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Abstract—We summarize undertaken and ongoing work on the
direct and exclusive use of mobile phone traces for assessing the
performance of different opportunistic forwarding schemes. Our
methods draw on graph-expansion techniques and circumvent
the need for more custom simulation software packages. They
address a wide range of opportunistic dissemination schemes
including controlled flooding and socioaware protocol variants.
We outline the general approach and exemplify it with an
assessment of centrality metrics as drivers of data dissemination
decisions. Finally, we report results on the benefits of identifying
community structure out of the similarity of interests across the
opportunistic network and discuss their implications for trace-
based evaluation.

I. I NTRODUCTION

Both the motivation and concerns for the use of real data
traces in evaluating protocols and algorithms relate exactly to
the words ’real’ and ’trace’. On the one hand, they promise
realistic performance evaluation and credible results when
compared to synthetic input data. On the other hand, they
always raise concerns about their representativeness and the
generality of the evaluation results. Nevertheless, the use of
such traces has become the de facto approach to the evaluation
of data dissemination in user-oriented network paradigms such
as the opportunistic networking.

We report herein work we have been carrying out on trace-
based performance evaluation of different opportunistic for-
warding schemes. Our methods draw on graph-expansion tech-
niques and circumvent the need for more custom simulation
software packages. They address a wide range of opportunistic
dissemination schemes coming under the controlled flooding
family of protocols and can be extended to socioaware protocol
variants. We focus, in particular, on two main directions
that socioaware protocol design in opportunistic networkshas
taken: the introduction of social metrics into the individual
node-oriented relaying utility functions (e.g., [1]), and the ex-
plicit a priori assumption that such networks avail community
structure that can be detected and exploited in disseminating
data (e.g., [2]).

II. COMPUTATION OF SHORTEST PATHS OVER TRACES

The computation of shortest path(s) for a given message
proceeds in three sequential processing steps that differentiate
depending on the forwarding scheme and whether shortest
paths correspond to minimum-delay or minimum-hopcount
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space-time paths. In every case, input to this process are time-
ordered traces of node contacts,i.e., sequences of contact
records with the general format shown in Fig. 1(a). Each
contact recordc = (n1, n2, ts, te) includes four fields: the
two nodes that meet, the time their encounter starts,ts, and
the time the encounter ends,te; the difference of the last two
fields corresponds to the contact duration. The fourth field
becomes redundant under the infinite link capacity assumption,
i.e., messages need minimal (zero) time to traverse a link
between two nodes once this becomes available to them.

1) From the original contact trace to the forwarding con-
tacts: In this step, the original full contact trace is filtered with
criteria that account for the different opportunistic schemes
so that only those contacts that can result in forwarding of
data, hereafter calledforwarding contacts, are retained. Ifts
is the time a message becomes available at source nodes
for destination noded, then the filtering step first excludes
all contact records up to the first onec0 = (s, n, ts) involving
nodes after timets. It then initializes an ordered list, hereafter
called forwarding list, with the nodess andn. The forwarding
list stores at each timepotential forwarders of the message,
nodes that have acquired the message and may, depending on
who they encounter, forward it further.

Contact records afterc0 are scanned sequentially. These
contacts may belong to one of three typologies, depending on
the encountered nodes: (a) neither node lies in the forwarding
list; (b) both nodes are already listed in the forwarding list;
and (c) one of the two nodes is in the forwarding list (1-
entry contacts). Contacts of the first type do not contributeto
the forwarding process and are ignored. On the other hand,
contacts of the second type do not represent real additional
forwarding opportunities since the assumption in all schemes
is that nodes with a message copy will forward it to a node
that does not have it and is eligible to acquire it upon the
first encounter with it. The most interesting type of contacts
is the third one, whose manipulation directly depends on the
opportunistic forwarding scheme.

For example, let us consider the manipulation of 1-entry
contacts for the two-hop scheme, where nodes other than the
message source availing a message copy cannot forward it
but only to the destination node. Therefore, two types of 1-
entry contacts are retained: those(s, ∗, t), t ≥ ts involving the
source nodes as the single node already logged down in the
forwarding list, as well as the first 1-entry contact involving
the destination node. All other 1-entry contacts are filtered out
of the trace (contactsC1-C6 in Fig. 1(b)). In fact, when we



are after minimum-delay space-time paths, the filtering step
terminates upon the first appearance of the destination noded
in an 1-entry contact.

2) Building the forwarding contact graph: Outcome of the
first processing step is the reduced set of contact records
corresponding to forwarding contacts. The next step is to
derive the graph constructGc = (Vc, Ec) that can capture
these contacts and their timing relationship. The construct
draws on the "temporal” graph representation in [3].

For forwarding schemes under the controlled flooding cat-
egory, the graph construct is built out of the first contactc0

and 1-entry forwarding contacts occurring thereafter. Each one
of them adds to the graph: a) a pair of vertices, one for each
node involved in the contact; b) onespace-spanning directed
edge connecting the two encountered nodes; and c) onetime-
spanning directed edge towards the node that is already
included in the forwarding list, originating from the vertex that
represents its most recent forwarding contact. Hence, every
time a nodev ∈ V appears in an 1-entry forwarding contact,
it generates a new vertexvc ∈ Vc for constructGc. As a result,
each network nodev ∈ V is eventually identified with a single
global index in[1, |V |] for the node setV and the forwarding
list, and multiple non-successive indices for the construct Vc.

The graph edge setEc is weighted. When we are in-
terested in minimum-delay space-time paths, time-spanning
edge weights equal the time differences between successive
occurrences of the node in forwarding contacts and express
the time over which a message may be stored and carried by
a given node. Space-spanning edges express the time it takes
to forward a message upon a contact and, under the infinite
link capacity assumption, are assigned zero weights. On the
contrary, when we are interested in minimum-hopcount space-
time paths, time-spanning edges are assigned zero weights and
space-spanning ones unit weights. TheGc constructs resulting
from the contact trace 1(a) for the two-hop forwarding scheme
is given in Fig. 1(c).

3) Computing shortest paths: The last processing step
consists in the computation of shortest space-time paths over
the expanded graphGc. The size of the graph depends on
whether we want to compute minimum-delay or minimum-
hopcount space-time paths. When we are after the minimum-
delay path(s), the parsing of contacts ends upon the first
appearance of the message destination noded in an 1-entry

contact. This may be anywhere from the first till the(|V |−1)th

contact that is retained in the set of forwarding contacts. On
the contrary, to include all possible minimum-hopcount paths,
the parsing should continue until either all network nodes enter
the forwarding list or the source nodes contact the destination
node directly, whatever happens first. It can be shown that
the graph constructsGc are directed acyclic graphs (DAGs)
and running Dijkstra will yield thes-d minimum-hopcount
space-time path inO

(

(|Vc|+ |Ec|)log2|Vc|
)

= O(|V |2log2|V |)
time [4].

III. C ENTRALITY-BASED DATA DISSEMINATION

Our trace-based performance evaluation approach can be
applied to socioaware opportunistic forwarding schemes. Sim-
BetTS [1] and BubbleRap [2] protocols compute metrics
borrowed from Social Network Analysis (SNA) over contact
graphs, which effectively aggregate the sequence of node
encounters over certain time windowsT . Both protocols have
identified betweenness centrality (BC) as the dominant user-
centric metric, even when it is combined with more metric
when making forwarding decisions.

Centrality computation caveats: There are three main
concerns regarding the realization of a user-centric approach
relying solely on BC. First of all, node centrality values
are destination-agnostic; namely, the node relaying utilities
are averages computed across all node pairs in the net-
work. Secondly, SNA metrics are computed over graphs. The
derivation of these graphs out of the sequence (history) of
contacts has been shown to be highly sensitive to the time
window T during which all past contacts are aggregated into
a contact graph [5]. Thirdly, the original centrality metrics
need to be approximated by egocentrically computed centrality
variants [6], which, in principle, offer only limited viewsof the
node’s utility in the network. We have employed real human
mobility traces of pairwise node encounters to experimentally
study these three factors and their impact on the BC-based
data dissemination [7].

Mobile traces: We have used five well-known experimental
traces, part of the iMote-based traceset available in [8]. The
traces cover a rich diversity of environments with an experi-
mental period from few days to almost one month. All traces,
gathered over the last five years, include Bluetooth sightings
of users carrying iMotes. Each Bluetooth sighting is assumed
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(b) Forwarding contacts: two-hop forwarding.
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(c) Two-hop forwarding graph.

Fig. 1. Original contact trace, forwarding contacts (entries in bold), and resulting graph construct for messagem = (1, 6, t0,s): two-hop forwarding scheme.



TABLE I
CHARACTERISTICS OF EMPLOYED DATASETS

Configuration Intel Cambridge Infocom05 Content Infocom06

Device type iMote iMote iMote iMote iMote
Network type B/T B/T B/T B/T B/T

Duration (days) 6 6 4 24 4
Scan time (sec) 5-10 5-10 5-10 5-10 5-10
Granularity (sec) 120 120 120 120-600 120
Mobile Devices 8 12 41 36 78
Stationary Dev. 1 0 0 18 20
External Dev. 119 211 233 11368 4421

Average internal
contacts/pair/day 9.09 12.09 8.60 0.66 9.03

# of Contacts 2766 6732 28216 41330 227657

to be a contact where nodes can exchange information. In
Table I scan time is the time needed by iMotes to perform a
complete scan for Bluetooth devices and takes approximately
5 to 10 seconds; time granularity represents the idle time
between two consecutive scans and affects significantly the
measurement accuracy. We analyze only the contacts between
iMotes (i.e., internal contacts), which represent the data trans-
fer opportunities among participants.

Emulation of optimal routing over the traces: The the-
oretically optimal paths (of minimum delay and hopcount)
to the destination, have been computed directly out of the
dataset sequence of encounters according to the expanded
graph technique, introduced in Section II. The outcome values
are naturally considered as performance benchmarks.

Emulation of BC-based routing over the traces: To account
for the relative social standing of each node we need to
aggregate the encounters’ history to an unweighted or a more
“informed” weighted static graph with link weights equal to
the frequency of contacts, over which the centrality values
are computed. The trace is again replayed (sequentially read)
but now we compute five different centrality-variants for each
contact record; a message is forwarded provided that the
encountered node exhibits higher value of the corresponding
variant than the one of the current holder. These values may
be either the sociocentric (including the destination-aware BC
variant called Conditional Betweenness Centrality (CBC) [9])
or their egocentric counterparts [6] computed over the fullset
of contacts within the pastT time window.

Summary of results: We have generated messages with ran-
domly chosen source and destination and emulated their paths
over the traces. The message delivery delay and number of
forwarding hops have been computed and compared with those
of the optimal (opt) scheme described above. Our findings
are summarized in the following discussion. The centrality-
based approaches perform considerably worse than the optimal
method both in terms of message delay and hops to the
destination. Forwaring performance across the different traces
depends on the way nodes’ mobility patterns mix with each
other. Less intuitively, replacing BC with its destination-aware
counterpart (CBC) does not give benefits in terms of message
delay but results in significant energy savings by reducing
the message hops. When computing BC over weighted graphs
our study reports that the performance does not consistently
improve for all traces. Nevertheless, the routing protocolis
more resilient to variations of the time window used for
contact aggregation. Finally, we have found that using the
egocentric BC variant penalizes the forwarding performance

only marginally, when computed over unweighted and even
less when computed over weighted graphs. This is further
supported by the observed strong positive correlation between
socio- and egocentric BC in almost all traces. A more detailed
discussion as well as explanatory plots appear in [7].

IV. ENRICHING TRACES WITH USERS’ INTERESTS

In [10], we have enhanced primitive push mechanisms
for data dissemination in opportunistic settings with social
information concerning the preferences and interests of net-
work nodes. It is shown thatinterest-based forwarding can
improve considerably the information dissemination process.
Inspired by this result, in [11] we have proposed a framework
called ISCoDe, which identifies communities of nodes with
similar interests. We have appliedISCoDe to the Delicious
(www.delicious.com) platform, showing how end-user inter-
ests can be inferred out of a real online social networking
(OSN) application.

Adding further realism to this thread would call for data
traces that, besides encounters, provide information about the
preferences of users. Enriching mobile phone datasets with
such information is one option that could be considered in
future datasets to become available. This information encoded
in the form of user preference distributions (profiles) overa
set of certain thematic areas (such as music, sports, art), can
be inferred out of tags annotating data that users save in their
mobile phones. A more demanding alternative would be to
indirectly infer such information from online social networks,
trying to correlate traces of encounters with OSN user profiles
(e.g., [12]).
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