
Manolis Koubarakis
Knowledge Technologies

Ontology Development and
Engineering

Manolis Koubarakis
Knowledge Technologies

Outline

• Ontology development and engineering
• Key modelling ideas of OWL 2
• Steps in developing an ontology
• Creating an ontology with Protégé OWL –

useful ontology design patterns

Manolis Koubarakis
Knowledge Technologies

Ontology Engineering
• Ontology engineering is knowledge

engineering.
• Developing ontology engineering techniques,

methodologies and tool support is a core
research problem and there are today various
interesting ontology engineering methodologies
(accompanied by relevant tools).

• We will present the ontology development
methodology championed by the Protégé and
CO-ODE groups at Stanford and Manchester.

Manolis Koubarakis
Knowledge Technologies

Goals of this Presentation
• To outline one possible way (a recipe) to

construct an OWL 2 ontology.

• To emphasize ontology design patterns i.e.,
known solutions to recurrent modeling problems
that have been tested in different applications
and are now well documented.

• To demonstrate how to use the Protégé OWL to
implement these ontology design patterns.

Manolis Koubarakis
Knowledge Technologies

When to Use OWL?
• We need to consider carefully the following features of OWL (and

any other DL-based language) to decide whether OWL is the right
language for building an ontology for a domain at hand:

– Object-centered (based on individuals with unique identity, classes and
properties).

– Terminological: Supports the building of complex terms (noun phrases)
in the form of classes. Individuals are asserted to belong to these
classes. There is no way to express complex quantifications or
disjunctions (as in FOL).

– Deductive: not just a passive repository of assertions.
– Incremental: partial, incomplete descriptions of individuals are

acceptable and can be refined later.
– Based on self-organization of concepts in a subsumption hierarchy.
– Based on open world assumption.

Manolis Koubarakis
Knowledge Technologies

Key Modeling Ideas of OWL (and related
languages based on DLs)

• OWL 2 allows us to represent knowledge about a domain using the
following constructs:
– Entities

• Classes
• Individuals
• Properties (object properties and data properties)

– Property restrictions
– Class expressions
– Data ranges

• Data types
– Axioms

• Class axioms
• Property axioms
• Assertions

– Annotations
– Importing of other ontologies

Manolis Koubarakis
Knowledge Technologies

Classes

• In OWL (as in DLs), we can distinguish
two kinds of classes:
– Defined classes
– Primitive classes

Manolis Koubarakis
Knowledge Technologies

Defined Classes
• A defined class is like an “if and only if” statement in logic.

• Example: A driver can be defined to be exactly a person who drives
a vehicle.

• With a defined class, we give necessary and sufficient conditions for
membership in a class.

• Thus a defined class allows deduction in two directions. For
example:
– If someone is a driver, then he/she is a person and he/she drives a

vehicle.
– If someone is a person and he/she drives a vehicle, then he/she is a

driver.

Manolis Koubarakis
Knowledge Technologies

Defined Classes (cont’d)
• Defined classes in OWL 2 are introduced as follows:

– In the functional-style syntax, using an equivalent classes axiom:
EquivalentClasses(CE1 ... CEn)

– Similarly in other syntaxes.

• Example:
EquivalentClasses(a:Driver

ObjectIntersectionOf(
ObjectSomeValuesFrom(a:drives a:Vehicle)
a:Person))

Manolis Koubarakis
Knowledge Technologies

Primitive Classes
• A primitive class includes only necessary (but not

sufficient conditions) for membership.

• Example: It is hard to define a dog (or any other natural
kind). However, we might want to say:
– Among other things, a dog is something that eats bones.

• In contrast to defined classes, primitive classes support
deductions in only one direction. For example:
– If something is a dog, then we can infer that it eats bones.

Manolis Koubarakis
Knowledge Technologies

Primitive Classes (cont’d)

• Primitive classes in OWL are introduced as
follows:
– In the functional-style syntax, using a subclass axiom:

SubClassOf(CE1 CE2)

– Similarly in other syntaxes.

• Example:
SubClassOf(a:Dog

ObjectSomeValuesFrom(a:eats a:Bone))

Manolis Koubarakis
Knowledge Technologies

Determining whether a class is
defined or primitive

• Defined
– The complete definition of the class is known and

relevant.
– When one wants the system to determine class

membership (well, if we do not want to do this, why
use OWL?).

• Primitive concepts are usually found near the
top of a generalization hierarchy and defined
concepts typically appear as we move further
down by specializing general concepts with
various restrictions.

Manolis Koubarakis
Knowledge Technologies

Definitional vs. Incidental
Properties

• It is important to distinguish between a class’
true definition and any incidental properties.

• Example: Red Bordeaux wines are always dry.
But the property of being dry is certainly not a
part of the definition of the class
RedBordeauxWine (only the color and the
region define a wine to be a Red Bordeaux).

Manolis Koubarakis
Knowledge Technologies

Definitional vs. Incidental
Properties (cont’d)

• In OWL, incidental properties are asserted
using extra class axioms (in addition to
the axioms that define the class).

Manolis Koubarakis
Knowledge Technologies

Definitional vs. Incidental
Properties (cont’d)

• This distinction must be made in OWL for all
classes, not just defined classes.

• The ontology engineer must decide on
ontological grounds whether a restriction
should be taken as
– Part of the meaning of a class (and thus participate

in classification).
– Derived property to be inferred once class

membership is known.

Manolis Koubarakis
Knowledge Technologies

Individuals vs. Classes

• Imagine that we are developing a
knowledge base of Greek foods and
wines.

• Consider the following terms:
– Wine (class)
– Red Wine (class)
– Xinomavro (class)
– Xinomavro Boutari (class or individual?)

Manolis Koubarakis
Knowledge Technologies

Individuals vs. Classes (cont’d)

• For an application that will recommend wine to
eaters (e.g., Xinomavro Boutari goes nicely with
kontosouvli), Xinomavro Boutari can be an
individual.

• What if we are also interested in the year the
wine was produced?
– “2004 Xinomavro Boutari” is a better choice for

individual with Xinomavro Boutari being a class of
which the former is an instance.

Manolis Koubarakis
Knowledge Technologies

Individuals vs. Classes (cont’d)

• What if the ontology covers the inventory
of the restaurant?
– Individual bottles are the appropriate

individuals to have.

Manolis Koubarakis
Knowledge Technologies

Classes vs. Properties

• In a natural language description of the
domain, usually nouns (or noun phrases)
suggest the use of classes while verbs (or
verb phrases) suggest the use of
properties.

• Example: A Bordeaux wine is any wine
produced in the Bordeaux region of
France.

Manolis Koubarakis
Knowledge Technologies

Classes vs. Properties (cont’d)

• But there might be cases when it might be
difficult to decide whether a term (in this
case a noun) should be a concept or a
property.

• Examples:
– Father (e.g., “George is a new father” vs.

“George is the father of Mary”).
– Grape (e.g., grape as a kind of food vs. grape

used to make some kind of wine).

Manolis Koubarakis
Knowledge Technologies

Classes vs. Properties (cont’d)

• The question to ask is:
– Can the description stand on its own without

implying an unmentioned object related to the object
in question?

• If the answer is yes, then it should be a class
otherwise it should be a property.

• If the term should play both roles then we can
use the prefix “has” in the name of the property
(as in “has-grape”) to solve the problem.

Manolis Koubarakis
Knowledge Technologies

Things to Remember (from
Ontology 101 tutorial)

• There is no one correct way to model a
domain— there are always viable
alternatives.

• The best solution almost always depends
on the application that you have in mind
and the extensions that you anticipate.

• Ontology development is necessarily an
iterative process.

Manolis Koubarakis
Knowledge Technologies

Steps in Developing an Ontology
The ontology development methodology championed by Alan Rector and the CO-ODE
group at the University of Manchester has the following steps:

1. Establish the purpose of the ontology
• Without purpose, no scope, requirements, evaluation
• Competency questions

2. Consider re-using existing ontologies. (but the rest of the steps apply for the
“build the ontology from scratch” scenario).

3. Informal/semi-formal knowledge elicitation
• Collect the terms
• Organise terms informally
• Paraphrase and clarify terms to produce informal concept definitions
• Diagram informally

Card sorting and laddering are two useful knowledge elicitation techniques that can be
used here.

4. Refine requirements and tests

Manolis Koubarakis
Knowledge Technologies

Steps in Developing an Ontology
(cont’d)

5. Implementation
– Paraphrase and comment at each stage before implementing
– Develop normalised schema and skeleton
– Implement prototype recording the intention as a paraphrase

• Keep track of what you meant to do so you can compare with what happens
– Implementing logic-based ontologies is programming

– Scale up a bit
• Check performance

– Populate
• Possibly with help of text mining and language technology

6. Evaluate and quality assure
– Against goals
– Include tests for evolution and change management
– Design regression tests and “probes”

7. Monitor use and evolve
– Process not product!

Manolis Koubarakis
Knowledge Technologies

The Steps in Detail
• See any of the following sources:

– The ISWC2005 tutorial “Ontology Design Patterns and Problems:
Practical Ontology Engineering using Protege-OWL” by Alan Rector,
Natasha Noy, Nick Drummond and Mark Musen. Available at
http://www.co-ode.org/resources/tutorials/iswc2005.

– The Ontology Building slides of Alan Rector given as part of the course
CS646 (Dept. of Computer Science, University of Manchester).
Available at http://www.cs.man.ac.uk/~rector/modules/CS646/.

I will use the presentation http://www.cs.man.ac.uk/~rector/modules/CS646/Lecture-
Handouts/Lect-2-Ontology-building-2007.pdf .

– The tutorial of the CO-ODE group at the University of Manchester on
“Ontologies and OWL”. Available at http://www.co-
ode.org/resources/tutorials/intro/.

http://www.co-ode.org/resources/tutorials/iswc2005�
http://www.cs.man.ac.uk/~rector/modules/CS646/�
http://www.cs.man.ac.uk/~rector/modules/CS646/Lecture-Handouts/Lect-2-Ontology-building-2007.pdf�
http://www.cs.man.ac.uk/~rector/modules/CS646/Lecture-Handouts/Lect-2-Ontology-building-2007.pdf�
http://www.co-ode.org/resources/tutorials/intro/�
http://www.co-ode.org/resources/tutorials/intro/�

Manolis Koubarakis
Knowledge Technologies

Readings
• Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101:

A Guide to Creating Your First Ontology. Available from
http://protege.stanford.edu/publications/ontology_development/ontology101-
noy-mcguinness.html

This is an excellent introductory paper.

• Ronald J. Brachman, Deborah L. Mcguinness, Peter F. Patel-Schneider,
Lori Alperin Resnick and Alexander Borgida. Living With Classic: When and
How to Use a KL-ONE-like language. In J. Sowa (eds.) Principles of
Semantic Networks: Explorations in the Representation of Knowledge.
Morgan Kaufmann 1991. Available from http://www-out.bell-
labs.com/project/classic/papers/sowabook.ps.gz

This paper uses the language Classic which is one of the early DL-based
systems. It is a must if you want to understand DL-based systems and use
them! It can be read very easily even if you have never seen Classic before.

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html�
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html�
http://www-out.bell-labs.com/project/classic/papers/sowabook.ps.gz�
http://www-out.bell-labs.com/project/classic/papers/sowabook.ps.gz�

Manolis Koubarakis
Knowledge Technologies

Readings (cont’d)
• Recent tutorial by Robert Stevens concentrating

on OWL2 using “family history” as an example.
See
http://www.cs.man.ac.uk/~stevensr/menupages/f
hkb.php.

• See lots of other OWL related material produced
at the University of Manchester at
http://owl.cs.manchester.ac.uk/.

http://www.cs.man.ac.uk/~stevensr/menupages/fhkb.php�
http://www.cs.man.ac.uk/~stevensr/menupages/fhkb.php�
http://owl.cs.manchester.ac.uk/�

Manolis Koubarakis
Knowledge Technologies

Readings (cont’d)
– Yimin Wang, York Sure, Robert Stevens, Alan L. Rector: Knowledge

Elicitation Plug-In for Protégé: Card Sorting and Laddering. ASWC
2006: 552-565.

– A Rector. Modularisation of Domain Ontologies Implemented in
Description Logics and related formalisms including OWL. in Knowledge
Capture 2003, (Sanibel Island, FL, 2003), ACM, 121-128.
Available from http://www.cs.man.ac.uk/~rector/home_page_rector/alr-
papers.html

This paper explains some of the rationale of various steps in the
ontology development method we presented.

– Alan L. Rector, Chris Wroe, Jeremy Rogers, Angus Roberts: Untangling
taxonomies and relationships: personal and practical problems in
loosely coupled development of large ontologies. K-CAP 2001: 139-146
Available from http://portal.acm.org/citation.cfm?id=500760

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Yimin.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sure:York.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Stevens:Robert.html�
http://www.informatik.uni-trier.de/~ley/db/conf/aswc/aswc2006.html�
http://www.informatik.uni-trier.de/~ley/db/conf/aswc/aswc2006.html�
http://www.cs.man.ac.uk/~rector/home_page_rector/alr-papers.html�
http://www.cs.man.ac.uk/~rector/home_page_rector/alr-papers.html�
http://portal.acm.org/citation.cfm?id=500760�

Manolis Koubarakis
Knowledge Technologies

Readings (cont’d)
• Aldo Gangemi: Ontology Design Patterns for Semantic Web

Content. International Semantic Web Conference 2005: 262-276.
• Valentina Presutti, Aldo Gangemi: Content Ontology Design

Patterns as Practical Building Blocks for Web Ontologies. ER 2008:
128-141.

• Mikel Egaña, Alan Rector, Robert Stevens, Erick Antezana.
Applying Ontology Design Patterns in bio-ontologies. EKAW 2008,
LNCS 5268, pp. 7-16. Available from
http://www.springerlink.com/content/d2lp476v0p281q73/?p=f9d5500
ce8b24589b2baf5eef213b0f5&pi=3

• Portals for ontology design patterns:
– http://ontologydesignpatterns.org/wiki/Main_Page
– http://www.gong.manchester.ac.uk/odp/html/index.html

http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2005.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Presutti:Valentina.html�
http://www.informatik.uni-trier.de/~ley/db/conf/er/er2008.html�
http://www.springerlink.com/content/d2lp476v0p281q73/?p=f9d5500ce8b24589b2baf5eef213b0f5&pi=3�
http://www.springerlink.com/content/d2lp476v0p281q73/?p=f9d5500ce8b24589b2baf5eef213b0f5&pi=3�
http://ontologydesignpatterns.org/wiki/Main_Page�
http://www.gong.manchester.ac.uk/odp/html/index.html�

	Ontology Development and Engineering
	Outline
	Ontology Engineering
	Goals of this Presentation
	When to Use OWL?
	Key Modeling Ideas of OWL (and related languages based on DLs)
	Classes
	Defined Classes
	Defined Classes (cont’d)
	Primitive Classes
	Primitive Classes (cont’d)
	Determining whether a class is defined or primitive
	Definitional vs. Incidental Properties
	Definitional vs. Incidental Properties (cont’d)
	Definitional vs. Incidental Properties (cont’d)
	Individuals vs. Classes
	Individuals vs. Classes (cont’d)
	Individuals vs. Classes (cont’d)
	Classes vs. Properties
	Classes vs. Properties (cont’d)
	Classes vs. Properties (cont’d)
	Things to Remember (from Ontology 101 tutorial)
	Steps in Developing an Ontology
	Steps in Developing an Ontology (cont’d)
	The Steps in Detail
	Readings
	Readings (cont’d)
	Readings (cont’d)
	Readings (cont’d)

