
1

Introduction to the Semantic Web
(tutorial)

2009 Semantic Technology Conference
San Jose, California, USA

June 15, 2009

Ivan Herman, W3C
ivan@w3.org

2

Introduction

3

Let’s organize a trip to Budapest using the
Web!

4

You try to find a proper flight with …

5

… a big, reputable airline, or …

6

… the airline of the target country, or …

7

… or a low cost one

8

You have to find a hotel, so you look for…

9

… a really cheap accommodation, or …

10

… or a really luxurious one, or …

11

… an intermediate one …

12

oops, that is no good, the page is in
Hungarian that almost nobody

understands, but…

13

… this one could work

14

Of course, you could decide to trust a
specialized site…

15

… like this one, or…

16

… or this one

17

You may want to know something about
Budapest; look for some photographs…

18

… on flickr …

19

… on Google …

20

… or you can look at mine

21

… or a (social) travel site

22

What happened here?
• You had to consult a large number of sites, all

different in style, purpose, possibly language…
• You had to mentally integrate all those information

to achieve your goals
• We all know that, sometimes, this is a long and

tedious process!

23

• All those pages are only tips of respective icebergs:
• the real data is hidden somewhere in databases, XML files,

Excel sheets, …
• you have only access to what the Web page designers

allow you to see

24

• Specialized sites (Expedia, TripAdvisor) do a bit
more:
• they gather and combine data from other sources (usually

with the approval of the data owners)
• but they still control how you see those sources

• But sometimes you want to personalize: access the
original data and combine it yourself!

25

Here is another example…

26

Another example: social sites. I have a list
of “friends” by…

27

… Dopplr,

28

… Twine,

29

… LinkedIn,

30

… and, of course, Facebook

31

• I had to type in and connect with friends again and
again for each site independently

• This is even worse then before: I feed the icebergs,
but I still do not have an easy access to data…

32

What would we like to have?
• Use the data on the Web the same way as we do

with documents:
• be able to link to data (independently of their presentation)
• use that data the way I want (present it, mine it, etc)
• agents, programs, scripts, etc, should be able to interpret

part of that data

33

Put it another way…
• We would like to extend the current Web to a “Web

of data”:
• allow for applications to exploit the data directly

34

But wait! Isn’t what mashup sites are
already doing?

35

A “mashup” example:

36

• In some ways, yes, and that shows the huge power
of what such Web of data provides

• But mashup sites are forced to do very ad-hoc jobs
• various data sources expose their data via Web Services
• each with a different API, a different logic, different structure
• these sites are forced to reinvent the wheel many times

because there is no standard way of doing things

37

Put it another way (again)…
• We would like to extend the current Web to a

standard way for a “Web of data”

38

But what does this mean?

• What makes the current (document) Web work?
• people create different documents
• they give an address to it (ie, a URI) and make it accessible

to others on the Web

39Steven’s site on Amsterdam
(done for some visiting friends)

40

Then some magic happens…
• Others discover the site and they link to it
• The more they link to it, the more important and

well known the page becomes
• remember, this is what, eg, Google exploits!

• This is the “Network effect”: some pages become
important, and others begin to rely on it even if the
author did not expect it…

41

This could be expected…

42but this one, from the other side of the Globe,
was not…

43

What would that mean for a Web of Data?
• Lessons learned: we should be able to:

• “publish” the data to make it known on the Web
• standard ways should be used instead of ad-hoc approaches
• the analogous approach to documents: give URI-s to the data

• make it possible to “link” to that URI from other sources of
data (not only Web pages)

• ie, applications should not be forced to make targeted
developments to access the data

• generic, standard approaches should suffice
• and let the network effect work its way…

44

But it is a little bit more complicated
• On the traditional Web, humans are implicitly taken

into account
• A Web link has a “context” that a person may use

45

Eg: address field on my page:

46

… leading to this page

47

• A human understands that this is my institution’s
home page

• He/she knows what it means (realizes that it is a
research institute in Amsterdam)

• On a Web of Data, something is missing; machines
can’t make sense of the link alone

48

• New lesson learned:
• extra information (“label”) must be added to a link: “this links

to my institution, which is a research institute”
• this information should be machine readable
• this is a characterization (or “classification”) of both the link

and its target
• in some cases, the classification should allow for some

limited “reasoning”

49

Let us put it together
• What we need for a Web of Data:

• use URI-s to publish data, not only full documents
• allow the data to link to other data
• characterize/classify the data and the links (the “terms”) to

convey some extra meaning
• and use standards for all these!

50

So What is the Semantic Web?

51

It is a collection of standard technologies
to realize a Web of Data

52

• It is that simple…
• Of course, the devil is in the details

• a common model has to be provided for machines to
describe, query, etc, the data and their connections

• the “classification” of the terms can become very complex
for specific knowledge areas: this is where ontologies,
thesauri, etc, enter the game…

53

In what follows…

• We will use a simplistic example to introduce the
main technical concepts

• The details will be for later during the course

54

The rough structure of data integration
1. Map the various data onto an abstract data

representation
• make the data independent of its internal representation…

2. Merge the resulting representations
3. Start making queries on the whole!

• queries that could not have been done on the individual data
sets

55

A simplified bookstore data (dataset “A”)
ID Author Title Publisher Year
ISBN0-00-651409-X The Glass Palace 2000id_xyz id_qpr

ID Name Home Page

ID City
Harper Collins London

id_xyz Ghosh, Amitav http://www.amitavghosh.com

Publ. Name
id_qpr

56

1st: export your data as a set of relations

57

Some notes on the exporting the data
• Relations form a graph

• the nodes refer to the “real” data or contain some literal
• how the graph is represented in machine is immaterial for

now
• Data export does not necessarily mean physical

conversion of the data
• relations can be generated on-the-fly at query time

• via SQL “bridges”
• scraping HTML pages
• extracting data from Excel sheets
• etc.

• One can export part of the data

58

Another bookstore data (dataset “F”)
A B D E

1 ID Titre Original

2

ISBN0 2020386682 A13 ISBN-0-00-651409-X

3

6 ID Auteur
7 ISBN-0-00-651409-X A12

11

12

13

Traducteur
Le Palais
des
miroirs

Nom
Ghosh, Amitav
Besse, Christianne

59

2nd: export your second set of data

60

3rd: start merging your data

61

3rd: start merging your data (cont.)

62

3rd: merge identical resources

63

Start making queries…
• User of data “F” can now ask queries like:

• “give me the title of the original”
• well, … « donnes-moi le titre de l’original »

• This information is not in the dataset “F”…
• …but can be retrieved by merging with dataset “A”!

64

However, more can be achieved…
• We “feel” that a:author and f:auteur should be

the same
• But an automatic merge doest not know that!
• Let us add some extra information to the merged

data:
• a:author same as f:auteur
• both identify a “Person”
• a term that a community may have already defined:

• a “Person” is uniquely identified by his/her name and, say,
homepage

• it can be used as a “category” for certain type of resources

65

3rd revisited: use the extra knowledge

66

Start making richer queries!
• User of dataset “F” can now query:

• “donnes-moi la page d’accueil de l’auteur de l’originale”
• well… “give me the home page of the original’s ‘auteur’”

• The information is not in datasets “F” or “A”…
• …but was made available by:

• merging datasets “A” and datasets “F”
• adding three simple extra statements as an extra “glue”

67

Combine with different datasets
• Using, e.g., the “Person”, the dataset can be

combined with other sources
• For example, data in Wikipedia can be extracted

using dedicated tools
• e.g., the “dbpedia” project can extract the “infobox”

information from Wikipedia already…

http://dbpedia.org/

68

Merge with Wikipedia data

69

Merge with Wikipedia data

70

Merge with Wikipedia data

71

Is that surprising?
• It may look like it but, in fact, it should not be…
• What happened via automatic means is done every

day by Web users!
• The difference: a bit of extra rigour so that

machines could do this, too

72

What did we do?
• We combined different datasets that

• are somewhere on the web
• are of different formats (mysql, excel sheet, XHTML, etc)
• have different names for relations

• We could combine the data because some URI-s
were identical (the ISBN-s in this case)

• We could add some simple additional information
(the “glue”), possibly using common terminologies
that a community has produced

• As a result, new relations could be found and
retrieved

73

It could become even more powerful
• We could add extra knowledge to the merged

datasets
• e.g., a full classification of various types of library data
• geographical information
• etc.

• This is where ontologies, extra rules, etc, come in
• ontologies/rule sets can be relatively simple and small, or

huge, or anything in between…
• Even more powerful queries can be asked as a

result

74

What did we do? (cont)

75

The Basis: RDF

76

RDF triples
• Let us begin to formalize what we did!

• we “connected” the data…
• but a simple connection is not enough… data should be

named somehow
• hence the RDF Triples: a labelled connection between two

resources

77

RDF triples (cont.)
• An RDF Triple (s,p,o) is such that:

• “s”, “p” are URI-s, ie, resources on the Web; “o” is a URI or
a literal

• “s”, “p”, and “o” stand for “subject”, “property”, and “object”
• here is the complete triple:

• RDF is a general model for such triples (with
machine readable formats like RDF/XML, Turtle,
N3, RXR, …)

(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)

78

RDF triples (cont.)
• Resources can use any URI, e.g.:

• http://www.example.org/file.xml#element(home)
• http://www.example.org/file.html#home
• http://www.example.org/file2.xml#xpath1(//q[@a=b])

• URI-s can also denote non Web entities:
• http://www.ivan-herman.net/me is me
• not my home page, not my publication list, but me

• RDF triples form a directed, labelled graph

79

A simple RDF example (in RDF/XML)

<rdf:Description rdf:about="http://…/isbn/2020386682">
 <f:titre xml:lang="fr">Le palais des mirroirs</f:titre>
 <f:original rdf:resource="http://…/isbn/000651409X"/>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/2020386682">
 <f:titre xml:lang="fr">Le palais des mirroirs</f:titre>
 <f:original rdf:resource="http://…/isbn/000651409X"/>
</rdf:Description>

(Note: namespaces are used to simplify the URI-s)

80

A simple RDF example (in Turtle)

<http://…/isbn/2020386682>
 f:titre "Le palais des mirroirs"@fr ;
 f:original <http://…/isbn/000651409X> .

<http://…/isbn/2020386682>
 f:titre "Le palais des mirroirs"@fr ;
 f:original <http://…/isbn/000651409X> .

81

“Internal” nodes
• Consider the following statement:

• “the publisher is a «thing» that has a name and an address”
• Until now, nodes were identified with a URI. But…
• …what is the URI of «thing»?

82

Internal identifier (“blank nodes”)

• Syntax is serialization dependent
• A234 is invisible from outside (it is not a “real”

URI!); it is an internal identifier for a resource

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher rdf:nodeID="A234"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A234">
 <a:p_name>HarpersCollins</a:p_name>
 <a:city>HarpersCollins</a:city>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher rdf:nodeID="A234"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A234">
 <a:p_name>HarpersCollins</a:p_name>
 <a:city>HarpersCollins</a:city>
</rdf:Description>

<http://…/isbn/2020386682> a:publisher _:A234.
_:A234 a:p_name "HarpersCollins".
<http://…/isbn/2020386682> a:publisher _:A234.
_:A234 a:p_name "HarpersCollins".

83

Blank nodes: the system can also do it
• Let the system create a “nodeID” internally (you do

not really care about the name…)

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher>
 <rdf:Description>
 <a:p_name>HarpersCollins</a:p_name>
 …
 </rdf:Description>
 </a:publisher>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher>
 <rdf:Description>
 <a:p_name>HarpersCollins</a:p_name>
 …
 </rdf:Description>
 </a:publisher>
</rdf:Description>

84

Same in Turtle

<http://…/isbn/000651409X> a:publisher [
 a:p_name "HarpersCollins";
 …
].

<http://…/isbn/000651409X> a:publisher [
 a:p_name "HarpersCollins";
 …
].

85

Blank nodes: some more remarks
• Blank nodes require attention when merging

• blanks nodes with identical nodeID-s in different graphs are
different

• implementations must be careful…
• Many applications prefer not to use blank nodes

and define new URI-s “on-the-fly”

86

RDF in programming practice
• For example, using Java+Jena (HP’s Bristol Lab):

• a “Model” object is created
• the RDF file is parsed and results stored in the Model
• the Model offers methods to retrieve:

• triples
• (property,object) pairs for a specific subject
• (subject,property) pairs for specific object
• etc.

• the rest is conventional programming…
• Similar tools exist in Python, PHP, etc.

87

Jena example

 // create a model
 Model model=new ModelMem();
 Resource subject=model.createResource("URI_of_Subject")
 // 'in' refers to the input file
 model.read(new InputStreamReader(in));
 StmtIterator iter=model.listStatements(subject,null,null);
 while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty();
 o = st.getObject();
 do_something(p,o);
 }

 // create a model
 Model model=new ModelMem();
 Resource subject=model.createResource("URI_of_Subject")
 // 'in' refers to the input file
 model.read(new InputStreamReader(in));
 StmtIterator iter=model.listStatements(subject,null,null);
 while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty();
 o = st.getObject();
 do_something(p,o);
 }

88

Merge in practice
• Environments merge graphs automatically

• e.g., in Jena, the Model can load several files
• the load merges the new statements automatically

89

Example: integrate experimental data

• Goal: reuse of older
experimental data

• Keep data in
databases or XML,
just export key “fact”
as RDF

• Use a faceted
browser to visualize
and interact with the
result

Courtesy of Nigel Wilkinson, Lee Harland, Pfizer Ltd, Melliyal Annamalai, Oracle (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/Pfizer/

90

One level higher up
(RDFS, Datatypes)

91

Need for RDF schemas
• First step towards the “extra knowledge”:

• define the terms we can use
• what restrictions apply
• what extra relationships are there?

• Officially: “RDF Vocabulary Description Language”
• the term “Schema” is retained for historical reasons…

92

Classes, resources, …
• Think of well known traditional ontologies or

taxonomies:
• use the term “novel”
• “every novel is a fiction”
• “«The Glass Palace» is a novel”
• etc.

• RDFS defines resources and classes:
• everything in RDF is a “resource”
• “classes” are also resources, but…
• …they are also a collection of possible resources (i.e.,

“individuals”)
• “fiction”, “novel”, …

93

Classes, resources, … (cont.)
• Relationships are defined among classes and

resources:
• “typing”: an individual belongs to a specific class

• “«The Glass Palace» is a novel”
• to be more precise: “«http://.../000651409X» is a novel”

• “subclassing”: all instances of one are also the instances of
the other (“every novel is a fiction”)

• RDFS formalizes these notions in RDF

94

Classes, resources in RDF(S)

• RDFS defines the meaning of these terms
• (these are all special URI-s, we just use the namespace

abbreviation)

95

Schema example in RDF/XML
• The schema part:

<rdf:Description rdf:ID="Novel">
 <rdf:type
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>

<rdf:Description rdf:ID="Novel">
 <rdf:type
 rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>

• The RDF data on a specific novel:

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <rdf:type rdf:resource="http://…/bookSchema.rdf#Novel"/>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <rdf:type rdf:resource="http://…/bookSchema.rdf#Novel"/>
</rdf:Description>

96

Further remarks on types
• A resource may belong to several classes

• rdf:type is just a property…
• “«The Glass Palace» is a novel, but «The Glass Palace» is

also an «inventory item»…”
• i.e., it is not like a datatype!

• The type information may be very important for
applications
• e.g., it may be used for a categorization of possible nodes
• probably the most frequently used RDF property…

• (remember the “Person” in our example?)

97

Inferred properties

• is not in the original RDF data…
• …but can be inferred from the RDFS rules
• RDFS environments return that triple, too

 (<http://…/isbn/000651409X> rdf:type #Fiction) (<http://…/isbn/000651409X> rdf:type #Fiction)

98

Inference: let us be formal…
• The RDF Semantics document has a list of (33)

entailment rules:
• “if such and such triples are in the graph, add this and this”
• do that recursively until the graph does not change

• The relevant rule for our example:

If:
 uuu rdfs:subClassOf xxx .
 vvv rdf:type uuu .
Then add:
 vvv rdf:type xxx .

If:
 uuu rdfs:subClassOf xxx .
 vvv rdf:type uuu .
Then add:
 vvv rdf:type xxx .

99

Properties
• Property is a special class (rdf:Property)

• properties are also resources identified by URI-s
• There is also a possibility for a “sub-property”

• all resources bound by the “sub” are also bound by the other
• Range and domain of properties can be specified

• i.e., what type of resources serve as object and subject

100

Property specification serialized
• In RDF/XML:

<rdf:Property rdf:ID="title">
 <rdfs:domain rdf:resource="#Fiction"/>
 <rdfs:range rdf:resource="http://...#Literal"/>
</rdf:Property>

<rdf:Property rdf:ID="title">
 <rdfs:domain rdf:resource="#Fiction"/>
 <rdfs:range rdf:resource="http://...#Literal"/>
</rdf:Property>

• In Turtle:

:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.

:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.

101

What does this mean?
• Again, new relations can be deduced. Indeed, if

:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.
<http://…/isbn/000651409X> :title "The Glass Palace" .

:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.
<http://…/isbn/000651409X> :title "The Glass Palace" .

• then the system can infer that:

<http://…/isbn/000651409X> rdf:type :Fiction .<http://…/isbn/000651409X> rdf:type :Fiction .

102

Literals
• Literals may have a data type

• floats, integers, booleans, etc, defined in XML Schemas
• full XML fragments

• (Natural) language can also be specified

103

Examples for datatypes

<http://…/isbn/000651409X>
 :page_number "543"^^xsd:integer ;
 :publ_date "2000"^^xsd:gYear ;
 :price "6.99"^^xsd:float .

<http://…/isbn/000651409X>
 :page_number "543"^^xsd:integer ;
 :publ_date "2000"^^xsd:gYear ;
 :price "6.99"^^xsd:float .

104

A bit of RDFS can take you far…
• Remember the power of merge?
• We could have used, in our example:

• f:auteur is a subproperty of a:author and vice versa
(although we will see other ways to do that…)

• Of course, in some cases, more complex
knowledge is necessary (see later…)

105

Example: find the right experts at NASA
• Expertise locater for nearly 70,000 NASA civil

servants, using RDF integration techniques over 6
or 7 geographically distributed databases, data
sources, and web services…

Michael Grove, Clark & Parsia, LLC, and Andrew Schain, NASA, (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/Nasa/

106

How to get RDF Data?
(Microformats, GRDDL, RDFa)

107

Simple approach
• Write RDF/XML or Turtle “manually”
• In some cases that is necessary, but it really does

not scale…

108

RDF with XHTML
• Obviously, a huge source of information
• By adding some “meta” information, the same

source can be reused for, eg, data integration,
better mashups, etc
• typical example: your personal information, like address,

should be readable for humans and processable by
machines

• Two solutions have emerged:
• extract the structure from the page and convert the content

into RDF
• add RDF statements directly into XHTML via RDFa

109

Extract RDF
• Use intelligent “scrapers” or “wrappers” to extract a

structure (hence RDF) from a Web pages or XML
files…

• … and then generate RDF automatically (e.g., via
an XSLT script)

110

Formalizing the scraper approach: GRDDL
• GRDDL formalizes the scraper approach. For

example:
<html xmlns="http://www.w3.org/1999/">
 <head profile="http://www.w3.org/2003/g/data-view">
 <title>Some Document</title>
 <link rel="transformation" href="http:…/dc-extract.xsl"/>
 <meta name="DC.Subject" content="Some subject"/>
 ...
 </head>
 ...
 2006-01-02
 ...
</html>

<html xmlns="http://www.w3.org/1999/">
 <head profile="http://www.w3.org/2003/g/data-view">
 <title>Some Document</title>
 <link rel="transformation" href="http:…/dc-extract.xsl"/>
 <meta name="DC.Subject" content="Some subject"/>
 ...
 </head>
 ...
 2006-01-02
 ...
</html>

• yields, through dc-extract.xsl:

<>
 dc:subject "Some subject";
 dc:date "2006-01-02" .

<>
 dc:subject "Some subject";
 dc:date "2006-01-02" .

111

GRDDL
• The transformation itself has to be provided for

each set of conventions
• A more general syntax is defined for XML formats

in general (e.g., via the namespace document)
• a method to get data in other formats to RDF (e.g., XBRL)

112

Example for “structure”: microformats
• Not a Semantic Web specification, originally

• there is a separate microformat community
• Approach: re-use (X)HTML attributes and elements

to add “meta” information
• typically @abbr, @class, @title, …
• different community agreements for different applications

113

RDFa
• RDFa extends (X)HTML a bit by:

• defining general attributes to add metadata to any elements
• provides an almost complete “serialization” of RDF in

XHTML
• It is a bit like the microformats/GRDDL approach

but fully generic

114

RDFa example
• For example:
<div about="http://uri.to.newsitem">
 March 23, 2004
 Rollers hit casino for £1.3m
 By Steve Bird. See

 also video footage…
</div>

<div about="http://uri.to.newsitem">
 March 23, 2004
 Rollers hit casino for £1.3m
 By Steve Bird. See

 also video footage…
</div>

• yields, through an RDFa processor:

<http://uri.to.newsitem>
 dc:date "March 23, 2004";
 dc:title "Rollers hit casino for £1.3m;
 dc:creator "Steve Bird";
 dcmtype:MovingImage <http://www.a.b.c/d.avi>.

<http://uri.to.newsitem>
 dc:date "March 23, 2004";
 dc:title "Rollers hit casino for £1.3m;
 dc:creator "Steve Bird";
 dcmtype:MovingImage <http://www.a.b.c/d.avi>.

115

Example: Yahoo’s SearchMonkey
• Search based results may be customized via small

applications
• Metadata in pages (in RDFa, microformats etc) are

reused

Courtesy of Peter Mika, Yahoo! Research, (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/yahoo/

116Example: RDFa data by the
London Gazette

117

Example: RDFa data by the
London Gazette

118

Bridge to relational databases
• Data on the Web are mostly stored in databases
• “Bridges” are being defined:

• a layer between RDF and the relational data
• RDB tables are “mapped” to RDF graphs, possibly on the fly
• different mapping approaches are being used

• a number RDB systems offer this facility already (eg,
Oracle, OpenLink, …)

• A survey on mapping techniques has been
published at W3C

• W3C plans to engage in a standardization work in
this area

119

Linking Data

120

Linking Open Data Project
• Goal: “expose” open datasets in RDF
• Set RDF links among the data items from different

datasets
• Set up query endpoints
• Altogether billions of triples, millions of links…

121

Example data source: DBpedia
• DBpedia is a community effort to

• extract structured (“infobox”) information from Wikipedia
• provide a query endpoint to the dataset
• interlink the DBpedia dataset with other datasets on the

Web

122

Extracting Wikipedia structured data
@prefix dbpedia <http://dbpedia.org/resource/>.
@prefix dbterm <http://dbpedia.org/property/>.

dbpedia:Amsterdam
 dbterm:officialName “Amsterdam” ;
 dbterm:longd “4” ;
 dbterm:longm “53” ;
 dbterm:longs “32” ;
 ...
 dbterm:leaderTitle “Mayor” ;
 dbterm:leaderName dbpedia:Job_Cohen ;
 ...
 dbterm:areaTotalKm “219” ;
 ...
dbpedia:ABN_AMRO
 dbterm:location dbpedia:Amsterdam ;
 ...

@prefix dbpedia <http://dbpedia.org/resource/>.
@prefix dbterm <http://dbpedia.org/property/>.

dbpedia:Amsterdam
 dbterm:officialName “Amsterdam” ;
 dbterm:longd “4” ;
 dbterm:longm “53” ;
 dbterm:longs “32” ;
 ...
 dbterm:leaderTitle “Mayor” ;
 dbterm:leaderName dbpedia:Job_Cohen ;
 ...
 dbterm:areaTotalKm “219” ;
 ...
dbpedia:ABN_AMRO
 dbterm:location dbpedia:Amsterdam ;
 ...

123

Automatic links among open datasets
<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://rdf.freebase.com/ns/...> ;
 owl:sameAs <http://sws.geonames.org/2759793> ;
 ...

<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://rdf.freebase.com/ns/...> ;
 owl:sameAs <http://sws.geonames.org/2759793> ;
 ...

<http://sws.geonames.org/2759793>
 owl:sameAs <http://dbpedia.org/resource/Amsterdam>
 wgs84_pos:lat “52.3666667” ;
 wgs84_pos:long “4.8833333” ;
 geo:inCountry <http://www.geonames.org/countries/#NL> ;
 ...

<http://sws.geonames.org/2759793>
 owl:sameAs <http://dbpedia.org/resource/Amsterdam>
 wgs84_pos:lat “52.3666667” ;
 wgs84_pos:long “4.8833333” ;
 geo:inCountry <http://www.geonames.org/countries/#NL> ;
 ...

Processors can switch automatically from one to the other…

124

The LOD “cloud”, March 2008

125

The LOD “cloud”, September 2008

126

The LOD “cloud”, March 2009

127

Example: mapping application on an iPhone

Courtesy of Chris Bizer and Christian Becker, Freie Universität, Berlin

128

Example: mapping application on an iPhone

Courtesy of Chris Bizer and Christian Becker, Freie Universität, Berlin

129

Query RDF Data
(SPARQL)

130

RDF data access
• How do I query the RDF data?

• e.g., how do I get to the DBpedia data?

131

Querying RDF graphs
• Remember the Jena idiom:
StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

• In practice, more complex queries into the RDF
data are necessary
• something like: “give me the (a,b) pair of resources, for

which there is an x such that (x parent a) and (b brother x)
holds” (ie, return the uncles)

• these rules may become quite complex
• The goal of SPARQL (Query Language for RDF)

http://www.w3.org/TR/rdf-sparql-query/

132

Analyse the Jena example
StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

• The (subject,?p,?o) is a pattern for what we
are looking for (with ?p and ?o as “unknowns”)

133

General: graph patterns
• The fundamental idea: use graph patterns

• the pattern contains unbound symbols
• by binding the symbols, subgraphs of the RDF graph are

selected
• if there is such a selection, the query returns bound

resources

134

Our Jena example in SPARQL
SELECT ?p ?o
WHERE {subject ?p ?o}
SELECT ?p ?o
WHERE {subject ?p ?o}

• The triples in WHERE define the graph pattern,
with ?p and ?o “unbound” symbols

• The query returns all p,o pairs

135

Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

136

Simple SPARQL example

• Returns:
[[<..49X>,33,£], [<..49X>,50,€], [<..6682>,60,€],
[<..6682>,78,$]]

SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

137

Pattern constraints
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
 FILTER(?currency == € }

SELECT ?isbn ?price ?currency # note: not ?x!
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
 FILTER(?currency == € }

• Returns: [[<..409X>,50,€], [<..6682>,60,€]]

138

Other SPARQL features
• Limit the number of returned results; remove

duplicates, sort them, …
• Optional branches in the query
• Specify several data sources (via URI-s) within the

query (essentially, a merge!)
• Construct a graph combining a separate pattern

and the query results
• Use datatypes and/or language tags when

matching a pattern

139

SPARQL usage in practice
• SPARQL is usually used over the network

• separate documents define the protocol and the result
format

• SPARQL Protocol for RDF with HTTP and SOAP bindings
• SPARQL results in XML or JSON formats

• Big datasets usually offer “SPARQL endpoints”
using this protocol
• typical example: SPARQL endpoint to DBpedia

140

SPARQL as a unifying point

141

Example: integrate Chinese medical data
• Integration of a large number of TCM databases

• around 80 databases, around 200,000 records each
• A visual tool to map databases to the semantic

layer using a specialized ontology
• Form based query interface for end users

Courtesy of Huajun Chen, Zhejiang University, (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/UniZheijang/

142

Ontologies
(OWL)

143

Ontologies
• RDFS is useful, but does not solve all possible

requirements
• Complex applications may want more possibilities:

• characterization of properties
• identification of objects with different URI-s
• disjointness or equivalence of classes
• construct classes, not only name them
• can a program reason about some terms? E.g.:

• “if «Person» resources «A» and «B» have the same
«foaf:email» property, then «A» and «B» are identical”

• etc.

144

Ontologies (cont.)
• The term ontologies is used in this respect:

• RDFS can be considered as a simple ontology
language

• Languages should be a compromise between
• rich semantics for meaningful applications
• feasibility, implementability

“defines the concepts and relationships used to describe
and represent an area of knowledge”
“defines the concepts and relationships used to describe
and represent an area of knowledge”

145

Web Ontology Language = OWL
• OWL is an extra layer, a bit like RDF Schemas

• own namespace, own terms
• it relies on RDF Schemas

• It is a separate recommendation
• actually… there is a 2004 version of OWL (“OWL 1”)
• and there is an update (“OWL 2”) that should be finalized in

2009
• you will surely hear about it at the conference…

146

OWL is complex…
• OWL is a large set of additional terms
• We will not cover the whole thing here…

147

Term equivalences
• For classes:

• owl:equivalentClass: two classes have the same
individuals

• owl:disjointWith: no individuals in common
• For properties:

• owl:equivalentProperty
• remember the a:author vs. f:auteur

• owl:propertyDisjointWith
• For individuals:

• owl:sameAs: two URIs refer to the same concept
(“individual”)

• owl:differentFrom: negation of owl:sameAs

148

Connecting to French…

149

Typical usage of owl:sameAs

• Linking our example of Amsterdam from one data
set (DBpedia) to the other (Geonames):

<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://sws.geonames.org/2759793>;
<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://sws.geonames.org/2759793>;

• This is the main mechanism of “Linking” in the
Linking Open Data project

150

Property characterization
• In OWL, one can characterize the behaviour of

properties (symmetric, transitive, functional, inverse
functional…)

• One property may be the inverse of another
• OWL also separates data and object properties

• “datatype property” means that its range are typed literals

151

What this means is…
• If the following holds in our triples:
:email rdf:type owl:InverseFunctionalProperty.
<A> :email "mailto:a@b.c".
 :email "mailto:a@b.c".
:email rdf:type owl:InverseFunctionalProperty.
<A> :email "mailto:a@b.c".
 :email "mailto:a@b.c".

• I.e., new relationships were discovered again
(beyond what RDFS could do)

<A> owl:sameAs .<A> owl:sameAs .

then, processed through OWL, the following
holds, too:

152

Classes in OWL
• In RDFS, you can subclass existing classes…

that’s all
• In OWL, you can construct classes from existing

ones:
• enumerate its content
• through intersection, union, complement
• Etc

153

Classes in OWL (cont)
• OWL makes a stronger conceptual distinction

between classes and individuals
• there is a separate term for owl:Class, to make the

difference (a specialization of the RDFS class)
• individuals are separated into a special class called
owl:Thing

• Eg, a precise classification would be:

ex:Person rdf:type owl:Class.
<uri-for-Amitav-Ghosh>
 rdf:type owl:Thing;
 rdf:type owl:Person .

ex:Person rdf:type owl:Class.
<uri-for-Amitav-Ghosh>
 rdf:type owl:Thing;
 rdf:type owl:Person .

154

Classes contents can be enumerated

• I.e., the class consists of exactly of those
individuals

:£ rdf:type owl:Thing.
:€ rdf:type owl:Thing.
:$ rdf:type owl:Thing.
:Currency
 rdf:type owl:Class;
 owl:oneOf (:€ :£ :$).

:£ rdf:type owl:Thing.
:€ rdf:type owl:Thing.
:$ rdf:type owl:Thing.
:Currency
 rdf:type owl:Class;
 owl:oneOf (:€ :£ :$).

155

Union of classes can be defined

• Other possibilities: complementOf,
intersectionOf, …

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owl:Class;
 owl:unionOf (:Novel :Short_Story :Poetry).

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owl:Class;
 owl:unionOf (:Novel :Short_Story :Poetry).

156

For example…
If:

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owl:Class;
 owl:unionOf (:Novel :Short_Story :Poetry).
<myWork> rdf:type :Novel .

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owl:Class;
 owl:unionOf (:Novel :Short_Story :Poetry).
<myWork> rdf:type :Novel .

<myWork> rdf:type :Literature .<myWork> rdf:type :Literature .

then the following holds, too:

157

It can be a bit more complicated…
If:

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owlClass;
 owl:unionOf (:Novel :Short_Story :Poetry).
fr:Roman owl:equivalentClass :Novel .
<myWork> rdf:type fr:Roman .

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owlClass;
 owl:unionOf (:Novel :Short_Story :Poetry).
fr:Roman owl:equivalentClass :Novel .
<myWork> rdf:type fr:Roman .

<myWork> rdf:type :Literature .<myWork> rdf:type :Literature .

then, through the combination of different terms,
the following still holds:

158

What we have so far…
• The OWL features listed so far are already fairly

powerful
• E.g., various databases can be linked via
owl:sameAs, functional or inverse functional
properties, etc.

• Many inferred relationship can be found using a
traditional rule engine

159

However… that may not be enough
• Very large vocabularies might require even more

complex features
• typical usage example: definition of all concepts in a health

care environment
• a major issue: the way classes (i.e., “concepts”) are defined

• OWL includes those extra features but… the
inference engines become (much) more complex

160

Property value restrictions
• Classes are created by restricting the property

values on its individuals
• For example: how would I characterize a “listed

price”?
• it is a price (which may be a general term), but one that is

given in one of the “allowed” currencies (say, €, £, or $)
• more formally:

• the value of “p:currency”, when applied to a resource on
listed price, must be of one of those values…

• …thereby defining the class of “listed price”

161

Restrictions formally
• Defines a class of type owl:Restriction with a

• reference to the property that is constrained
• definition of the constraint itself

• One can, e.g., subclass from this node when
defining a particular class

:Listed_Price rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom :Currency.
].

:Listed_Price rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom :Currency.
].

162

Possible usage…
If:

<something> rdf:type :Currency .<something> rdf:type :Currency .

then the following holds:

:Listed_Price rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom :Currency.
].
:price rdf:type :Listed_Price .
:price p:currency <something> .

:Listed_Price rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom :Currency.
].
:price rdf:type :Listed_Price .
:price p:currency <something> .

163

Other restrictions

• allValuesFrom could be replaced by:
• someValuesFrom

• e.g., I could have said: there should be a price given in at
least one of those currencies

• hasValue, when restricted to one specific value
• Cardinality restrictions: instead of looking at the

values of properties, their number is considered
• eg, a specific property should occur exactly once

164

But: OWL is hard!
• The combination of class constructions with various

restrictions is extremely powerful
• What we have so far follows the same logic as

before
• extend the basic RDF and RDFS possibilities with new

features
• define their semantics, ie, what they “mean” in terms of

relationships
• expect to infer new relationships based on those

• However… a full inference procedure is hard
• not implementable with simple rule engines, for example

165

OWL “species”
• OWL species comes to the fore:

• restricting which terms can be used and under what
circumstances (restrictions)

• if one abides to those restrictions, then simpler inference
engines can be used

• They reflect compromises: expressibility vs.
implementability

166

OWL Full
• No constraints on any of the constructs

• owl:Class is just syntactic sugar for rdfs:Class
• owl:Thing is equivalent to rdfs:Resource
• this means that:

• Class can also be an individual, a URI can denote a property
as well as a Class

• e.g., it is possible to talk about class of classes, apply properties
on them

• etc
• etc.

• Extension of RDFS in all respects
• But: no system may exist that infers everything one

might expect

167

OWL Full usage
• Nevertheless OWL Full is essential

• it gives a generic framework to express many things
• some application just need to express and interchange

terms (with possible scruffiness)
• Applications may control what terms are used and

how
• in fact, they may define their own sub-language via, eg, a

vocabulary
• thereby ensuring a manageable inference procedure

168

OWL DL
• A number of restrictions are defined

• classes, individuals, object and datatype properties, etc, are
fairly strictly separated

• object properties must be used with individuals
• i.e., properties are really used to create relationships between

individuals
• no characterization of datatype properties
• …

• But: well known inference algorithms exist!

169

Examples for restrictions
• The following is not “legal” OWL DL:

<q> rdf:type <A>. # A is a class, q is an individual
<r> rdf:type <q>. # error: q cannot be used for a class, too
<A> ex:something . # error: properties are for individuals only
<q> ex:something <s>. # error: same property cannot be used as
<p> ex:something “54”. # object and datatype property

<q> rdf:type <A>. # A is a class, q is an individual
<r> rdf:type <q>. # error: q cannot be used for a class, too
<A> ex:something . # error: properties are for individuals only
<q> ex:something <s>. # error: same property cannot be used as
<p> ex:something “54”. # object and datatype property

170

OWL DL usage
• Abiding to the restrictions means that very large

ontologies can be developed that require precise
procedures
• eg, in the medical domain, biological research, energy

industry, financial services (eg, XBRL), etc
• the number of classes and properties described this way

can go up to the many thousands
• OWL DL has become a language of choice to

define and manage formal ontologies in general
• even if their usage is not necessarily on the Web

171

OWL 2 defines further species
a.k.a. “profiles”

• Further restrictions on how terms can be used and
what inferences can be expected
• Classification and instance queries in polynomial time:

OWL-EL
• Implementable on top of conventional relational database

engines: OWL-QL
• Implementable on top of traditional rule engines: OWL-RL

172

Ontology development
• The hard work is to create the ontologies

• requires a good knowledge of the area to be described
• some communities have good expertise already (e.g.,

librarians)
• OWL is just a tool to formalize ontologies
• large scale ontologies are often developed in a community

process
• Ontologies should be shared and reused

• can be via the simple namespace mechanisms…
• …or via explicit import

173

Must I use large ontologies?
• NO!!!
• Many applications are possible with RDFS and a

just a little bit of OWL
• a few terms, whose meaning is defined in OWL, and that

application can handle directly
• OWL RL is a step to create such a generic OWL level

• Big ontologies can be expensive (both in time and
money); use them only when really necessary!

174

Ontologies examples
• eClassOwl: eBusiness ontology for products and

services, 75,000 classes and 5,500 properties
• National Cancer Institute’s ontology: about 58,000

classes
• Open Biomedical Ontologies Foundry: a collection

of ontologies, including the Gene Ontology to
describe gene and gene product attributes in any
organism or protein sequence and annotation
terminology and data (UniProt)

• BioPAX: for biological pathway data

175

Example: improved search via ontology
• Search results are re-ranked using ontologies
• Related terms are highlighted, usable for further

search

176

Example: improved search via ontology
• Same dataset, different ontology

• (ontology is on non-animal experimentation)

177

Example: Eli Lilly’s target assessment tool

• Prioritization of
drug target,
integrating data
from different
sources and
formats

• Integration,
search via
ontologies
(proprietary and
public)

Courtesy of Susie Stephens, Eli Lilly (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/Lilly/

178

What have we achieved?
(putting all this together)

179

Other SW technologies
• There are other technologies that we do not have

time for here
• find RDF data associated with general URI-s: POWDER
• bridge to thesauri, glossaries, etc: SKOS
• use Rule engines on RDF data

180

Remember the integration example?

181

Same with what we learned

182

Example: personalized tourist itinerary

• Integration of
relevant data in
Zaragoza (using
RDF and ontologies)

• Use rules on the
RDF data to provide
a proper itinerary

Courtesy of Jesús Fernández, Mun. of Zaragoza, and Antonio Campos, CTIC (SWEO Use Case)

http://www.w3.org/2001/sw/sweo/public/UseCases/Zaragoza-2/

183

Available documents, resources

184

Available specifications: Primers, Guides
• The “RDF Primer” and the “OWL Guide” give a

formal introduction to RDF(S) and OWL
• GRDDL and RDFa Primers have also been

published
• The W3C Semantic Web Activity Homepage has

links to all the specifications:
• http://www.w3.org/2001/sw/

185

“Core” vocabularies
• There are also a number widely used “core

vocabularies”
• Dublin Core: about information resources, digital libraries,

with extensions for rights, permissions, digital right
management

• FOAF: about people and their organizations
• DOAP: on the descriptions of software projects
• SIOC: Semantically-Interlinked Online Communities
• vCard in RDF
• …

• One should never forget: ontologies/vocabularies
must be shared and reused!

186

Some books
• G. Antoniu and F. van Harmelen: Semantic Web

Primer, 2nd edition in 2008
• D. Allemang and J. Hendler: Semantic Web for the

Working Ontologist, 2008
• Jeffrey Pollock: Semantic Web for Dummies, 2009
• …

See the separate Wiki page collecting book references:
http://esw.w3.org/topic/SwBooks

187

Further information
• Planet RDF aggregates a number of SW blogs:

• http://planetrdf.com/
• Semantic Web Interest Group

• a forum developers with archived (and public) mailing list,
and a constant IRC presence on freenode.net#swig

• anybody can sign up on the list:
• http://www.w3.org/2001/sw/interest/

188

Lots of Tools (not an exhaustive list!)
• Categories:

• Triple Stores
• Inference engines
• Converters
• Search engines
• Middleware
• CMS
• Semantic Web browsers
• Development environments
• Semantic Wikis
• …

• Some names:
• Jena, AllegroGraph, Mulgara,

Sesame, flickurl, …
• TopBraid Suite, Virtuoso

environment, Falcon, Drupal 7,
Redland, Pellet, …

• Disco, Oracle 11g, RacerPro,
IODT, Ontobroker, OWLIM, Tallis
Platform, …

• RDF Gateway, RDFLib, Open
Anzo, DartGrid, Zitgist, Ontotext,
Protégé, …

• Thetus publisher, SemanticWorks,
SWI-Prolog, RDFStore…

• …

189

Conclusions
• The Semantic Web is about creating a Web of

Data
• There is a great and very active user and

developer community, with new applications
• witness the size and diversity of this event

190

By the way: the book is real

191

Thank you for your attention!

These slides are also available on the Web:

 http://www.w3.org/2009/Talks/0615-SanJose-tutorial-IH/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191

