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An Introduction to OWL 2
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Acknowledgement

• This presentation is based on the OWL 2 
Web Ontology Language Structural 
Specification and Functional-Style Syntax 
available at 
http://www.w3.org/TR/owl2-syntax/ 

• Much of the material in this presentation is 
verbatim from the above specification.
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The Semantic Web “Layer Cake”
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OWL 2 Basics

• OWL 2 is the current version of the 
   Web Ontology Language and a 
   W3C recommendation as of 
   October 2009.

• The previous version of OWL (OWL 1) became 
a W3C recommendation in 2004.

• All W3C documents about OWL 2 can be found 
at 
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
 .

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/


Knowledge Technologies                                                             Manolis Koubarakis6

The Structure of OWL 2
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OWL 2 Basics (cont’d)

• OWL 2 is language for writing ontologies 
for the Web.

• It is based on well-known concepts and 
results from description logics.

• Like DLs, OWL 2 is a language for 
representing knowledge about things, 
groups of things, and relations 
between things. 
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OWL 2 Terminology

• The things or objects about which 
knowledge is represented (e.g., John, 
Mary) are called individuals.

•  Groups of things (e.g., female) are called 
classes.

• Relations between things (e.g., married) 
are called properties.

• Individuals, classes and properties are 
called entities.



Knowledge Technologies                                                             Manolis Koubarakis9

OWL 2 Terminology (cont’d)

• As in DLs, entities can be combined using 
constructors to form complex 
descriptions called expressions.

• To represent knowledge in OWL (like in 
any other KR language), we make 
statements. These statements are called 
axioms.
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Annotations

• Entities, expressions and axioms form the logical part of 
OWL 2. They can be given a precise semantics and 
inferences can be drawn from them.

• In addition, entities, axioms, and ontologies can be 
annotated. 

• Example: A class can be given a human-readable label 
that provides a more descriptive name for the class. 

• Annotations have no effect on the logical aspects of an 
ontology. For the purposes of the OWL 2 semantics, 
annotations are treated as not being present.
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IRIs

• Ontologies and their elements are 
identified using International Resource 
Identifiers (IRIs).

• In OWL 2, an IRI can be written in full or it 
can be abbreviated as prefix:lname as 
in XML qualified names where prefix is 
a namespace and lname is the local 
name with respect to the namespace.
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The Structure of an Ontology
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Ontology IRI and Version IRIs
• An ontology may have an ontology IRI, which is used to identify it.

• If an ontology has an ontology IRI, the ontology may additionally have a version IRI, 
which is used to identify the version of the ontology. The version IRI may, but need 
not be equal to the ontology IRI. 

• An ontology series is identified using an ontology IRI, and each version in the series 
is assigned a different version IRI. Only one version of the ontology is the current 
one.

• Example: 
– Ontology IRI: <http://www.example.com/my> 
– Version IRIs: <http://www.example.com/my/1.0>, 

<http://www.example.com/my/2.0>, …

• An ontology without an ontology IRI must not contain a version IRI. 

• Ontology IRIs and version IRIs should satisfy various uniqueness constraints that 
OWL 2 tools should check, for detecting possible problems.
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Ontology Document

• Each ontology is associated with an ontology 
document which physically contains the 
ontology stored in a particular way (e.g., a text 
file).

• An ontology document should be accessible via 
the IRIs determined by the rules defined in the 
W3C specification.
– Example: The document of the current version of an 

ontology should always be accessible via the ontology 
IRI and the current version IRI.
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Imports

• An OWL 2 ontology can import (directly 
or indirectly) other ontologies in order 
to gain access to their entities, 
expressions and axioms, thus providing 
the basic facility for ontology 
modularization. 

• Example: an ontology of sensors can 
import a geospatial ontology to specify the 
location of sensors.
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OWL 2 Syntaxes
• The Functional-Style syntax. This syntax is designed to be easier 

for specification purposes and to provide a foundation for the 
implementation of OWL 2 tools such as APIs and reasoners. This is 
the syntax we will use in this presentation.

• The RDF/XML syntax: this is just RDF/XML, with a particular 
translation for the OWL constructs. Here one can use other popular 
syntaxes for RDF, e.g., Turtle syntax.

• The Manchester syntax: this is a frame-based syntax that is 
designed to be easier for users to read. 

• The OWL XML syntax: this is an XML syntax for OWL defined by 
an XML schema.
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BNF Grammar for the Functional 
Syntax of OWL 2

ontologyDocument := { prefixDeclaration } Ontology
prefixDeclaration := 'Prefix' '(' prefixName '=' fullIRI 
')'
Ontology :=
    'Ontology' '(' [ ontologyIRI [ versionIRI ] ]
       directlyImportsDocuments
       ontologyAnnotations
       axioms
    ')'
ontologyIRI := IRI
versionIRI := IRI
directlyImportsDocuments := { 'Import' '(' IRI ')' }
axioms := { Axiom } 
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Example

Prefix(:=<http://www.example.com/ontology1#>)
Ontology(<http://www.example.com/ontology1>

 Import(<http://www.example.com/ontology2>)
 Annotation(rdfs:label "An example ontology")
 

   SubClassOf(:Child owl:Thing)
) 
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Things One Can Define in OWL 2
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Classes

• Classes (e.g., a:Female) represent sets 
of individuals.

• Built-in classes: 
– owl:Thing, which represents the set of all 

individuals. 
– owl:Nothing, which represents the empty 

set.
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Things One Can Define in OWL 2 
(cont’d)
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Datatypes
• Datatypes are entities that represent sets of data values.

• OWL 2 offers a rich set of data types: decimal numbers, integers, floating 
point numbers, rationals, reals, strings, binary data, IRIs and time instants.

• In most cases, these data types are taken from XML schema. From RDF 
and RDFS, we have rdf:XMLLiteral, rdf:PlainLiteral and 
rdfs:Literal.

• rdfs:Literal contains all the elements of other data types.

• There are also the OWL datatypes owl:real and owl:rational.

• Formally, the data types supported are specified in the OWL 2 datatype 
map.
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Datatypes (cont’d)

• Each datatype is identified by an IRI and is 
defined by the following components: 
– The value space is the set of values of the datatype. 

Elements of the value space are called data values. 
– The lexical space is a set of strings that can be used 

to refer to data values. Each member of the lexical 
space is called a lexical form, and it is mapped to a 
particular data value. 

– The facet space is a set of pairs of the form (F,v) 
where F is an IRI called a constraining facet, and v 
is an arbitrary data value called the constraining 
value. Each such pair is mapped to a subset of the 
value space of the datatype. 
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Facet Space

• For the XML Schema datatypes xsd:double, 
xsd:float, and xsd:decimal, the constraining 
facets allowed are: xsd:minInclusive, 
xsd:maxInclusive, xsd:minExclusive and 
xsd:maxExclusive. 

• Example: The pair(xsd:minInclusive,v) of the 
facet space denotes the set of all numbers x from the 
value space of the datatype such that x=v or x>v.

• Similarly for other datatypes.
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Things One Can Define in OWL 2 
(cont’d)
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Object Properties

• Object properties (e.g., a:parentOf) 
connect pairs of individuals. 

• Built-in object properties:
– owl:topObjectProperty, which connects 

all possible pairs of individuals. 
– owl:bottomObjectProperty, which does 

not connect any pair of individuals. 
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Object Property Expressions

• Object properties can be used to form 
object property expressions. 
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Inverse Object Property 
Expressions

• An inverse object property expression 
ObjectInverseOf(P) connects an individual 
I1 with I2 if and only if the object property P 
connects I2 with I1. 

• Example: If an ontology contains the axiom
ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie) 

   then the ontology entails
ObjectPropertyAssertion(ObjectInverseOf(a:fatherOf) a:Stewie 

a:Peter)
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Things One Can Define in OWL 2 
(cont’d)
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Data Properties

• Data properties (e.g., a:hasAge) 
connect individuals with literals.

• Built-in properties:
– owl:topDataProperty, which connects all 

possible individuals with all literals. 
– owl:bottomDataProperty, which does not 

connect any individual with a literal. 
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Data Property Expressions

• The only allowed data property 
expression is a data property. 
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Things One Can Define in OWL 2 
(cont’d)
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Annotation Properties

• Annotation properties can be used to provide 
an annotation for an ontology, axiom, or an IRI. 

• Available built-in properties that can be used in 
annotations:
– rdfs:label, rdfs:comment, rdfs:see, 
rdfs:isDefinedBy 

– owl:deprecated, owl:versionInfo, 
owl:priorVersion, 
owl:backwardCompatibleWith, 
owl:incompatibleWith 
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Things One Can Define in OWL 2 
(cont’d)
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Individuals

• Individuals represent actual objects from the 
domain.

• There are two types of individuals:
– Named individuals are given an explicit name (an 

IRI e.g., a:Peter) that can be used in any ontology 
to refer to the same object. 

– Anonymous individuals do not have a global name. 
They can be defined using a name (e.g., 
_:somebody) local to the ontology they are 
contained in. They are like blank nodes in RDF.
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Things One Can Define in OWL 2 
(cont’d)
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Literals

• Literals represent data values such as particular 
strings or integers. They are analogous to RDF 
literals.

• Examples:
– "1"^^xsd:integer (typed literal)
– "Family Guy" (plain literal, an abbreviation for 
"Family Guy@"^^rdf:PlainLiteral).

– "Padre de familia"@es (plain literal with 
language tag, an abbreviation for  "Padre de 
familia@es"^^rdf:PlainLiteral.
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Things One Can Define in OWL 2 
(cont’d)
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Data Ranges
• Data ranges represent sets of tuples of literals. They are defined 

using datatypes.

• Examples:
– The set of integers greater than 10.
– The set of strings that contain “good” as a substring.
– The set of (x,y) such that x and y are integers and x < y. 

• Each data range is associated with a positive arity, which 
determines the size of its tuples.

• Datatypes are themselves data ranges of arity 1.

• Data ranges are used in restrictions on data properties, as we will 
see later when we define class expressions.
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Data Ranges
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BNF for Data Ranges
DataRange :=

    Datatype |
    DataIntersectionOf |
    DataUnionOf |
    DataComplementOf |
    DataOneOf |
    DatatypeRestriction 

DataIntersectionOf := 'DataIntersectionOf' '(' DataRange DataRange 
{ DataRange } ')' 

DataUnionOf := 'DataUnionOf' '(' DataRange DataRange { DataRange } 
')' 

DataComplementOf := 'DataComplementOf' '(' DataRange ')' 

DataOneOf := 'DataOneOf' '(' Literal { Literal } ')' 
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Examples

DataIntersectionOf(xsd:nonNegativeInteger 
xsd:nonPositiveInteger) 

DataUnionOf(xsd:string xsd:integer) 

DataComplementOf(xsd:positiveInteger)

DataOneOf("Peter" "1"^^xsd:integer)  
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Datatype Restrictions 

DatatypeRestriction := 
'DatatypeRestriction' '(' 
Datatype constrainingFacet 
restrictionValue 

   { constrainingFacet restrictionValue } ')’

constrainingFacet := IRI

restrictionValue := Literal 
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Datatype Restrictions

• A datatype restriction DatatypeRestriction(DT F1 lt1 
... Fn ltn) consists of a unary datatype DT and n 
pairs(Fi,lti) where Fi is a constraining facet of DT 
and lti a literal value.

• The data range represented by a datatype restriction is 
unary and is obtained by restricting the value space of 
DT according to the conjunction of all (Fi,lti). 

• Observation: Thus, although the definition of data range 
speaks of tuples of any arity, the syntax defined allows 
only unary data ranges.
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Example

• The following data type restriction 
represents the set of integers 5, 6, 7, 8, 
and 9:

DatatypeRestriction(xsd:integer 

xsd:minInclusive "5"^^xsd:integer 

xsd:maxExclusive "10"^^xsd:integer) 
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Things One Can Define in OWL 2 
(cont’d)
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Class Expressions

• Class names and property expressions can be 
used to construct class expressions.

• These are essentially the complex concepts or 
descriptions that we can define in DLs. 

• Class expressions represent sets of individuals 
by formally specifying conditions on the 
individuals' properties; individuals satisfying 
these conditions are said to be instances of the 
respective class expressions.
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Ways to Form Class Expressions

• Class expressions can be formed by:
– Applying the standard Boolean connectives to 

simpler class expressions or by enumerating the 
individuals that belong to an expression.

– Placing restrictions on object property 
expressions.

– Placing restrictions on the cardinality of object 
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data 

property expressions.
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Boolean Connectives and Enumeration 
of Individuals 
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Intersection Class Expressions

• An intersection class expression 
ObjectIntersectionOf(CE1 ... CEn) 
contains all individuals that are instances 
of all class expressions CEi for 1≤i≤n. 

• Example: 

ObjectIntersectionOf(a:Dog a:CanTalk) 
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Union Class Expressions

• A union class expression 
ObjectUnionOf(CE1 ... CEn) 
contains all individuals that are instances 
of at least one class expression CEi for 

 1≤i≤n.

• Example:

ObjectUnionOf(a:Man a:Woman) 
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Complement Class Expressions

• A complement class expression 
ObjectComplementOf(CE) contains all 
individuals that are not instances of the 
class expression CE. 

• Example:

ObjectComplementOf(a:Man) 
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Example Inference

• From
DisjointClasses(a:Man a:Woman) 
ClassAssertion(a:Woman a:Lois)

 

   we can infer

ClassAssertion(ObjectComplementOf(a:Man) 
a:Lois)
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Enumeration of Individuals 

• An enumeration of individuals 
ObjectOneOf(a1 ... an) contains 
exactly the individuals ai with 1≤i≤n. 

• Example:

ObjectOneOf(a:Peter a:Lois 
a:Stewie a:Meg a:Chris a:Brian)
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Example Inference

• From
EquivalentClasses(a:GriffinFamilyMember

    ObjectOneOf(a:Peter a:Lois a:Stewie a:Meg 
a:Chris a:Brian))

DifferentIndividuals(a:Quagmire a:Peter a:Lois 
a:Stewie a:Meg a:Chris a:Brian)

   we can infer

ClassAssertion(
ObjectComplementOf(a:GriffinFamilyMember) 

a:Quagmire)
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Example Inference (con’td)
• From

ClassAssertion(a:GriffinFamilyMember a:Peter) 
ClassAssertion(a:GriffinFamilyMember a:Lois) 

ClassAssertion(a:GriffinFamilyMember a:Stewie) 
ClassAssertion(a:GriffinFamilyMember a:Meg) 

ClassAssertion(a:GriffinFamilyMember a:Chris) 
ClassAssertion(a:GriffinFamilyMember a:Brian) 

DifferentIndividuals(a:Quagmire a:Peter a:Lois a:Stewie 
a:Meg a:Chris a:Brian)

   we cannot infer
ClassAssertion(

ObjectComplementOf(a:GriffinFamilyMember) a:Quagmire)
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Ways to Form Class Expressions 
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to 

simpler class expressions or by enumerating the 
individuals that belong to an expression.

– Placing restrictions on object property 
expressions.

– Placing restrictions on the cardinality of object 
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data 

property expressions.
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 Object Property Restrictions
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Existential Quantification

• An existential class expression 
ObjectSomeValuesFrom(OPE CE) consists of an 
object property expression OPE and a class expression 
CE, and it contains all those individuals that are 
connected by OPE to an individual that is an instance of 
CE. 

• Example:
ObjectSomeValuesFrom(a:fatherOf a:Man)

 
• If OPE is simple, the above class expression is 

equivalent with the class expression
ObjectMinCardinality(1 OPE CE)
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Example Inference

• From
ObjectPropertyAssertion(a:fatherOf 

a:Peter a:Stewie) 

ClassAssertion(a:Man a:Stewie) 

   we can infer
ClassAssertion(

ObjectSomeValuesFrom(a:fatherOf 
a:Man) a:Peter) 
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Universal Quantification

• A universal class expression 
ObjectAllValuesFrom(OPE CE) consists of an 
object property expression OPE and a class expression 
CE, and it contains all those individuals that are 
connected by OPE to only individuals that are instances 
of CE. 

• Example:
ObjectAllValuesFrom(a:fatherOf a:Man)

 
• If OPE is simple, the above class expression is 

equivalent with the class expression 
ObjectMaxCardinality(0 OPE ObjectComplementOf(CE))
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Example Inference

• From
ObjectPropertyAssertion(a:hasPet a:Peter a:Brian)

ClassAssertion(a:Dog a:Brian)

ClassAssertion(
ObjectMaxCardinality(1 a:hasPet) a:Peter)

 
   we can infer

ClassAssertion(
ObjectAllValuesFrom(a:hasPet a:Dog) a:Peter) 
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Individual Value Restriction 

• An individual value class expression 
ObjectHasValue(OPE a) consists of an object 
property expression OPE and an individual a, and it 
contains all those individuals that are connected by OPE 
to a.

• Example:
ObjectHasValue(a:fatherOf a:Stewie) 

• The above class expression is equivalent to the class 
expression

 ObjectSomeValuesFrom(OPE ObjectOneOf(a)). 
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Example Inference

• From

ObjectPropertyAssertion(a:fatherOf 
a:Peter a:Stewie)

 

   we can infer

ClassAssertion(

ObjectHasValue(a:fatherOf a:Stewie) 
a:Peter) 
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Self-Restriction

•  A self-restriction 
ObjectHasSelf(OPE) consists of an 
object property expression OPE, and it 
contains all those individuals that are 
connected by OPE to themselves. 

• Example:

ObjectHasSelf(a:likes) 
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Example Inference

• From

ObjectPropertyAssertion(a:likes 
a:Peter a:Peter)

   we can infer

ClassAssertion(

ObjectHasSelf(a:likes) a:Peter) 
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Ways to Form Class Expressions 
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to 

simpler class expressions or by enumerating the 
individuals that belong to an expression.

– Placing restrictions on object property 
expressions.

– Placing restrictions on the cardinality of object 
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data 

property expressions.
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Object Property Cardinality 
Restrictions 

• Object property cardinality restrictions are distinguished 
into:
– Qualified: apply only to individuals that are 

connected by the object property expression and are 
instances of the qualifying class expression.

– Unqualified: apply to all individuals that are 
connected by the object property expression (this is 
equivalent to the qualified case with the qualifying 
class expression equal to owl:Thing). 
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Object Property Cardinality 
Restrictions
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Minimum Cardinality 

• A minimum cardinality expression 
ObjectMinCardinality(n OPE CE) 
consists of a nonnegative integer n, an object 
property expression OPE, and a class expression 
CE, and it contains all those individuals that are 
connected by OPE to at least n different 
individuals that are instances of CE. If CE is 
missing, it is taken to be owl:Thing. 

• Example:
ObjectMinCardinality(2 a:fatherOf a:Man) 
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Example Inference

• From
ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie) 

 
ClassAssertion(a:Man a:Stewie) 

ObjectPropertyAssertion(a:fatherOf a:Peter a:Chris)

ClassAssertion(a:Man a:Chris)

DifferentIndividuals(a:Chris a:Stewie)
 

   we can infer
ClassAssertion(

ObjectMinCardinality(2 a:fatherOf a:Man) a:Peter) 
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Maximum Cardinality 

• A maximum cardinality expression 
ObjectMaxCardinality(n OPE CE) 
consists of a nonnegative integer n, an object 
property expression OPE, and a class expression 
CE, and it contains all those individuals that are 
connected by OPE to at most n different 
individuals that are instances of CE. If CE is 
missing, it is taken to be owl:Thing. 

• Example:
ObjectMaxCardinality(2 a:hasPet) 
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Example Inference

• From
ObjectPropertyAssertion(a:hasPet 

a:Peter a:Brian) 
 

ClassAssertion(ObjectMaxCardinality(1 
a:hasPet) a:Peter)  

   we can infer
ClassAssertion(

ObjectMaxCardinality(2 a:hasPet) 
a:Peter) 
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Example Inference

• From
ObjectPropertyAssertion(a:hasDaughter 

a:Peter a:Meg)

ObjectPropertyAssertion(a:hasDaughter 
a:Peter a:Megan)

ClassAssertion(ObjectMaxCardinality(1 
a:hasDaughter) a:Peter) 

   we can infer
SameIndividual(a:Meg a:Megan)
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Exact Cardinality 
• An exact cardinality expression ObjectExactCardinality(n 

OPE CE) consists of a nonnegative integer n, an object property 
expression OPE, and a class expression CE, and it contains all those 
individuals that are connected by OPE to exactly n different 
individuals that are instances of CE. 

• Example:
ObjectExactCardinality(1 a:hasPet a:Dog)

 
• The above expression is equivalent to 

ObjectIntersectionOf(
ObjectMinCardinality(n OPE CE)

 ObjectMaxCardinality(n OPE CE)). 
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Example Inference
• From
ObjectPropertyAssertion(a:hasPet a:Peter a:Brian)

  
ClassAssertion(a:Dog a:Brian) 

ClassAssertion(
ObjectAllValuesFrom(a:hasPet       

ObjectUnionOf(ObjectOneOf(a:Brian)          
ObjectComplementOf(a:Dog)))

    a:Peter) 

   we can infer

ClassAssertion(ObjectExactCardinality(1 a:hasPet 
a:Dog) a:Peter)
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Ways to Form Class Expressions 
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to 

simpler class expressions or by enumerating the 
individuals that belong to an expression.

– Placing restrictions on object property 
expressions.

– Placing restrictions on the cardinality of object 
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data 

property expressions.
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Data Property Restrictions
• Data property restrictions are similar to the restrictions on object property 

expressions.

• The main difference is that the expressions for existential and universal 
quantification allow for n-ary data ranges.

• Given the syntax for data ranges given earlier, only unary data ranges are 
supported.

• However, the specification aprovide the syntactic constructs needed to have 
n-ary data ranges e.g., sets of rectangles defined by appropriate geometric 
constraints. 

• The “Data Range Extension: Linear Equations” W3C note proposes an 
extension to OWL 2 for defining n-ary data ranges in terms of linear 
(in)equations with rational coefficients. See 
http://www.w3.org/TR/owl2-dr-linear/ .

http://www.w3.org/TR/owl2-dr-linear/
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Data Property Restrictions



Knowledge Technologies                                                             Manolis Koubarakis80

Existential Quantification 
• An existential class expression DataSomeValuesFrom(DPE1 ... 

DPEn DR) consists of n data property expressions DPEi,1≤i≤n, and a 
data range DR whose arity must be n. 

• Such a class expression contains all those individuals that are connected by 
DPEi to literals lti,1≤i≤n, such that the tuple (lt1 ,...,ltn) is in DR. 

• Example:
DataSomeValuesFrom(a:hasAge 

DatatypeRestriction(xsd:integer xsd:maxExclusive 
"20"^^xsd:integer))

• A class expression of the form DataSomeValuesFrom(DPE DR) is 
equivalent to the class expression DataMinCardinality(1 DPE DR). 
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Example Inference

• From
DataPropertyAssertion(a:hasAge a:Meg 

"17"^^xsd:integer) 

   we can infer

ClassAssertion(
DataSomeValuesFrom(a:hasAge 

DatatypeRestriction(xsd:integer 
xsd:maxExclusive "20"^^xsd:integer)) 

a:Meg)
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Universal Quantification 
• A universal class expression DataAllValuesFrom(DPE1 ... DPEn 

DR) consists of n data property expressions DPEi,1≤i≤n, and a data 
range DR whose arity must be n. 

• Such a class expression contains all those individuals that are connected by 
DPEi only to literals lti,1≤i≤n, such that each tuple (lt1,...,ltn) is 
in DR. 

• Example:
DataAllValuesFrom(a:hasZIP xsd:integer)

• A class expression of the form DataAllValuesFrom(DPE DR) can be 
seen as a syntactic shortcut for the class expression 
DataMaxCardinality(0 DPE DataComplementOf(DR)). 
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Example Inference

• From
DataPropertyAssertion(a:hasZIP _:a1 

"02903"^^xsd:integer)

FunctionalDataProperty(a:hasZIP)
 

   we can infer

ClassAssertion(
DataAllValuesFrom(a:hasZIP xsd:integer) 

_:a1)
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Literal Value Restriction 

• A literal value class restriction DataHasValue(DPE 
lt) consists of a data property expression DPE and a 
literal lt, and it contains all those individuals that are 
connected by DPE to lt. 

• Example: 
DataHasValue(a:hasAge "17"^^xsd:integer) 

• Each such class expression is equivalent to the class 
expression 
DataSomeValuesFrom(DPE DataOneOf(lt)).
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Ways to Form Class Expressions 
(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to 

simpler class expressions or by enumerating the 
individuals that belong to an expression.

– Placing restrictions on object property 
expressions.

– Placing restrictions on the cardinality of object 
property expressions.

– Placing restrictions on data property expressions.
– Placing restrictions on the cardinality of data 

property expressions.
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Data Property Cardinality 
Restrictions 

• Data property cardinality restrictions can 
be distinguished into:
– Qualified: they only apply to literals that are 

connected by the data property expression 
and are in the qualifying data range.

– Unqualified: they apply to all literals that are 
connected by the data property expression. 
This is equivalent to the qualified case with 
the qualifying data range equal to 
rdfs:Literal.
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Minimum Cardinality 

• A minimum cardinality expression 
DataMinCardinality(n DPE DR) consists of a 
nonnegative integer n, a data property expression DPE, 
and a unary data range DR, and it contains all those 
individuals that are connected by DPE to at least n 
different literals in DR. If DR is not present, it is taken to 
be rdfs:Literal.

• Example:
DataMinCardinality(2 a:hasName)  

• There are similar definitions for 
DataMaxCardinality(n DPE DR) and 
DataExactCardinality(n DPE DR).
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Example Inference

• From
DataPropertyAssertion(a:hasName a:Meg 

"Meg Griffin")

DataPropertyAssertion(a:hasName a:Meg 
"Megan Griffin") 

   we can infer
ClassAssertion(

DataMinCardinality(2 a:hasName) 
a:Meg)
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What Have we Achieved so far?

• We have explained what the “things” that one 
can define in OWL 2 are.

• Now let us see how to use these “things” to 
represent knowledge about a domain.

• In OWL 2 knowledge is represented by axioms: 
statements that say what is true in the domain of 
interest. 
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Axioms
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 Class Expression Axioms 
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Subclass Axioms 

• A subclass axiom SubClassOf(CE1 CE2) states that 
the class expression CE1 is a subclass of the class 
expression CE2. 

• Example:
SubClassOf(a:Child a:Person)

• The properties known from RDFS for SubClassOf hold 
here as well:
– Reflexivity
– Transitivity
– If x is an instance of class A and class A is a subclass of class B, 

then x is an instance of B as well.
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Example Inferences

• From
SubClassOf(a:Baby a:Child) 
SubClassOf(a:Child a:Person)

 
ClassAssertion(a:Baby a:Stewie)

   we can infer
SubClassOf(a:Baby a:Person)

ClassAssertion(a:Child a:Stewie)
ClassAssertion(a:Person a:Stewie)
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Example Inferences
• From

SubClassOf(a:PersonWithChild    
ObjectSomeValuesFrom(a:hasChild 
ObjectUnionOf(a:Boy a:Girl)))

 
SubClassOf(a:Boy a:Child)

SubClassOf(a:Girl a:Child)

SubClassOf(ObjectSomeValuesFrom(a:hasChild a:Child) 
a:Parent) 

   we can infer

SubClassOf(a:PersonWithChild a:Parent)
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Equivalent Classes

• An equivalent classes axiom 
EquivalentClasses(CE1 ... CEn) states that all 
of the class expressions CEi,1≤i≤n, are semantically 
equivalent to each other.

• Example:
EquivalentClasses(a:Boy 

ObjectIntersectionOf(a:Child a:Man))
 

• An axiom EquivalentClasses(CE1 CE2) is 
equivalent to the conjunction of the following two axioms: 

SubClassOf(CE1 CE2)
SubClassOf(CE2 CE1) 
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Example Inferences

• From
EquivalentClasses(a:Boy 

ObjectIntersectionOf(a:Child a:Man))

ClassAssertion(a:Child a:Chris)

ClassAssertion(a:Man a:Chris)
 

   we can infer

ClassAssertion(a:Boy a:Chris)



Knowledge Technologies                                                             Manolis Koubarakis97

Example Inferences
• From

EquivalentClasses(a:MongrelOwner 
ObjectSomeValuesFrom(a:hasPet a:Mongrel)) 

 
EquivalentClasses(a:DogOwner ObjectSomeValuesFrom(a:hasPet 

a:Dog))

SubClassOf(a:Mongrel a:Dog) 

ClassAssertion(a:MongrelOwner a:Peter) 
 

   we can infer

SubClassOf(a:MongrelOwner a:DogOwner)

ClassAssertion(a:DogOwner a:Peter)
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Disjoint Classes 

• A disjoint classes axiom 
DisjointClasses(CE1 ... CEn) states that all of 
the class expressions CEi, 1≤i≤n, are pairwise 
disjoint.

• Example:
DisjointClasses(a:Boy a:Girl)

• An axiom DisjointClasses(CE1 CE2) is equivalent 
to the following axiom: 
SubClassOf(CE1 ObjectComplementOf(CE2)) 
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Disjoint Union of Classes 
• A disjoint union axiom DisjointUnion(C CE1 ... CEn) states that a 

class C is a disjoint union of the class expressions CEi,1≤i≤ n, all of 
which are pairwise disjoint. 

• Such axioms are sometimes referred to as covering axioms, as they state 
that the extensions of all CEi exactly cover the extension of C. 

• Example:
DisjointUnion(a:Child a:Boy a:Girl) 

• Each such axiom is equivalent to the conjunction of the following two 
axioms: 

EquivalentClasses(C ObjectUnionOf(CE1 ... CEn))

DisjointClasses(CE1 ... CEn) 
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Example Inferences

• From

DisjointUnion(a:Child a:Boy a:Girl)

  ClassAssertion(a:Child a:Stewie)

ClassAssertion(ObjectComplementOf(a:Girl) 
a:Stewie) 

 
   we can infer

ClassAssertion(a:Boy a:Stewie)
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Axioms (cont’d)
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Object Property Axioms 

• OWL 2 provides axioms that can be used 
to characterize and establish 
relationships between object property 
expressions.
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Object Property Axioms
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Object Subproperty Axioms 

• Object subproperty axioms are analogous to subclass 
axioms.

• The basic form of an object subproperty axiom is 
SubObjectPropertyOf(OPE1 OPE2). 

• This axiom states that the object property expression 
OPE1 is a subproperty of the object property expression 
OPE2 — that is, if an individual x is connected by OPE1 
to an individual y, then x is also connected by OPE2 to 
y. 

• SubObjectPropertyOf is a reflexive and transitive 
relation.
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Object Subproperty Axioms (cont’d)

• The more complex form is 
SubObjectPropertyOf(

ObjectPropertyChain(OPE1 ... OPEn) OPE). 

• This axiom states that, if an individual x is connected by 
a sequence of object property expressions OPE1, ..., 
OPEn with an individual y, then x is also connected with 
y by the object property expression OPE. 

• These axioms are known as complex role inclusions in 
the DL literature.
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Example Inferences

• From

SubObjectPropertyOf(a:hasDog a:hasPet)

ObjectPropertyAssertion(a:hasDog a:Peter 
a:Brian)

 
   we can infer

ObjectPropertyAssertion(a:hasPet a:Peter 
a:Brian) 
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Example Inferences
• From

SubObjectPropertyOf(
ObjectPropertyChain(a:hasMother a:hasSister) 

a:hasAunt)
 

ObjectPropertyAssertion(a:hasMother a:Stewie a:Lois)

ObjectPropertyAssertion(a:hasSister a:Lois 
a:Carol)  

   we can infer

ObjectPropertyAssertion(a:hasAunt a:Stewie a:Carol)
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Equivalent Object Properties 

• An equivalent object properties axiom 
EquivalentObjectProperties(OPE1 ... OPEn) 
states that all of the object property expressions 
OPEi,1≤i≤n, are semantically equivalent to each 
other. 

• The axiom EquivalentObjectProperties(OPE1 
OPE2) is equivalent to the following two axioms: 

SubObjectPropertyOf(OPE1 OPE2)
SubObjectPropertyOf(OPE2 OPE1) 
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Example Inferences

• From
EquivalentObjectProperties(a:hasBrother a:hasMaleSibling)

  ObjectPropertyAssertion(a:hasBrother a:Chris a:Stewie) 

ObjectPropertyAssertion(a:hasMaleSibling a:Stewie a:Chris)
 

   we can infer

ObjectPropertyAssertion(a:hasMaleSibling a:Chris 
a:Stewie))

ObjectPropertyAssertion(a:hasBrother a:Stewie a:Chris) 
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Disjoint Object Properties 

• A disjoint object properties axiom 
DisjointObjectProperties(OPE1 ... 
OPEn) states that all of the object property 
expressions OPEi,1≤i≤n, are pairwise disjoint.

• Example:

DisjointObjectProperties(a:hasFather 
a:hasMother)
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Inverse Object Properties 

• An inverse object properties axiom 
InverseObjectProperties(OPE1 OPE2) 
states that the object property expression OPE1 
is an inverse of the object property expression 
OPE2. 

• Each such axiom is equivalent with the following: 

EquivalentObjectProperties(OPE1 
ObjectInverseOf(OPE2)) 
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Example Inferences

• From
InverseObjectProperties(a:hasFather a:fatherOf) 

ObjectPropertyAssertion(a:hasFather a:Stewie 
a:Peter)

 ObjectPropertyAssertion(a:fatherOf a:Peter a:Chris) 

  
we can infer

ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie) 

ObjectPropertyAssertion(a:hasFather a:Chris a:Peter) 
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Object Property Domain Axioms

• An object property domain axiom 
ObjectPropertyDomain(OPE CE) states that the 
domain of the object property expression OPE is the 
class expression CE — that is, if an individual x is 
connected by OPE with some other individual, then x is 
an instance of CE. 

• Each such axiom is equivalent to the following axiom: 
SubClassOf(ObjectSomeValuesFrom(OPE 

owl:Thing) CE) 
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Example Inferences

• From
ObjectPropertyDomain(a:hasDog a:Person) 

ObjectPropertyAssertion(a:hasDog a:Peter 
a:Brian) 

  
we can infer

ClassAssertion(a:Person a:Peter) 
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Object Property Range Axioms

• An object property range axiom 
ObjectPropertyRange(OPE CE) states that the 
range of the object property expression OPE is the class 
expression CE — that is, if some individual is connected 
by OPE with an individual x, then x is an instance of CE. 

• Each such axiom is equivalent to the following axiom: 
SubClassOf(owl:Thing ObjectAllValuesFrom(OPE 

CE)) 
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Example Inferences

• From
ObjectPropertyRange(a:hasDog a:Dog) 

ObjectPropertyAssertion(a:hasDog 
a:Peter a:Brian) 

  
we can infer

ClassAssertion(a:Dog a:Brian) 
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Object Property Axioms (cont’d)
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Functional Object Properties 

• An object property functionality axiom 
FunctionalObjectProperty(OPE) states 
that the object property expression OPE is 
functional — that is, for each individual x, there 
can be at most one distinct individual y such that 
x is connected by OPE to y. 

• Each such axiom is equivalent to the following 
axiom: 

SubClassOf(owl:Thing 
ObjectMaxCardinality(1 OPE)) 
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Example Inferences

• From
FunctionalObjectProperty(a:hasFather)

ObjectPropertyAssertion(a:hasFather a:Stewie 
a:Peter) 

ObjectPropertyAssertion(a:hasFather a:Stewie 
a:Peter_Griffin)  

we can infer

SameIndividual(a:Peter a:Peter_Griffin) 
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Inverse-Functional Object 
Properties 

• An object property inverse functionality axiom 
InverseFunctionalObjectProperty(OPE) states 
that the object property expression OPE is inverse-
functional — that is, for each individual x, there can be 
at most one individual y such that y is connected by OPE 
with x. 

• Each such axiom is equivalent to the following axiom: 
SubClassOf(owl:Thing ObjectMaxCardinality(1 

ObjectInverseOf(OPE))) 
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Example Inferences

• From
InverseFunctionalObjectProperty(a:fatherOf)

ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)
 

ObjectPropertyAssertion(a:fatherOf a:Peter_Griffin 
a:Stewie) 

we can infer

SameIndividual(a:Peter a:Peter_Griffin) 
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Reflexive Object Properties 

• An object property reflexivity axiom 
ReflexiveObjectProperty(OPE) states 
that the object property expression OPE is 
reflexive — that is, each individual is connected 
by OPE to itself. 

• Each such axiom is equivalent to the following 
axiom: 

SubClassOf(owl:Thing 
ObjectHasSelf( OPE)) 
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Example Inferences

• From
ReflexiveObjectProperty(a:knows) 
ClassAssertion(a:Person a:Peter)

we can infer

ObjectPropertyAssertion(a:knows 
a:Peter a:Peter)
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Irreflexive Object Properties 

• An object property irreflexivity axiom 
IrreflexiveObjectProperty(OPE) states 
that the object property expression OPE is 
irreflexive — that is, no individual is connected 
by OPE to itself. 

• Each such axiom is equivalent to the following 
axiom: 

SubClassOf(ObjectHasSelf(OPE) 
owl:Nothing) 
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Symmetric Object Properties 

• An object property symmetry axiom 
SymmetricObjectProperty(OPE) states that the 
object property expression OPE is symmetric — that is, 
if an individual x is connected by OPE to an individual y, 
then y is also connected by OPE to x. 

• Example:
SymmetricObjectProperty(a:friend) 

• Each such axiom is equivalent to the following axiom: 
SubObjectPropertyOf(OPE 
ObjectInverseOf(OPE))



Knowledge Technologies                                                             Manolis Koubarakis126

Asymmetric Object Properties 

• An object property asymmetry axiom 
AsymmetricObjectProperty(OPE) states 
that the object property expression OPE is 
asymmetric — that is, if an individual x is 
connected by OPE to an individual y, then y 
cannot be connected by OPE to x. 

• Example

AsymmetricObjectProperty(a:parentOf) 
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Transitive Object Properties 

• An object property transitivity axiom 
TransitiveObjectProperty(OPE) states that the 
object property expression OPE is transitive — that is, if 
an individual x is connected by OPE to an individual y 
that is connected by OPE to an individual z, then x is 
also connected by OPE to z. 

• Each such axiom is equivalent to the following axiom: 
SubObjectPropertyOf(ObjectPropertyChain(OPE 

OPE) OPE) 
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Example Inferences

• From
TransitiveObjectProperty(a:ancestorOf)

 
ObjectPropertyAssertion(a:ancestorOf a:Carter 

a:Lois)

ObjectPropertyAssertion(a:ancestorOf a:Lois a:Meg) 

we can infer

ObjectPropertyAssertion(a:ancestorOf a:Carter a:Meg) 
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Axioms (cont’d)
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Data Property Axioms
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Data Property Axioms (cont’d)

• OWL 2 also provides for data property 
axioms. Their structure and semantics is 
similar to the corresponding object 
property axioms.

• We will not present data property axioms 
in detail. We will only give some 
examples.
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Examples

• From
SubDataPropertyOf(a:hasLastName a:hasName) 

DataPropertyAssertion(a:hasLastName a:Peter 
"Griffin") 

we can infer

DataPropertyAssertion(a:hasName a:Peter 
"Griffin")
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Examples (cont’d)
• The ontology

FunctionalDataProperty(a:hasAge)
 

DataPropertyAssertion(a:hasAge a:Meg 
"17"^^xsd:integer)

 
DataPropertyAssertion(a:hasAge a:Meg 

"17.0"^^xsd:decimal)

DataPropertyAssertion(a:hasAge a:Meg "+17"^^xsd:int)

is consistent because the different age literals given map to the same
value.
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Examples (cont’d)

• The ontology
FunctionalDataProperty(a:numberOfChildren)

 
DataPropertyAssertion(a:numberOfChildren 

a:Meg "+0"^^xsd:float)

DataPropertyAssertion(a:numberOfChildren 
a:Meg "-0"^^xsd:float)

    is unsatisfiable because literals "+0"^^xsd:float and
  "-0"^^xsd:float are mapped to distinct data values 
+0 and -0 in the value space of xsd:float; these data 
values are equal, but not identical. 
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Axioms (cont’d)
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Datatype Definitions 

• A datatype definition 
DatatypeDefinition(DT DR) defines a new 
datatype DT as being semantically equivalent to 
the data range DR; the latter must be a unary 
data range. 

• The datatypes defined by datatype definition 
axioms support no facets so they must not 
occur in datatype restrictions. 
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Example

DatatypeDefinition(a:SSN

DatatypeRestriction(xsd:string 
xsd:pattern "[0-9]{3}-[0-9]{2}-

[0-9]{4}"))

 

DataPropertyRange(a:hasSSN a:SSN)
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Axioms (cont’d)



Knowledge Technologies                                                             Manolis Koubarakis139

Keys
• A key axiom 

HasKey(CE (OPE1 ... OPEm) (DPE1 ... DPEn)) 
     states that each named instance of the class expression CE is uniquely 

identified by the object property expressions OPEi and/or the data property 
expressions DPEj.

• In this case, no two distinct named instances of CE can coincide on the 
values of all object property expressions OPEi and all data property 
expressions DPEj. 

• A key axiom of the form HasKey(owl:Thing (OPE) ()) is similar to the 
axiom InverseFunctionalObjectProperty(OPE). Their main 
difference is that the former axiom is applicable only to individuals that are 
explicitly named in an ontology, while the latter axiom is also applicable to 
unnamed individuals.
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Example Inferences

• From
HasKey(owl:Thing () ( a:hasSSN))

 DataPropertyAssertion(a:hasSSN a:Peter "123-45-
6789")
 

DataPropertyAssertion(a:hasSSN a:Peter_Griffin "123-
45-6789") 

we can infer

SameIndividual(a:Peter a:Peter_Griffin) 
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Example Inferences
• From

HasKey(a:GriffinFamilyMember () (a:hasName))
 

DataPropertyAssertion(a:hasName a:Peter "Peter")

ClassAssertion(a:GriffinFamilyMember a:Peter) 

DataPropertyAssertion(a:hasName a:Peter_Griffin "Peter") 

ClassAssertion(a:GriffinFamilyMember a:Peter_Griffin) 

DataPropertyAssertion(a:hasName a:StPeter "Peter")
 

we can infer

SameIndividual(a:Peter a:Peter_Griffin)



Knowledge Technologies                                                             Manolis Koubarakis142

Example

• The ontology

HasKey(a:GriffinFamilyMember () (a:hasName))
  

DataPropertyAssertion(a:hasName a:Peter "Peter")
 

DataPropertyAssertion(a:hasName a:Peter "Kichwa-
Tembo")
 

ClassAssertion(a:GriffinFamilyMember a:Peter)

is consistent because a key axiom does not make all the properties
used in it functional.  
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Axioms (cont’d)
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Declarations

• In an OWL 2 ontology, the entities (individuals, 
classes, properties) used can be, and 
sometimes even needs to be, declared.

• Declarations are nonlogical axioms. They have 
no semantics but can helo OWL 2 tools to catch 
errors.

• Declarations are optional. But in OWL DL 
classes, datatypes and properties of various 
kinds need to be declared as such.
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BNF for Entity Declarations

Declaration := 'Declaration' '(' axiomAnnotations 
Entity ')‘

Entity :=
    'Class' '(' Class ')' |
    'Datatype' '(' Datatype ')' |
    'ObjectProperty' '(' ObjectProperty ')' |
    'DataProperty' '(' DataProperty ')' |
    'AnnotationProperty' '(' AnnotationProperty 
')' |
    'NamedIndividual' '(' NamedIndividual ')' 
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Example

Declaration(Class(a:Person)) 

Declaration(NamedIndividual(a:Peter))

ClassAssertion(a:Person a:Peter) 
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Axioms (cont’d)



Knowledge Technologies                                                             Manolis Koubarakis148

Assertions 

• OWL 2 supports a rich set of axioms for stating 
assertions about individuals:
– Individual equality
– Individual inequality
– Class assertion
– Positive object property assertion
– Negative object property assertion
– Positive data property assertion
– Negative data property assertion

• Assertions are often also called facts. They are 
part of the ABox in DLs.
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Individual Equality Axiom

• An individual equality axiom 
SameIndividual(a1 ... an) states 
that all of the individuals ai, 1≤i≤n, are 
equal to each other. 
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Example Inference

• From
SameIndividual(a:Meg a:Megan)

 ObjectPropertyAssertion(a:hasBrother a:Meg 
a:Stewie) 

we can infer

ObjectPropertyAssertion(a:hasBrother a:Megan 
a:Stewie)
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Individual Inequality Axiom

• An individual inequality axiom 
DifferentIndividuals(a1 ... an) 
states that all of the individuals ai, 
1≤i≤n, are different from each other.

• Example: 
DifferentIndividuals(a:Peter a:Meg 

a:Chris a:Stewie)
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Class Assertions 

• A class assertion ClassAssertion(CE 
a) states that the individual a is an 
instance of the class expression CE. 

• Example: 

ClassAssertion(a:Dog a:Brian) 
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Object Property Assertions

• A positive object property assertion 
ObjectPropertyAssertion(OPE a1 a2) 
states that the individual a1 is connected by the 
object property expression OPE to the individual 
a2. 

• A negative object property assertion 
NegativeObjectPropertyAssertion(OPE 
a1 a2) states that the individual a1 is not 
connected by the object property expression 
OPE to the individual a2. 
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Examples

ObjectPropertyAssertion(a:hasDog 
a:Peter a:Brian) 

NegativeObjectPropertyAssertion(a
:hasSon a:Peter a:Meg) 
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Data Property Assertions 

• A positive data property assertion 
DataPropertyAssertion(DPE a lt) states 
that the individual a is connected by the data 
property expression DPE to the literal lt. 

• A negative data property assertion 
NegativeDataPropertyAssertion(DPE a 
lt) states that the individual a is not connected 
by the data property expression DPE to the literal 
lt. 
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Example Inference
• From

DataPropertyAssertion(a:hasAge a:Meg "17"^^xsd:integer)
 
SubClassOf(

    DataSomeValuesFrom(a:hasAge
       DatatypeRestriction(xsd:integer
          xsd:minInclusive "13"^^xsd:integer
          xsd:maxInclusive "19"^^xsd:integer
       )
     )
     a:Teenager
)

we can infer

ClassAssertion(a:Teenager a:Meg) 
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Annotations 

• OWL 2 applications often need ways to associate 
additional information with ontologies, entities, and 
axioms. To this end, OWL 2 provides for annotations on 
ontologies, axioms, and entities. 

• Annotations are first-class citizens in OWL 2; their 
structure is independent of the underlying syntax and 
they are different than comments that a syntax (e.g., 
OWL XML) might allow.

• Annotations have no formal semantics, thus they do not 
participate in the meaning of an ontology (under the 
OWL 2 direct semantics).



Knowledge Technologies                                                             Manolis Koubarakis158

Axioms (cont’d)
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Annotation of Entities and 
Anonymous Individuals

• The axiom AnnotationAssertion(AP as av) 
states that the annotation subject as is annotated with 
the annotation property AP and the annotation value av. 

• as can be an entity (i.e., individual, class or property) or 
an anonymous individual. 

• Example: 
AnnotationAssertion(rdfs:label a:Person 

"Represents the set of all people.") 



Knowledge Technologies                                                             Manolis Koubarakis160

Annotations of Axioms, Annotations 
and Ontologies

• OWL 2 also provides the construct 
Annotation({A} AP v) where AP is an 
annotation property, v is a literal, an IRI, or an 
anonymous individual and {A} are 0 or more 
annotations.  

• The above construct can be used for 
annotations of axioms and ontologies. It can 
also be used for annotations of annotations 
themselves.
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Examples

SubClassOf(

Annotation(rdfs:comment "Persons 
are humans.") a:Person a:Human) 
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Examples (cont’d)

Prefix(:=<http://www.example.com/ontology1#>)

Ontology(<http://www.example.com/ontology1>
 Import(<http://www.example.com/ontology2>)
 Annotation(rdfs:label "An example ontology")
 

   SubClassOf(:Child owl:Thing)

) 
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Annotation Properties

• Various annotation properties can be defined by users 
(e.g., an integer ID in the Foundational Model of 
Anatomy ontology; see 
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
 ). 

• To help users in their modeling, OWL 2 also offers the 
constructs:
– SubAnnotationPropertyOf(AP1 AP2) states that the 

annotation property AP1 is a subproperty of the annotation 
property AP2. 

– AnnotationPropertyDomain(AP U) states that the domain 
of the annotation property AP is the IRI U. 

– AnnotationPropertyRange(AP U) states that the range of 
the annotation property AP is the IRI U. 

http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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Metamodeling
• OWL 2 enables metamodeling by allowing the same IRI I to refer 

to more than one type of entity (e.g., an individual and a class). This 
is called “punning” in the literature.

• Example:
ClassAssertion(a:Father a:John) 

ClassAssertion(a:SocialRole a:Father) 

• In the above example, IRI a:Father is first used as a class and 
then as an individual. 

• The direct model-theoretic semantics of OWL 2 accommodates this 
by understanding the class a:Father and the individual a:Father 
as two different views on the same IRI, i.e. they are interpreted 
semantically as if they were distinct. 
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Semantics

• There are two alternative ways of assigning 
meaning to ontologies in OWL 2: 
– The direct model-theoretic semantics. This 

provides a meaning for OWL 2 in a DL style by 
understanding OWL 2 constructs as constructs of the 
DL SROIQ. See 
http://www.w3.org/TR/owl2-direct-semantics/ .

– The RDF-based semantics. This is an extension of 
the semantics for RDFS and is based on viewing 
OWL 2 ontologies as RDF graphs. See 
http://www.w3.org/TR/owl2-rdf-based-semantics/. 

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
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OWL 2 DL and OWL 2 Full
• Informally, the notion "OWL 2 DL" is used to refer to OWL 2 

ontologies interpreted using the direct semantics, and the notion 
"OWL 2 Full" is used when considering the RDF-based semantics. 

• Formally, there are certain additional conditions which must be 
met by an OWL 2 ontology to qualify as OWL 2 DL. For example:
– Reserved vocabulary (e.g., owl:Thing) should only be used for its 

intended purpose.
– Strict typing conditions e.g., no IRI can be used as a class and a 

datatype or as an object and datatype property.
– Classes, datatypes and properties need to be declared.
– Some global restrictions from SROIQ to ensure decidability.

• See the OWL 2 Structural Specification and Functional-Style Syntax 
for the exact conditions.
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OWL 2 DL and OWL 2 Full (cont’d)

• We can think of the difference between OWL 2 
DL and OWL 2 Full in two ways: 
– OWL 2 DL is a syntactically restricted version of OWL 

2 Full. OWL 2 Full is undecidable while OWL 2 DL is 
not. There are several production quality reasoners 
that cover the entire OWL 2 DL language (e.g., Pellet, 
Fact++ and HermiT).

– OWL 2 Full is an extension of RDFS. As such, the 
RDF-Based Semantics for OWL 2 Full follows the 
RDFS semantics and general syntactic philosophy 
(i.e., everything is a triple and the language is fully 
reflective). 



Knowledge Technologies                                                             Manolis Koubarakis168

OWL 2 Profiles
• In addition to OWL 2 DL and OWL 2 Full, OWL 2 specifies three 

profiles: OWL 2 EL, OWL QL and OWL RL.

• These profiles are designed to be subsets of OWL 2 sufficient for 
a variety of applications. 

• Computational considerations are a major requirement of these 
profiles; they are all much easier to implement with robust scalability 
given existing technology.

• There are many subsets of OWL 2 that have good computational 
properties. The selected OWL 2 profiles were identified as having 
substantial user communities already.

• The OWL 2 Profiles document provides a clear template for 
specifying additional profiles. 
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OWL 2 EL
• The OWL 2 EL profile is a subset of OWL 2 that 

– is particularly suitable for applications employing ontologies that define 
very large numbers of classes and/or properties, 

– captures the expressive power used by many such ontologies, and 
– for which ontology consistency, class expression subsumption, 

and instance checking can be decided in polynomial time. 

• Example: OWL 2 EL is sufficient to express the very large 
biomedical ontology SNOMED CT.

• The acronym EL comes from the fact that the profile is based on the 
DL family of languages EL. See the relevant paper
– Pushing the EL Envelope. Franz Baader, Sebastian Brandt, and 

Carsten Lutz. In Proc. of the 19th Joint Int. Conf. on Artificial Intelligence 
(IJCAI 2005), 2005 . Available from 
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
 

http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
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OWL 2 EL Specification 

• Types of class restrictions allowed:
–  existential quantification to a class expression 

(ObjectSomeValuesFrom) or a data range 
(DataSomeValuesFrom)

– existential quantification to an individual 
(ObjectHasValue) or a literal (DataHasValue)

– self-restriction (ObjectHasSelf)
– enumerations involving a single individual 

(ObjectOneOf) or a single literal (DataOneOf)
– intersection of classes (ObjectIntersectionOf) 

and data ranges (DataIntersectionOf) 
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OWL 2 EL Specification (cont’d)

• Types of axioms allowed:
– class inclusion (SubClassOf) 
– class equivalence (EquivalentClasses) 

– class disjointness (DisjointClasses) 

– object property inclusion (SubObjectPropertyOf) 
with or without property chains, and data property 
inclusion (SubDataPropertyOf) 

– property equivalence 
(EquivalentObjectProperties and 
EquivalentDataProperties)
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OWL 2 EL Specification (cont’d)

– transitive object properties (TransitiveObjectProperty) 
– reflexive object properties (ReflexiveObjectProperty) 
– domain restrictions (ObjectPropertyDomain and 
DataPropertyDomain) 

– range restrictions (ObjectPropertyRange and 
DataPropertyRange) 

– assertions (SameIndividual, DifferentIndividuals, 
ClassAssertion, ObjectPropertyAssertion, 
DataPropertyAssertion, 
NegativeObjectPropertyAssertion, and 
NegativeDataPropertyAssertion) 

– functional data properties (FunctionalDataProperty) 
– keys (HasKey) 
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OWL 2 EL Specification (cont’d)

• Constructs not supported: 
– universal quantification to a class expression 

(ObjectAllValuesFrom) or a data range 
(DataAllValuesFrom) 

– cardinality restrictions (ObjectMaxCardinality, 
ObjectMinCardinality, ObjectExactCardinality, 
DataMaxCardinality, DataMinCardinality, and 
DataExactCardinality) 

– disjunction (ObjectUnionOf, DisjointUnion, and 
DataUnionOf) 

– class negation (ObjectComplementOf) 
– enumerations involving more than one individual (ObjectOneOf 

and DataOneOf) 



Knowledge Technologies                                                             Manolis Koubarakis174

OWL 2 EL Specification (cont’d)

– disjoint properties (DisjointObjectProperties 
and DisjointDataProperties) 

– irreflexive object properties 
(IrreflexiveObjectProperty) 

– inverse object properties 
(InverseObjectProperties) 

– functional and inverse-functional object properties 
(FunctionalObjectProperty and 
InverseFunctionalObjectProperty) 

– symmetric object properties 
(SymmetricObjectProperty) 

– asymmetric object properties 
(AsymmetricObjectProperty) 
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OWL 2 QL
• The OWL 2 QL profile is a subset of OWL 2 that provides a useful language for 

writing ontologies that have computational properties similar to the ones that one 
finds in relational databases.

• In this profile sound and complete query answering can be done with LOGSPACE 
computational complexity with respect to the size of the data (assertions), while 
providing many of the main features necessary to express conceptual models such 
as UML class diagrams and ER diagrams. 

• This profile contains the intersection of RDFS and OWL 2 DL. 

• This profile is designed so that data (assertions) that is stored in a standard relational 
database system can be queried through an ontology via a simple rewriting 
mechanism, i.e., by rewriting the query into an SQL query that is then answered by 
the RDBMS system, without any changes to the data. 

• OWL 2 QL is based on the DL-Lite family of description logics.

• See the OWL 2 Language Profiles document for more details.
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OWL 2 RL
• The OWL 2 RL profile is aimed at applications that require scalable 

reasoning without sacrificing too much expressive power. 

• It is designed to accommodate both OWL 2 applications that can trade the 
full expressivity of the language for efficiency, and RDF(S) applications that 
need some added expressivity from OWL 2. 

• This is achieved by defining a syntactic subset of OWL 2 which is 
amenable to implementation using rule-based technologies and 
presenting a partial axiomatization of the OWL 2 RDF-based semantics 
in the form of first-order implications that can be used as the basis for 
such an implementation.

• The design of OWL 2 RL was inspired by Description Logic Programs 
and pD*.

• See the OWL 2 Language Profiles document for more details.
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OWL Syntaxes (cont’d)

• The Functional-Style syntax (used so far in these 
slides).

• The RDF/XML syntax: this is just RDF/XML, with a 
particular translation for the OWL constructs. Here one 
can use other popular syntaxes for RDF, e.g., Turtle 
syntax.

• The Manchester syntax: this is a frame-based syntax 
that is designed to be easier for users to read. 

• The OWL XML syntax: this is an XML syntax for OWL 
defined by an XML schema.
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Example

• Jack is a person but not a parent. 
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Functional-Style Syntax

ClassAssertion(

    ObjectIntersectionOf(:Person

            ObjectComplementOf(:Parent))  

    :Jack

) 
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RDF/XML Syntax
<rdf:Description rdf:about="Jack">
  <rdf:type> 
    <owl:Class> 
      <owl:intersectionOf rdf:parseType="Collection"> 
        <owl:Class rdf:about="Person"/> 
        <owl:Class> 
          <owl:complementOf rdf:resource="Parent"/> 
        </owl:Class> 
     </owl:intersectionOf> 
    </owl:Class> 
  </rdf:type> 
</rdf:Description> 
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Turtle Syntax

:Jack rdf:type [

  rdf:type owl:Class;

  owl:intersectionOf ( :Person

                       [ rdf:type owl:Class;

                         owl:complementOf  :Parent ]

                     ) 

] . 
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Manchester Syntax

Individual: Jack 

Types: Person and not Parent 
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OWL/XML Syntax

<ClassAssertion>
  <ObjectIntersectionOf> 
    <Class IRI="Person"/>
    <ObjectComplementOf> 
      <Class IRI="Parent"/>
    </ObjectComplementOf>
   </ObjectIntersectionOf>
   <NamedIndividual IRI="Jack"/>
</ClassAssertion> 
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Readings
• The document 

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ gives an 
overview of the OWL 2 specification of the W3C OWL Working 
Group. In the documents referenced there, you will find all the 
information that you may need.

• You should read at least the Primer (
http://www.w3.org/TR/owl2-primer/) and Structural Specification and 
Functional Style Syntax (http://www.w3.org/TR/owl2-syntax/) .

• The DL SROIQ on which OWL 2 is based is described in the paper
– The Even More Irresistible SROIQ. Ian Horrocks, Oliver Kutz, and Uli 

Sattler. In Proc. of the 10th Int. Conf. on Principles of Knowledge 
Representation and Reasoning (KR 2006). AAAI Press, 2006. Available 
from http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf. 

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-syntax/
http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf

