negation at boundary
I = HB(P,I)\ U-) give an upper bound U+ for the derivable positive facts.

4. All other facts H B(P,I)\ U+ give then a lower bound L— of the facts which can be

safely false.

5. Thus, the consequences for L+ and P under negation at boundary
(U+ = HB(P,I) \ L—) are a new lower bound for the derivable positive facts,
denoted L+

6. I C L+ = iterate the process

Datalog with Negation

Foundations of Databases

true (+) undefined (?) false (—)
L+° (where L+° =1)
+ 4
+ 4+ 4
complement < U_‘
evaluate Ui
lfp(THB(p I)\U-—¢ (L‘i‘i)) =
t+++++ [+F++++ [++
Up(Tr i (L)) I
complement < L—i

evaluate .

lfp(THB(P,I)_.L_i(L—i-Z)) = L_|_2+1

UYp(Ty i (L+9)) RS
++ 4+

Datalog with Negation

Foundations of Databases

| Formal Definition

—

Define for P and J € inst(sch(P)) the operator T p 3 on inst(sch(P)) by

'f;(K) = Ifp(Tpx(J))

i.e., the least fixpoint under negation as by K, which includes J.

Notice:

—

e T p;(K) is computable by fixpoint iteration of T p k starting from J.

—

—

e Tp 3 is anti-monotonic, i.e., K C K’ implies that T p 3 (K')

C Tpi(K).

_— 2 o
e Therefore, the “square operator” Tp 3 (K) := Tp (T p3(K)) is monotonic

(in fact continuous).

/\2
e Thus, Tp’,]

iteration from () .

Datalog with Negation

/\2
has a least fixpoint, {fp(T p,3), which can be obtained by fixpoint

44

45

Foundations of Databases 46

Example

Program P: q(a) < —p(a),r(a) p(a) — u(a) s(a) < —t(a)

r(a) — —u(a) t(a) < —s(a)

2
Fixpoint iteration of Tpy for I = {}:

Tpr =0

Trr = Up(Tpy(D) = {r(a), s(a), (a)}

ﬁz — Up(Tp, (i) s(ar ity @) ={r(a),qa)}

T/124 =Up(Tp {r(a),qa)} (D) ={r(a),q(a), S(a)v/tgg} .,
3125 = lf/p(\’I;)P,{r(a),q(a),s(a),t(a)}(I)) ={r(a),q(a)} =Tp1 =Ufp(Tp1)
Tp1 =Tp1

e Intuitively, the facts 7(a) and g(a) are derivable, and thus should be true.

—3
e Thefactsin HB(P,I)\ Tp1 = {u(a),p(a)} are then not derivable and should be false.

e The remaining facts s(a) and ¢(a) are unknown

Datalog with Negation

Foundations of Databases a7

Well-founded Semantics

Defn. For any datalog™ program P and input I € inst(edb(P)), a fact
A € HB(P,I) is under well-founded semantics

—2
o true,if A € Ifp(Tp1),
— ——2
o falseif A ¢ Tpr(lfp(Tpy)), and

e unknown otherwise.

The positive outcome of program P for I under well-founded semantics, denoted
/\2
Py(D).is Ufp(Tpy).

Example: For P and I above,

Pyy(M) = {r(a), q(a)}

Datalog with Negation

Foundations of Databases

Example: Winning Positions

A two player game on a directed graph G = (V, F)).
e Players | and Il draw alternating.

e The drawing player moves from the current position following some arc to the

next position.

e A player loses, if he can’'t move.
b —=c
N/
e a g
NS S
d —= f

Datalog with Negation

Foundations of Databases

Example: Winning Positions/2

b —=c¢
e \a/ g
N/
d —= f/
e Wanted: winning positions, i.e., nodes x from which the drawing player has a

winning strategy (can play so that he will certainly win)
e In the example, the winning positions are d and f

e Elegant solution in datalog ' under well-founded semantics:

P={win(X) « eX,Y),~win(Y) }

Datalog with Negation

48

49

Foundations of Databases

Some Important Properties

e Proposition. The well-founded semantics is well-defined for every datalog ' program
P and input database 1.

e Theorem. If P is a stratified datalog™ program, then for every I € inst(edb(P)) it
holds that A € H B(P, 1) is true (resp., false) under well-founded semantics iff
A S Pstrat(I) (resp., A ¢ Pstrat (I))

Well-founded semantics properly extends stratified semantics and approximates the

stable semantics

e Theorem. For every datalog™ program P and I € inst(edb(P)), if A € HB(P,I)
is true (resp., false) under well-founded semantics, then A is true (resp., false) in every
stable model of P for I.

e Evaluation of well-founded semantics is tractable: Deciding whether R(¢) € P, (I for

given R(E’) and I (while P is fixed) is feasible in polynomial time.

Datalog with Negation

Foundations of Databases

Readings

e S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

Chapter 14 and 15.

Datalog with Negation

