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Introduction
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Let’s organize a trip to Budapest using the 
Web!
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You try to find a proper flight with …
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… a big, reputable airline, or …
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… the airline of the target country, or …
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… or a low cost one
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You have to find a hotel, so you look for…
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… a really cheap accommodation, or …
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… or a really luxurious one, or …
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… an intermediate one …
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oops, that is no good, the page is in 
Hungarian that almost nobody 

understands, but…
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… this one could work
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Of course, you could decide to trust a 
specialized site…
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… like this one, or…
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… or this one
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You may want to know something about 
Budapest; look for some photographs…



18

… on flickr …
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… on Google …
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… or you can look at mine 
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… or a (social) travel site
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What happened here?
• You had to consult a large number of sites, all 

different in style, purpose, possibly language…
• You had to mentally integrate all those information 

to achieve your goals
• We all know that, sometimes, this is a long and 

tedious process!
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• All those pages are only tips of respective icebergs:
• the real data is hidden somewhere in databases, XML files, 

Excel sheets, …
• you have only access to what the Web page designers 

allow you to see
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• Specialized sites (Expedia, TripAdvisor) do a bit 
more: 
• they gather and combine data from other sources (usually 

with the approval of the data owners)
• but they still control how you see those sources

• But sometimes you want to personalize: access the 
original data and combine it yourself! 
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Here is another example…
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Another example: social sites. I have a list 
of “friends” by…
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… Dopplr, 
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… Twine,
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… LinkedIn,
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… and, of course, Facebook
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• I had to type in and connect with friends again and 
again for each site independently

• This is even worse then before: I feed the icebergs, 
but I still do not have an easy access to data… 
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What would we like to have?
• Use the data on the Web the same way as we do 

with documents:
• be able to link to data (independently of their presentation)
• use that data the way I want (present it, mine it, etc)
• agents, programs, scripts, etc, should be able to interpret 

part of that data
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Put it another way…
• We would like to extend the current Web to a “Web 

of data”:
• allow for applications to exploit the data directly
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But wait! Isn’t what mashup sites are 
already doing?
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A “mashup” example:



36

• In some ways, yes, and that shows the huge power 
of what such Web of data provides

• But mashup sites are forced to do very ad-hoc jobs
• various data sources expose their data via Web Services
• each with a different API, a different logic, different structure
• these sites are forced to reinvent the wheel many times 

because there is no standard way of doing things
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Put it another way (again)…
• We would like to extend the current Web to a 

standard way for a “Web of data”
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But what does this mean? 

• What makes the current (document) Web work?
• people create different documents
• they give an address to it (ie, a URI) and make it accessible 

to others on the Web



39Steven’s site on Amsterdam
(done for some visiting friends)
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Then some magic happens…
• Others discover the site and they link to it
• The more they link to it, the more important and 

well known the page becomes
• remember, this is what, eg, Google exploits!

• This is the “Network effect”: some pages become 
important, and others begin to rely on it even if the 
author did not expect it…
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This could be expected…



42but this one, from the other side of the Globe, 
was not…
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What would that mean for a Web of Data?
• Lessons learned: we should be able to:

• “publish” the data to make it known on the Web
• standard ways should be used instead of ad-hoc approaches
• the analogous approach to documents: give URI-s to the data

• make it possible to “link” to that URI from other sources of 
data (not only Web pages)

• ie, applications should not be forced to make targeted 
developments to access the data

• generic, standard approaches should suffice 
• and let the network effect work its way…
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But it is a little bit more complicated
• On the traditional Web, humans are implicitly taken 

into account
• A Web link has a “context” that a person may use
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Eg: address field on my page:
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… leading to this page
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• A human understands that this is my institution’s 
home page

• He/she knows what it means (realizes that it is a 
research institute in Amsterdam)

• On a Web of Data, something is missing; machines 
can’t make sense of the link alone
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• New lesson learned: 
• extra information (“label”) must be added to a link: “this links 

to my institution, which is a research institute”
• this information should be machine readable
• this is a characterization (or “classification”) of both the link 

and its target
• in some cases, the classification should allow for some 

limited “reasoning”
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Let us put it together
• What we need for a Web of Data:

• use URI-s to publish data, not only full documents
• allow the data to link to other data
• characterize/classify the data and the links (the “terms”) to 

convey some extra meaning 
• and use standards for all these!
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So What is the Semantic Web?
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It is a collection of standard technologies 
to realize a Web of Data
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• It is that simple…
• Of course, the devil is in the details

• a common model has to be provided for machines to 
describe, query, etc, the data and their connections

• the “classification” of the terms can become very complex 
for specific knowledge areas: this is where ontologies, 
thesauri, etc, enter the game…
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In what follows…

• We will use a simplistic example to introduce the 
main technical concepts

• The details will be for later during the course
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The rough structure of data integration
1. Map the various data onto an abstract data 

representation
• make the data independent of its internal representation…

2. Merge the resulting representations
3. Start making queries on the whole!

• queries that could not have been done on the individual data 
sets
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A simplified bookstore data (dataset “A”)
ID Author Title Publisher Year
ISBN0-00-651409-X The Glass Palace 2000id_xyz id_qpr

ID Name Home Page

ID City
Harper Collins London

id_xyz Ghosh, Amitav http://www.amitavghosh.com

Publ. Name
id_qpr
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1st: export your data as a set of relations
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Some notes on the exporting the data
• Relations form a graph

• the nodes refer to the “real” data or contain some literal
• how the graph is represented in machine is immaterial for 

now
• Data export does not necessarily mean physical 

conversion of the data
• relations can be generated on-the-fly at query time

• via SQL “bridges”
• scraping HTML pages
• extracting data from Excel sheets
• etc.

• One can export part of the data



58

Another bookstore data (dataset “F”)
A B D E

1 ID Titre Original

2

ISBN0 2020386682 A13 ISBN-0-00-651409-X

3

6 ID Auteur
7 ISBN-0-00-651409-X A12

11

12

13

Traducteur
Le Palais 
des 
miroirs

Nom
Ghosh, Amitav
Besse, Christianne
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2nd: export your second set of data
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3rd: start merging your data
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3rd: start merging your data (cont.)
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3rd: merge identical resources
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Start making queries…
• User of data “F” can now ask queries like:

• “give me the title of the original”
• well, … « donnes-moi le titre de l’original »

• This information is not in the dataset “F”…
• …but can be retrieved by merging with dataset “A”!
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However, more can be achieved…
• We “feel” that a:author and f:auteur should be 

the same
• But an automatic merge doest not know that!
• Let us add some extra information to the merged 

data:
• a:author same as f:auteur
• both identify a “Person”
• a term that a community may have already defined:

• a “Person” is uniquely identified by his/her name and, say, 
homepage

• it can be used as a “category” for certain type of resources
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3rd revisited: use the extra knowledge
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Start making richer queries!
• User of dataset “F” can now query:

• “donnes-moi la page d’accueil de l’auteur de l’originale”
• well… “give me the home page of the original’s ‘auteur’”

• The information is not in datasets “F” or “A”…
• …but was made available by:

• merging datasets “A” and datasets “F”
• adding three simple extra statements as an extra “glue”
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Combine with different datasets
• Using, e.g., the “Person”, the dataset can be 

combined with other sources
• For example, data in Wikipedia can be extracted 

using dedicated tools
• e.g., the “dbpedia” project can extract the “infobox” 

information from Wikipedia already… 

http://dbpedia.org/
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Merge with Wikipedia data
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Merge with Wikipedia data
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Merge with Wikipedia data
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Is that surprising?
• It may look like it but, in fact, it should not be…
• What happened via automatic means is done every 

day by Web users!
• The difference: a bit of extra rigour so that 

machines could do this, too
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What did we do?
• We combined different datasets that

• are somewhere on the web
• are of different formats (mysql, excel sheet, XHTML, etc)
• have different names for relations

• We could combine the data because some URI-s 
were identical (the ISBN-s in this case)

• We could add some simple additional information 
(the “glue”), possibly using common terminologies 
that a community has produced

• As a result, new relations could be found and 
retrieved
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It could become even more powerful
• We could add extra knowledge to the merged 

datasets
• e.g., a full classification of various types of library data
• geographical information
• etc.

• This is where ontologies, extra rules, etc, come in
• ontologies/rule sets can be relatively simple and small, or 

huge, or anything in between…
• Even more powerful queries can be asked as a 

result
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What did we do? (cont)
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The Basis: RDF
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RDF triples
• Let us begin to formalize what we did!

• we “connected” the data…
• but a simple connection is not enough… data should be 

named somehow
• hence the RDF Triples: a labelled connection between two 

resources
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RDF triples (cont.)
• An RDF Triple (s,p,o) is such that:

• “s”, “p” are URI-s, ie, resources on the Web; “o” is a URI or 
a literal

• “s”, “p”, and “o” stand for “subject”, “property”, and “object”
• here is the complete triple:

• RDF is a general model for such triples (with 
machine readable formats like RDF/XML, Turtle, 
N3, RXR, …)

(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)



78

RDF triples (cont.)
• Resources can use any URI, e.g.:

• http://www.example.org/file.xml#element(home)
• http://www.example.org/file.html#home 
• http://www.example.org/file2.xml#xpath1(//q[@a=b])

• URI-s can also denote non Web entities:
• http://www.ivan-herman.net/me is me
• not my home page, not my publication list, but me

• RDF triples form a directed, labelled graph
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A simple RDF example (in RDF/XML)

<rdf:Description rdf:about="http://…/isbn/2020386682">
    <f:titre xml:lang="fr">Le palais des mirroirs</f:titre>
    <f:original rdf:resource="http://…/isbn/000651409X"/>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/2020386682">
    <f:titre xml:lang="fr">Le palais des mirroirs</f:titre>
    <f:original rdf:resource="http://…/isbn/000651409X"/>
</rdf:Description>

(Note: namespaces are used to simplify the URI-s)
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A simple RDF example (in Turtle)

<http://…/isbn/2020386682>
    f:titre "Le palais des mirroirs"@fr ;
    f:original <http://…/isbn/000651409X> .

<http://…/isbn/2020386682>
    f:titre "Le palais des mirroirs"@fr ;
    f:original <http://…/isbn/000651409X> .
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“Internal” nodes
• Consider the following statement:

• “the publisher is a «thing» that has a name and an address”
• Until now, nodes were identified with a URI. But…
• …what is the URI of «thing»?
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Internal identifier (“blank nodes”)

• Syntax is serialization dependent
• A234 is invisible from outside (it is not a “real” 

URI!); it is an internal identifier for a resource

<rdf:Description rdf:about="http://…/isbn/000651409X">
   <a:publisher rdf:nodeID="A234"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A234">
   <a:p_name>HarpersCollins</a:p_name>
   <a:city>HarpersCollins</a:city>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/000651409X">
   <a:publisher rdf:nodeID="A234"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A234">
   <a:p_name>HarpersCollins</a:p_name>
   <a:city>HarpersCollins</a:city>
</rdf:Description>

<http://…/isbn/2020386682> a:publisher _:A234.
_:A234 a:p_name "HarpersCollins".
<http://…/isbn/2020386682> a:publisher _:A234.
_:A234 a:p_name "HarpersCollins".
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Blank nodes: the system can also do it
• Let the system create a “nodeID” internally (you do 

not really care about the name…)

<rdf:Description rdf:about="http://…/isbn/000651409X">
  <a:publisher>
      <rdf:Description>
          <a:p_name>HarpersCollins</a:p_name>
          …
      </rdf:Description>
  </a:publisher>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/000651409X">
  <a:publisher>
      <rdf:Description>
          <a:p_name>HarpersCollins</a:p_name>
          …
      </rdf:Description>
  </a:publisher>
</rdf:Description>
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Same in Turtle

<http://…/isbn/000651409X> a:publisher [
    a:p_name "HarpersCollins";
    …
].

<http://…/isbn/000651409X> a:publisher [
    a:p_name "HarpersCollins";
    …
].
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Blank nodes: some more remarks
• Blank nodes require attention when merging

• blanks nodes with identical nodeID-s in different graphs are 
different

• implementations must be careful…
• Many applications prefer not to use blank nodes 

and define new URI-s “on-the-fly”
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RDF in programming practice
• For example, using Java+Jena (HP’s Bristol Lab):

• a “Model” object is created
• the RDF file is parsed and results stored in the Model
• the Model offers methods to retrieve:

• triples
• (property,object) pairs for a specific subject
• (subject,property) pairs for specific object
• etc.

• the rest is conventional programming…
• Similar tools exist in Python, PHP, etc.
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Jena example

  // create a model
  Model model=new ModelMem();
  Resource subject=model.createResource("URI_of_Subject")
  // 'in' refers to the input file
  model.read(new InputStreamReader(in));
  StmtIterator iter=model.listStatements(subject,null,null);
  while(iter.hasNext()) { 
     st = iter.next();
     p = st.getProperty();
     o = st.getObject();
     do_something(p,o);
  }

  // create a model
  Model model=new ModelMem();
  Resource subject=model.createResource("URI_of_Subject")
  // 'in' refers to the input file
  model.read(new InputStreamReader(in));
  StmtIterator iter=model.listStatements(subject,null,null);
  while(iter.hasNext()) { 
     st = iter.next();
     p = st.getProperty();
     o = st.getObject();
     do_something(p,o);
  }
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Merge in practice
• Environments merge graphs automatically

• e.g., in Jena, the Model can load several files
• the load merges the new statements automatically
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Example: integrate experimental data

• Goal: reuse of older 
experimental data

• Keep data in 
databases or XML, 
just export key “fact” 
as RDF

• Use a faceted 
browser to visualize 
and interact with the 
result

Courtesy of Nigel Wilkinson, Lee Harland, Pfizer Ltd, Melliyal Annamalai, Oracle (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/Pfizer/
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One level higher up
(RDFS, Datatypes)
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Need for RDF schemas
• First step towards the “extra knowledge”:

• define the terms we can use
• what restrictions apply
• what extra relationships are there?

• Officially: “RDF Vocabulary Description Language”
• the term “Schema” is retained for historical reasons…
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Classes, resources, …
• Think of well known traditional ontologies or 

taxonomies:
• use the term “novel”
• “every novel is a fiction”
• “«The Glass Palace» is a novel”
• etc.

• RDFS defines resources and classes:
• everything in RDF is a “resource”
• “classes” are also resources, but…
• …they are also a collection of possible resources (i.e., 

“individuals”)
• “fiction”, “novel”, …
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Classes, resources, … (cont.)
• Relationships are defined among classes and 

resources:
• “typing”: an individual belongs to a specific class 

• “«The Glass Palace» is a novel”
• to be more precise: “«http://.../000651409X» is a novel”

• “subclassing”: all instances of one are also the instances of 
the other (“every novel is a fiction”)

• RDFS formalizes these notions in RDF
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Classes, resources in RDF(S)

• RDFS defines the meaning of these terms
• (these are all special URI-s, we just use the namespace 

abbreviation)
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Schema example in RDF/XML
• The schema part:

<rdf:Description rdf:ID="Novel">
  <rdf:type 
      rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>

<rdf:Description rdf:ID="Novel">
  <rdf:type 
      rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>

• The RDF data on a specific novel:

<rdf:Description rdf:about="http://…/isbn/000651409X">
   <rdf:type rdf:resource="http://…/bookSchema.rdf#Novel"/>
</rdf:Description>

<rdf:Description rdf:about="http://…/isbn/000651409X">
   <rdf:type rdf:resource="http://…/bookSchema.rdf#Novel"/>
</rdf:Description>
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Further remarks on types
• A resource may belong to several classes

• rdf:type is just a property…
• “«The Glass Palace» is a novel, but «The Glass Palace» is 

also an «inventory item»…”
• i.e., it is not like a datatype!

• The type information may be very important for 
applications
• e.g., it may be used for a categorization of possible nodes
• probably the most frequently used RDF property…

• (remember the “Person” in our example?)
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Inferred properties

• is not in the original RDF data…
• …but can be inferred from the RDFS rules
• RDFS environments return that triple, too

    (<http://…/isbn/000651409X> rdf:type #Fiction)    (<http://…/isbn/000651409X> rdf:type #Fiction)
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Inference: let us be formal…
• The RDF Semantics document has a list of (33) 

entailment rules:
• “if such and such triples are in the graph, add this and this”
• do that recursively until the graph does not change

• The relevant rule for our example:

If:
  uuu rdfs:subClassOf xxx .
  vvv rdf:type uuu .
Then add:
  vvv rdf:type xxx .

If:
  uuu rdfs:subClassOf xxx .
  vvv rdf:type uuu .
Then add:
  vvv rdf:type xxx .
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Properties
• Property is a special class (rdf:Property)

• properties are also resources identified by URI-s
• There is also a possibility for a “sub-property”

• all resources bound by the “sub” are also bound by the other
• Range and domain of properties can be specified

• i.e., what type of resources serve as object and subject
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Property specification serialized
• In RDF/XML:

<rdf:Property rdf:ID="title">
  <rdfs:domain rdf:resource="#Fiction"/>
  <rdfs:range rdf:resource="http://...#Literal"/>
</rdf:Property>

<rdf:Property rdf:ID="title">
  <rdfs:domain rdf:resource="#Fiction"/>
  <rdfs:range rdf:resource="http://...#Literal"/>
</rdf:Property>

• In Turtle:

:title
  rdf:type    rdf:Property;
  rdfs:domain :Fiction;
  rdfs:range  rdfs:Literal.

:title
  rdf:type    rdf:Property;
  rdfs:domain :Fiction;
  rdfs:range  rdfs:Literal.
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What does this mean?
• Again, new relations can be deduced. Indeed, if

:title
  rdf:type    rdf:Property;
  rdfs:domain :Fiction;
  rdfs:range  rdfs:Literal.
<http://…/isbn/000651409X> :title "The Glass Palace" .

:title
  rdf:type    rdf:Property;
  rdfs:domain :Fiction;
  rdfs:range  rdfs:Literal.
<http://…/isbn/000651409X> :title "The Glass Palace" .

• then the system can infer that:

<http://…/isbn/000651409X> rdf:type :Fiction .<http://…/isbn/000651409X> rdf:type :Fiction .
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Literals
• Literals may have a data type

• floats, integers, booleans, etc, defined in XML Schemas
• full XML fragments

• (Natural) language can also be specified
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Examples for datatypes

<http://…/isbn/000651409X>
      :page_number "543"^^xsd:integer ;
      :publ_date   "2000"^^xsd:gYear ;
      :price       "6.99"^^xsd:float .

<http://…/isbn/000651409X>
      :page_number "543"^^xsd:integer ;
      :publ_date   "2000"^^xsd:gYear ;
      :price       "6.99"^^xsd:float .



104

A bit of RDFS can take you far…
• Remember the power of merge?
• We could have used, in our example:

• f:auteur is a subproperty of a:author and vice versa
(although we will see other ways to do that…)

• Of course, in some cases, more complex 
knowledge is necessary (see later…)



105

Example: find the right experts at NASA
• Expertise locater for nearly 70,000 NASA civil 

servants, using RDF integration techniques over 6 
or 7 geographically distributed databases, data 
sources, and web services…

Michael Grove, Clark & Parsia, LLC, and Andrew Schain, NASA, (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/Nasa/
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How to get RDF Data?
(Microformats, GRDDL, RDFa)
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Simple approach
• Write RDF/XML or Turtle “manually”
• In some cases that is necessary, but it really does 

not scale…
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RDF with XHTML
• Obviously, a huge source of information
• By adding some “meta” information, the same 

source can be reused for, eg, data integration, 
better mashups, etc
• typical example: your personal information, like address, 

should be readable for humans and processable by 
machines

• Two solutions have emerged:
• extract the structure from the page and convert the content 

into RDF
• add RDF statements directly into XHTML via RDFa
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Extract RDF
• Use intelligent “scrapers” or “wrappers” to extract a 

structure (hence RDF) from a Web pages or XML 
files…

• … and then generate RDF automatically (e.g., via 
an XSLT script)
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Formalizing the scraper approach: GRDDL
• GRDDL  formalizes the scraper approach. For 

example:
<html xmlns="http://www.w3.org/1999/">
  <head profile="http://www.w3.org/2003/g/data-view">
    <title>Some Document</title>
    <link rel="transformation" href="http:…/dc-extract.xsl"/>
    <meta name="DC.Subject" content="Some subject"/>      
    ...
  </head>
  ...
  <span class="date">2006-01-02</span>
  ...
</html>

<html xmlns="http://www.w3.org/1999/">
  <head profile="http://www.w3.org/2003/g/data-view">
    <title>Some Document</title>
    <link rel="transformation" href="http:…/dc-extract.xsl"/>
    <meta name="DC.Subject" content="Some subject"/>      
    ...
  </head>
  ...
  <span class="date">2006-01-02</span>
  ...
</html>

• yields, through dc-extract.xsl:

<>
   dc:subject "Some subject";
   dc:date "2006-01-02" .

<>
   dc:subject "Some subject";
   dc:date "2006-01-02" .
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GRDDL
• The transformation itself has to be provided for 

each set of conventions
• A more general syntax is defined for XML formats 

in general (e.g., via the namespace document)
• a method to get data in other formats to RDF (e.g., XBRL)
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Example for “structure”: microformats
• Not a Semantic Web specification, originally

• there is a separate microformat community
• Approach: re-use (X)HTML attributes and elements 

to add “meta” information
• typically @abbr, @class, @title, …
• different community agreements for different applications
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RDFa
• RDFa extends (X)HTML a bit by:

• defining general attributes to add metadata to any elements 
• provides an almost complete “serialization” of RDF in 

XHTML
• It is a bit like the microformats/GRDDL approach 

but fully generic
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RDFa example
• For example:
<div about="http://uri.to.newsitem">
  <span property="dc:date">March 23, 2004</span>
  <span property="dc:title">Rollers hit casino for £1.3m</span>
  By <span property="dc:creator">Steve Bird</span>. See
  <a href="http://www.a.b.c/d.avi" rel="dcmtype:MovingImage">
  also video footage</a>…
</div>

<div about="http://uri.to.newsitem">
  <span property="dc:date">March 23, 2004</span>
  <span property="dc:title">Rollers hit casino for £1.3m</span>
  By <span property="dc:creator">Steve Bird</span>. See
  <a href="http://www.a.b.c/d.avi" rel="dcmtype:MovingImage">
  also video footage</a>…
</div>

• yields, through an RDFa processor:

<http://uri.to.newsitem>
  dc:date             "March 23, 2004";
  dc:title            "Rollers hit casino for £1.3m;
  dc:creator          "Steve Bird";
  dcmtype:MovingImage <http://www.a.b.c/d.avi>.

<http://uri.to.newsitem>
  dc:date             "March 23, 2004";
  dc:title            "Rollers hit casino for £1.3m;
  dc:creator          "Steve Bird";
  dcmtype:MovingImage <http://www.a.b.c/d.avi>.
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Example: Yahoo’s SearchMonkey
• Search based results may be customized via small 

applications
• Metadata in pages (in RDFa, microformats etc) are 

reused

Courtesy of Peter Mika, Yahoo! Research, (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/yahoo/


116Example: RDFa data by the 
London Gazette
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Example: RDFa data by the 
London Gazette
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Bridge to relational databases
• Data on the Web are mostly stored in databases
• “Bridges” are being defined:

• a layer between RDF and the relational data
• RDB tables are “mapped” to RDF graphs, possibly on the fly
• different mapping approaches are being used

• a number RDB systems offer this facility already (eg, 
Oracle, OpenLink, …) 

• A survey on mapping techniques has been 
published at W3C

• W3C plans to engage in a standardization work in 
this area
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Linking Data
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Linking Open Data Project
• Goal: “expose” open datasets in RDF
• Set RDF links among the data items from different 

datasets
• Set up query endpoints
• Altogether billions of triples, millions of links…
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Example data source: DBpedia
• DBpedia is a community effort to

• extract structured (“infobox”) information from Wikipedia
• provide a query endpoint to the dataset
• interlink the DBpedia dataset with other datasets on the 

Web
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Extracting Wikipedia structured data 
@prefix dbpedia <http://dbpedia.org/resource/>.
@prefix dbterm  <http://dbpedia.org/property/>.

dbpedia:Amsterdam
  dbterm:officialName “Amsterdam” ;
  dbterm:longd “4” ;
  dbterm:longm “53” ;
  dbterm:longs “32” ;
  ...
  dbterm:leaderTitle “Mayor” ; 
  dbterm:leaderName dbpedia:Job_Cohen ;
  ...
  dbterm:areaTotalKm “219” ;
  ...
dbpedia:ABN_AMRO
  dbterm:location dbpedia:Amsterdam ;
  ...

@prefix dbpedia <http://dbpedia.org/resource/>.
@prefix dbterm  <http://dbpedia.org/property/>.

dbpedia:Amsterdam
  dbterm:officialName “Amsterdam” ;
  dbterm:longd “4” ;
  dbterm:longm “53” ;
  dbterm:longs “32” ;
  ...
  dbterm:leaderTitle “Mayor” ; 
  dbterm:leaderName dbpedia:Job_Cohen ;
  ...
  dbterm:areaTotalKm “219” ;
  ...
dbpedia:ABN_AMRO
  dbterm:location dbpedia:Amsterdam ;
  ...
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Automatic links among open datasets
<http://dbpedia.org/resource/Amsterdam>
  owl:sameAs <http://rdf.freebase.com/ns/...> ;
  owl:sameAs <http://sws.geonames.org/2759793> ;
  ...

<http://dbpedia.org/resource/Amsterdam>
  owl:sameAs <http://rdf.freebase.com/ns/...> ;
  owl:sameAs <http://sws.geonames.org/2759793> ;
  ...

<http://sws.geonames.org/2759793>
  owl:sameAs <http://dbpedia.org/resource/Amsterdam>
  wgs84_pos:lat “52.3666667” ;
  wgs84_pos:long “4.8833333” ;
  geo:inCountry <http://www.geonames.org/countries/#NL> ;
 ...

<http://sws.geonames.org/2759793>
  owl:sameAs <http://dbpedia.org/resource/Amsterdam>
  wgs84_pos:lat “52.3666667” ;
  wgs84_pos:long “4.8833333” ;
  geo:inCountry <http://www.geonames.org/countries/#NL> ;
 ...

Processors can switch automatically from one to the other…
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The LOD “cloud”, March 2008
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The LOD “cloud”, September 2008
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The LOD “cloud”, March 2009
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Example: mapping application on an iPhone

Courtesy of Chris Bizer and Christian Becker, Freie Universität, Berlin
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Example: mapping application on an iPhone

Courtesy of Chris Bizer and Christian Becker, Freie Universität, Berlin
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Query RDF Data
(SPARQL)
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RDF data access
• How do I query the RDF data?

• e.g., how do I get to the DBpedia data?
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Querying RDF graphs
• Remember the Jena idiom:
StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
    st = iter.next(); 
    p = st.getProperty(); o = st.getObject();
    do_something(p,o);

StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
    st = iter.next(); 
    p = st.getProperty(); o = st.getObject();
    do_something(p,o);

• In practice, more complex queries into the RDF 
data are necessary
• something like: “give me the (a,b) pair of resources, for 

which there is an x such that (x parent a) and (b brother x) 
holds” (ie, return the uncles)

• these rules may become quite complex
• The goal of SPARQL (Query Language for RDF)

http://www.w3.org/TR/rdf-sparql-query/


132

Analyse the Jena example
StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
    st = iter.next(); 
    p = st.getProperty(); o = st.getObject();
    do_something(p,o);

StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
    st = iter.next(); 
    p = st.getProperty(); o = st.getObject();
    do_something(p,o);

• The (subject,?p,?o) is a pattern for what we 
are looking for (with ?p and ?o as “unknowns”)
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General: graph patterns
• The fundamental idea: use graph patterns

• the pattern contains unbound symbols
• by binding the symbols, subgraphs of the RDF graph are 

selected
• if there is such a selection, the query returns bound 

resources



134

Our Jena example in SPARQL
SELECT ?p ?o
WHERE {subject ?p ?o}
SELECT ?p ?o
WHERE {subject ?p ?o}

• The triples in WHERE define the graph pattern, 
with ?p and ?o “unbound” symbols

• The query returns all p,o pairs
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Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}
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Simple SPARQL example

• Returns: 
[[<..49X>,33,£], [<..49X>,50,€], [<..6682>,60,€], 
[<..6682>,78,$]]

SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}
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Pattern constraints
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
        FILTER(?currency == € }

SELECT ?isbn ?price ?currency # note: not ?x!
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
        FILTER(?currency == € }

• Returns: [[<..409X>,50,€], [<..6682>,60,€]]



138

Other SPARQL features
• Limit the number of returned results; remove 

duplicates, sort them, …
• Optional branches in the query
• Specify several data sources (via URI-s) within the 

query (essentially, a merge!)
• Construct a graph combining a separate pattern 

and the query results
• Use datatypes and/or language tags when 

matching a pattern
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SPARQL usage in practice
• SPARQL is usually used over the network

• separate documents define the protocol and the result 
format

• SPARQL Protocol for RDF with HTTP and SOAP bindings
• SPARQL results in XML or JSON formats

• Big datasets usually offer “SPARQL endpoints” 
using this protocol
• typical example: SPARQL endpoint to DBpedia
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SPARQL as a unifying point
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Example: integrate Chinese medical data
• Integration of a large number of TCM databases 

• around 80 databases, around 200,000 records each
• A visual tool to map databases to the semantic 

layer using a specialized ontology
• Form based query interface for end users

Courtesy of Huajun Chen, Zhejiang University, (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/UniZheijang/
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Ontologies
(OWL)
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Ontologies
• RDFS is useful, but does not solve all possible 

requirements
• Complex applications may want more possibilities:

• characterization of properties 
• identification of objects with different URI-s
• disjointness or equivalence of classes
• construct classes, not only name them
• can a program reason about some terms? E.g.:

• “if «Person» resources «A» and «B» have the same 
«foaf:email» property, then «A» and «B» are identical”

• etc.
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Ontologies (cont.)
• The term ontologies is used in this respect:

• RDFS can be considered as a simple ontology 
language

• Languages should be a compromise between
• rich semantics for meaningful applications
• feasibility, implementability

“defines the concepts and relationships used to describe 
and represent an area of knowledge”
“defines the concepts and relationships used to describe 
and represent an area of knowledge”
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Web Ontology Language = OWL
• OWL is an extra layer, a bit like RDF Schemas

• own namespace, own terms
• it relies on RDF Schemas

• It is a separate recommendation
• actually… there is a 2004 version of OWL (“OWL 1”)
• and there is an update (“OWL 2”) that should be finalized in 

2009
• you will surely hear about it at the conference…
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OWL is complex…
• OWL is a large set of additional terms
• We will not cover the whole thing here…
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Term equivalences
• For classes:

• owl:equivalentClass: two classes have the same 
individuals

• owl:disjointWith: no individuals in common
• For properties:

• owl:equivalentProperty
• remember the a:author vs. f:auteur

• owl:propertyDisjointWith
• For individuals:

• owl:sameAs: two URIs refer to the same concept 
(“individual”)

• owl:differentFrom: negation of owl:sameAs
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Connecting to French…
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Typical usage of owl:sameAs

• Linking our example of Amsterdam from one data 
set (DBpedia) to the other (Geonames):

<http://dbpedia.org/resource/Amsterdam>
  owl:sameAs <http://sws.geonames.org/2759793>;
<http://dbpedia.org/resource/Amsterdam>
  owl:sameAs <http://sws.geonames.org/2759793>;

• This is the main mechanism of “Linking” in the 
Linking Open Data project
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Property characterization
• In OWL, one can characterize the behaviour of 

properties (symmetric, transitive, functional, inverse 
functional…)

• One property may be the inverse of another
• OWL also separates data and object properties

• “datatype property” means that its range are typed literals
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What this means is…
• If the following holds in our triples:
:email rdf:type owl:InverseFunctionalProperty. 
<A> :email "mailto:a@b.c".
<B> :email "mailto:a@b.c".
:email rdf:type owl:InverseFunctionalProperty. 
<A> :email "mailto:a@b.c".
<B> :email "mailto:a@b.c".

• I.e., new relationships were discovered again 
(beyond what RDFS could do)

<A> owl:sameAs <B>.<A> owl:sameAs <B>.

then, processed through OWL, the following 
holds, too:
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Classes in OWL
• In RDFS, you can subclass existing classes… 

that’s all
• In OWL, you can construct classes from existing 

ones:
• enumerate its content
• through intersection, union, complement
• Etc
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Classes in OWL (cont)
• OWL makes a stronger conceptual distinction 

between classes and individuals
• there is a separate term for owl:Class, to make the 

difference (a specialization of the RDFS class)
• individuals are separated into a special class called 
owl:Thing

• Eg, a precise classification would be:

ex:Person rdf:type owl:Class.
<uri-for-Amitav-Ghosh> 
    rdf:type owl:Thing;
    rdf:type owl:Person .

ex:Person rdf:type owl:Class.
<uri-for-Amitav-Ghosh> 
    rdf:type owl:Thing;
    rdf:type owl:Person .
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Classes contents can be enumerated

• I.e., the class consists of exactly of those 
individuals

:£ rdf:type owl:Thing.
:€ rdf:type owl:Thing.
:$ rdf:type owl:Thing.
:Currency
    rdf:type owl:Class;
    owl:oneOf (:€ :£ :$).

:£ rdf:type owl:Thing.
:€ rdf:type owl:Thing.
:$ rdf:type owl:Thing.
:Currency
    rdf:type owl:Class;
    owl:oneOf (:€ :£ :$).
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Union of classes can be defined

• Other possibilities: complementOf, 
intersectionOf, …

:Novel           rdf:type owl:Class.
:Short_Story     rdf:type owl:Class.
:Poetry          rdf:type owl:Class.
:Literature rdf:type owl:Class;
   owl:unionOf (:Novel :Short_Story :Poetry).

:Novel           rdf:type owl:Class.
:Short_Story     rdf:type owl:Class.
:Poetry          rdf:type owl:Class.
:Literature rdf:type owl:Class;
   owl:unionOf (:Novel :Short_Story :Poetry).
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For example…
If:

:Novel           rdf:type owl:Class.
:Short_Story     rdf:type owl:Class.
:Poetry          rdf:type owl:Class.
:Literature rdf:type owl:Class;
   owl:unionOf (:Novel :Short_Story :Poetry).
<myWork> rdf:type :Novel .

:Novel           rdf:type owl:Class.
:Short_Story     rdf:type owl:Class.
:Poetry          rdf:type owl:Class.
:Literature rdf:type owl:Class;
   owl:unionOf (:Novel :Short_Story :Poetry).
<myWork> rdf:type :Novel .

<myWork> rdf:type :Literature .<myWork> rdf:type :Literature .

then the following holds, too:
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It can be a bit more complicated…
If:

:Novel           rdf:type owl:Class.
:Short_Story     rdf:type owl:Class.
:Poetry          rdf:type owl:Class.
:Literature rdf:type owlClass;
   owl:unionOf (:Novel :Short_Story :Poetry).
fr:Roman owl:equivalentClass :Novel .
<myWork> rdf:type fr:Roman .

:Novel           rdf:type owl:Class.
:Short_Story     rdf:type owl:Class.
:Poetry          rdf:type owl:Class.
:Literature rdf:type owlClass;
   owl:unionOf (:Novel :Short_Story :Poetry).
fr:Roman owl:equivalentClass :Novel .
<myWork> rdf:type fr:Roman .

<myWork> rdf:type :Literature .<myWork> rdf:type :Literature .

then, through the combination of different terms, 
the following still holds:
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What we have so far…
• The OWL features listed so far are already fairly 

powerful
• E.g., various databases can be linked via 
owl:sameAs, functional or inverse functional 
properties, etc.

• Many inferred relationship can be found using a 
traditional rule engine
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However… that may not be enough
• Very large vocabularies might require even more 

complex features
• typical usage example: definition of all concepts in a health 

care environment
• a major issue: the way classes (i.e., “concepts”) are defined

• OWL includes those extra features but… the 
inference engines become (much) more complex
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Property value restrictions
• Classes are created by restricting the property 

values on its individuals
• For example: how would I characterize a “listed 

price”?
• it is a price (which may be a general term), but one that is 

given in one of the “allowed” currencies (say, €, £, or $)
• more formally:

• the value of “p:currency”, when applied to a resource on 
listed price, must be of one of those values…

• …thereby defining the class of “listed price”
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Restrictions formally
• Defines a class of type owl:Restriction with a

• reference to the property that is constrained
• definition of the constraint itself

• One can, e.g., subclass from this node when 
defining a particular class

:Listed_Price rdfs:subClassOf [
      rdf:type          owl:Restriction;
      owl:onProperty    p:currency;
      owl:allValuesFrom :Currency.
    ].

:Listed_Price rdfs:subClassOf [
      rdf:type          owl:Restriction;
      owl:onProperty    p:currency;
      owl:allValuesFrom :Currency.
    ].
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Possible usage…
If:

<something> rdf:type :Currency .<something> rdf:type :Currency .

then the following holds:

:Listed_Price rdfs:subClassOf [
      rdf:type          owl:Restriction;
      owl:onProperty    p:currency;
      owl:allValuesFrom :Currency.
    ].
:price rdf:type :Listed_Price .
:price p:currency <something> .

:Listed_Price rdfs:subClassOf [
      rdf:type          owl:Restriction;
      owl:onProperty    p:currency;
      owl:allValuesFrom :Currency.
    ].
:price rdf:type :Listed_Price .
:price p:currency <something> .
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Other restrictions

• allValuesFrom could be replaced by:
• someValuesFrom

• e.g., I could have said: there should be a price given in at 
least one of those currencies

• hasValue, when restricted to one specific value
• Cardinality restrictions: instead of looking at the 

values of properties, their number is considered
• eg, a specific property should occur exactly once
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But: OWL is hard!
• The combination of class constructions with various 

restrictions is extremely powerful
• What we have so far follows the same logic as 

before
• extend the basic RDF and RDFS possibilities with new 

features
• define their semantics, ie, what they “mean” in terms of 

relationships
• expect to infer new relationships based on those

• However… a full inference procedure is hard 
• not implementable with simple rule engines, for example
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OWL “species”
• OWL species comes to the fore:

• restricting which terms can be used and under what 
circumstances (restrictions)

• if one abides to those restrictions, then simpler inference 
engines can be used

• They reflect compromises: expressibility vs. 
implementability
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OWL Full
• No constraints on any of the constructs

• owl:Class is just syntactic sugar for rdfs:Class
• owl:Thing is equivalent to rdfs:Resource
• this means that:

• Class can also be an individual, a URI can denote a property 
as well as a Class

• e.g., it is possible to talk about class of classes, apply properties 
on them

• etc
• etc.

• Extension of RDFS in all respects
• But: no system may exist that infers everything one 

might expect
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OWL Full usage
• Nevertheless OWL Full is essential

• it gives a generic framework to express many things
• some application just need to express and interchange 

terms (with possible scruffiness)
• Applications may control what terms are used and 

how
• in fact, they may define their own sub-language via, eg, a 

vocabulary
• thereby ensuring a manageable inference procedure
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OWL DL
• A number of restrictions are defined

• classes, individuals, object and datatype properties, etc, are 
fairly strictly separated

• object properties must be used with individuals
• i.e., properties are really used to create relationships between 

individuals
• no characterization of datatype properties
• …

• But: well known inference algorithms exist!
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Examples for restrictions
• The following is not “legal” OWL DL:

<q> rdf:type <A>.   # A is a class, q is an individual
<r> rdf:type <q>. # error: q cannot be used for a class, too
<A> ex:something <B>. # error: properties are for individuals only
<q> ex:something <s>. # error: same property cannot be used as
<p> ex:something “54”. #   object and datatype property
                     

<q> rdf:type <A>.   # A is a class, q is an individual
<r> rdf:type <q>. # error: q cannot be used for a class, too
<A> ex:something <B>. # error: properties are for individuals only
<q> ex:something <s>. # error: same property cannot be used as
<p> ex:something “54”. #   object and datatype property
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OWL DL usage
• Abiding to the restrictions means that very large 

ontologies can be developed that require precise 
procedures
• eg, in the medical domain, biological research, energy 

industry, financial services (eg, XBRL), etc
• the number of classes and properties described this way 

can go up to the many thousands
• OWL DL has become a language of choice to 

define and manage formal ontologies in general
• even if their usage is not necessarily on the Web 



171

OWL 2  defines further species
a.k.a. “profiles”

• Further restrictions on how terms can be used and 
what inferences can be expected
• Classification and instance queries in polynomial time: 

OWL-EL
• Implementable on top of conventional relational database 

engines: OWL-QL 
• Implementable on top of traditional rule engines: OWL-RL
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Ontology development
• The hard work is to create the ontologies

• requires a good knowledge of the area to be described
• some communities have good expertise already (e.g., 

librarians)
• OWL is just a tool to formalize ontologies
• large scale ontologies are often developed in a community 

process
• Ontologies should be shared and reused

• can be via the simple namespace mechanisms…
• …or via explicit import
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Must I use large ontologies?
• NO!!!
• Many applications are possible with RDFS and a 

just a little bit of OWL
• a few terms, whose meaning is defined in OWL, and that 

application can handle directly
• OWL RL is a step to create such a generic OWL level

• Big ontologies can be expensive (both in time and 
money); use them only when really necessary!
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Ontologies examples
• eClassOwl: eBusiness ontology for products and 

services, 75,000 classes and 5,500 properties
• National Cancer Institute’s ontology: about 58,000 

classes
• Open Biomedical Ontologies Foundry: a collection 

of ontologies, including the Gene Ontology to 
describe gene and gene product attributes in any 
organism or  protein sequence and annotation 
terminology and data (UniProt)

• BioPAX: for biological pathway data
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Example: improved search via ontology
• Search results are re-ranked using ontologies
• Related terms are highlighted, usable for further 

search
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Example: improved search via ontology
• Same dataset, different ontology

• (ontology is on non-animal experimentation)
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Example: Eli Lilly’s target assessment tool

• Prioritization of 
drug target, 
integrating data 
from different 
sources and 
formats

• Integration, 
search via 
ontologies 
(proprietary and 
public)

Courtesy of Susie Stephens, Eli Lilly (SWEO Case Study)

http://www.w3.org/2001/sw/sweo/public/UseCases/Lilly/
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What have we achieved?
(putting all this together)
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Other SW technologies
• There are other technologies that we do not have 

time for here
• find RDF data associated with general URI-s: POWDER
• bridge to thesauri, glossaries, etc: SKOS
• use Rule engines on RDF data
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Remember the integration example?
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Same with what we learned
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Example: personalized tourist itinerary

• Integration of 
relevant data in 
Zaragoza (using 
RDF and ontologies)

• Use rules on the 
RDF data to provide 
a proper itinerary 

Courtesy of Jesús Fernández, Mun. of Zaragoza, and Antonio Campos, CTIC (SWEO Use Case)

http://www.w3.org/2001/sw/sweo/public/UseCases/Zaragoza-2/
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Available documents, resources
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Available specifications: Primers, Guides
• The “RDF Primer” and the “OWL Guide” give a 

formal introduction to RDF(S) and OWL
• GRDDL and RDFa Primers have also been 

published
• The W3C Semantic Web Activity Homepage has 

links to all the specifications:
• http://www.w3.org/2001/sw/
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“Core” vocabularies
• There are also a number widely used “core 

vocabularies”
• Dublin Core: about information resources, digital libraries, 

with extensions for rights, permissions, digital right 
management

• FOAF: about people and their organizations
• DOAP: on the descriptions of software projects
• SIOC: Semantically-Interlinked Online Communities
• vCard in RDF
• …

• One should never forget: ontologies/vocabularies 
must be shared and reused!
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Some books
• G. Antoniu and F. van Harmelen: Semantic Web 

Primer, 2nd edition in 2008
• D. Allemang and J. Hendler: Semantic Web for the 

Working Ontologist, 2008
• Jeffrey Pollock: Semantic Web for Dummies, 2009
• …

See the separate Wiki page collecting book references:
http://esw.w3.org/topic/SwBooks
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Further information
• Planet RDF aggregates a number of SW blogs:

• http://planetrdf.com/
• Semantic Web Interest Group

• a forum developers with archived (and public) mailing list, 
and a constant IRC presence on freenode.net#swig

• anybody can sign up on the list:
• http://www.w3.org/2001/sw/interest/
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Lots of Tools (not an exhaustive list!)
• Categories:

• Triple Stores
• Inference engines
• Converters
• Search engines
• Middleware
• CMS
• Semantic Web browsers
• Development environments
• Semantic Wikis
• …

• Some names:
• Jena, AllegroGraph, Mulgara, 

Sesame, flickurl, …
• TopBraid Suite, Virtuoso 

environment, Falcon, Drupal 7, 
Redland, Pellet, …

• Disco, Oracle 11g, RacerPro, 
IODT, Ontobroker, OWLIM, Tallis 
Platform, …

• RDF Gateway, RDFLib, Open 
Anzo, DartGrid, Zitgist, Ontotext, 
Protégé, …

• Thetus publisher, SemanticWorks, 
SWI-Prolog, RDFStore…

• …
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Conclusions
• The Semantic Web is about creating a Web of 

Data
• There is a great and very active user and 

developer community, with new applications
• witness the size and diversity of this event
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By the way: the book is real 
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Thank you for your attention!

These slides are also available on the Web:

    http://www.w3.org/2009/Talks/0615-SanJose-tutorial-IH/
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