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Abstract—The position of the nodes within a network topology
largely determines the level of their involvement in various net-
working functions. Yet numerous node centrality indices, proposed
to quantify how central individual nodes are in this respect,
yield very different views of their relative significance. Our first
contribution is then an exhaustive survey and categorization of
centrality indices along several attributes including the type of
information (local vs. global) and processing complexity required
for their computation.
We next study the seven most popular of those indices in the con-
text of Internet vulnerability to address issues that remain under-
explored in literature so far. First, we carry out a correlation
study to assess the consistency of the node rankings those indices
generate over ISP router-level topologies. For each pair of indices,
we compute the full ranking correlation, which is the standard
choice in literature, and the percentage overlap between the k top
nodes. Then, we let these rankings guide the removal of highly
central nodes and assess the impact on both the connectivity
properties and traffic-carrying capacity of the network. Our
results confirm that the top-k overlap predicts the comparative
impact of indices on the network vulnerability better than the
full-ranking correlation. Importantly, the locally computed degree
centrality index approximates closely the global indices with the
most dramatic impact on the traffic-carrying capacity; whereas,
its approximative power in terms of connectivity is more topology-
dependent.

I. INTRODUCTION

Social Network Analysis (SNA) provides a highly inter-
disciplinary theoretical framework for processing social infor-
mation and analyzing social structures [1]. It draws heavily
on graph models mapping individual actors within the social
network to the graph vertices and their relationships to the
graph (weighted) edges. It then leverages graph-theoretic con-
cepts, metrics and results to answer questions about the relative
importance of actors and the way information flows across it.

Centrality is one such concept/metric. To the best of our
knowledge, it dates back to the work of Bavelas [2], who first
gave a formal definition of node centrality in connected graphs
as the sum of its geodesics (shortest-paths) to all other nodes.
By that time significant sociological research was directed to
the area of professional networks addressing how the position
and power of individual actors relate to their social intercon-
nections with the rest of the network and motivating a large
research thread in the area of centrality indices. New indices
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(e.g., [3]) were proposed and existing ones were adapted to
apply to a broader range of scenarios [4]. The vast majority
of work was heuristic and only a few of them attempted to
come up with axiomatic definitions of centrality indices and
the properties they should satisfy [5]. The highly-cited work
of Freeman in [6] appears to have served as a turning point
for this first wave of work. He reviewed a number of centrality
indices and promoted three of them, i.e., the closeness, degree,
and betweenness, as the most representative ones. About the
same time Bonacich had established the eigenvector centrality
as a fourth, distinctly different but equally popular, index [7].

The research interest in the centrality concept revived in
late 90’s and early 2000, primarily through the works of physi-
cists, who used centrality indices to explore the vulnerability
and community structure of general network instances. Since
then, centrality has found application to a broader set of dis-
ciplines beyond sociology. In computer science, in particular,
insights from centrality indices are primarily exploited in the
design of effective protocols for data networks (e.g., [8], [9]).
The trend is only catalyzed by the broader expectations about
the evolution of a Network Science, which could serve as a
basis for a unified treatment of all network types.

Motivation and objectives: Our main objective in this
study is to quantify how much information is embedded in
centrality indices about the relative importance of Internet
nodes for different network operations. Given that the all
centrality formulations proposed in literature are heuristic, the
questions that naturally arise are how do these formulations
compare in their assessments/predictions about the nodes’ rel-
ative importance and which one(s) may be the “right one(s)” to
consider as reference for more reliable predictions of network
vulnerability.

The paper seeks to systematically address these questions
by undertaking a three-step study with various instances of
methodological innovation. The first step, which herein is
briefly presented, involves a thorough survey and novel classifi-
cation of the variety of centrality indices proposed in literature
over the last sixty years. This classification is then used to
select the seven most popular and representative indices for
carrying out the two experimental steps of the study. Hence, as
a second step, we derive the node rankings these indices induce
over more than 40 router-level snapshots of network topologies
and study their correlation. The correlation strength is assessed
by the mainstream rank/linear correlation coefficients but also
less widespread measures such as the percentage overlap in
the lists of the k most central nodes. Finally, we compare



the seven indices with respect to their capacity to reveal the
network vulnerability to node removals. Hence, we let the
indices dictate the most central nodes to-be-removed and assess
how the network connectivity properties but also its traffic-
carrying capacity are affected.

Our results identify certain index pairs with consistently
high full rank correlation across all datasets we experiment
with. However, they also warn against careless interpretations
of its values since a significant part of this correlation is shown
to be due to nodes at the bottom of the rankings. On the other
hand, the percentage overlap of the k most central nodes for
the same pairs assumes clearly smaller values but predicts
more accurately how similar is the impact on the network
performance when two different indices are used to identify
and remove the most central nodes. Notably when the node
removals are driven by the single index that can be computed
through local-only information (i.e., Degree Centrality), the
impact on the network traffic serving capacity approximates
closely the maximum over the seven indices. The hint is that
the added complexity of global indices may be circumvented
while still exposing efficiently the network vulnerability to
node removals.

The remainder of the paper is structured as follows: In Sec-
tion II, we summarize a survey and the innovative classification
scheme we have designed in [10] for numerous centrality
indices proposed over the last decades. The correlation study of
the seven most popular and representative indices is presented
in Section III. Then, in Section IV we let those indices
drive node removals over router-level network topologies and
experimentally assess their impact on both their connectivity a
properties and traffic-serving capacity. We discuss the related
literature in Section V and conclude the paper with a summary
of the main messages out of our study in VI.

II. A NOVEL CLASSIFICATION OF CENTRALITY INDICES

In this Section we briefly present the way we have charac-
terized and classified the rich variety of centrality indices that
we have run across in our study of the highly interdisciplinary
60-year-old literature. The interested reader is referred to [10]
for a detailed description of the indices and the context within
which they were originally proposed.

At a first-level the reviewed indices are divided into node
(point) centrality and graph centrality indices. The former are
addressed by the vast majority of the literature and concern
individual nodes; whereas the latter are derived for whole
graphs as functions of the individual node centrality indices.
Then, node centrality indices are further characterized using
three fundamental attributes, briefly discussed next:
Centrality context: topological vs. flow-aware. The vast
majority of centrality indices takes only the network topology
into account. They reflect either the distance of a node from
all other network nodes [11] or the extent to which a node
lies on paths connecting other network nodes [6]. Both types
can be further differentiated as to whether they account
only for geodesics between node pairs or a broader set of
paths. Topological centrality indices also include the so-called
spectral indices, which depend on the eigenstructure of a
matrix (e.g., adjacency or Laplacian) related to the network
in question. The second set groups indices which attempt

to factor the (predicted) network traffic in the centrality
computation [12].
Underlying graph types. Most of the indices are defined over
connected, undirected, binary, static graphs. Efforts to relax
in turn each one of these four graph attributes have resulted
in a plethora of indices that can cope with disconnected [13],
directed [14], weighted and dynamic types of graphs [10].

TABLE I. THE NOTION THAT EACH INDEX REFLECTS FOR NODE i

Betweenness (BC) The extent to which i lies in shortest paths linking all network pairs.

Closeness (CC) How fast i reaches all other network nodes in a connected graph.

Harmonic (HC) How fast i reaches all other network nodes in a connected/disconnected graph.

Degree (DC) Assign importance to i according to the number of its immediate neighbors.

Eccentricity (ECC) i is important if its maximum distance to any node is close to the graph’s radius.

Eigenvector (EC) Assign importance to i if it has important neighbors.

PageRank (PG) Assign importance to i proportionally to the importance of those pointing to i.

Computational Aspects. Centrality indices can be separated
into local and global ones, depending on the extent of
topological information that is required to compute them.
Degree Centrality is clearly a local index while Betweenness
and Closeness are global since they rely on network-
wide geodesic paths [6]. To limit the scope of centrality
computations one may use the sociological notion of the
ego-network [15] or control the length k of the considered
paths [16]. The corresponding computational complexity is
of particular interest when centrality indices are embedded in
network protocols.

Selecting centrality indices for experimentation. Out of
the numerous indices reviewed in [10], we select the seven
most popular ones that appear repeatedly in the literature,
and, at the same time, capture a wide range of different
notions of centrality. Those indices are the Degree (DC) [6],
Betweenness (BC) [6], Closeness (CC) [6], Eigenvector
(EC) [7], Harmonic Centrality (HC) [13], Pagerank (PG, with
d=0.85 as typically used in literature) [14] and Eccentricity
(ECC) [11]. Table I highlights the intuition behind each of
the considered indices while Table II presents their formal
(normalized) definitions and characterizes them according
to the aforementioned classification attributes for a graph
G = (V,E) of |V | nodes and |E| edges.

III. CORRELATION STUDY OF CENTRALITY INDICES

In almost all instances, where centrality indices inform
network protocols, what matters is the ranking of nodes
induced by those indices rather than their absolute values.
These rankings are subsequently used in the decisions made
by the respective protocols. For example, in [8], the rankings
determine whether a Delay Tolerant Network (DTN) node will
forward a message to another DTN node it encounters; in [9],
whether a content item will be cached at a Information-Centric
Networking (ICN) node or not; and in [17] whether to search
for a file in a given unstructured Peer-to-Peer (P2P) node or
not. Likewise, in vulnerability analysis of the service migration
protocol in [12], it is the set of the k, k < |V | most highly-
ranked nodes that matters, irrespective of their actual centrality
values. The question that plausibly arises in every case is how
similar are the rankings generated by each centrality index.
In this section, we carry out a thorough correlation study of
these rankings, computed over a broad set of ISP router-level
topologies. First, we calculate for each topology and node



TABLE II. PROPERTIES OF SEVEN POPULAR CENTRALITY INDICES UNDER A NOVEL CLASSIFICATION SCHEME

Context Type of underlying graph Computational aspects

Centrality Index Topology Flow Binary/ Directed/ Dynamic Connected/ Information Complexity Definition

aware aware weighted Undirected Disconnected (local/global)

path distance spectral B W D U D C D L G

Betweenness (BC) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ O(V E) cBC
i = 2

(N−1)(N−2)

∑
j 6=k 6=i

dj,k(i)

dj,k

Closeness (CC) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ O(V (logV )E) cCC
i = N−1∑

j∈G,j 6=i di,j

Degree (DC) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ O(V 2) cDC
i =

deg(i)
N−1

Eccentricity (ECC) ✓ ✓ ✓ ✓ ✓ ✓ ✓ O(V (logV )E) cECC
i = 1

maxj∈V di,j

Eigenvector (EC) ✓ ✓ ✓ ✓ ✓ ✓ O(V 3) cEC
i = 1

λ

∑
j∈G αi,j · cEC

j

Harmonic (HC) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ O(V (logV )E) cHC
i = 1

N−1

∑
j∈G,j 6=i

1
di,j

PageRank (PG) ✓ ✓ ✓ ✓ ✓ ✓ Ω( E2

ln(1/(1−d))
) cPG

i =
1−d
N

+ d
∑

v∈Bi

cPG
v
Lv

N : Total number of nodes, di,j : Shortest path length from i to j, dj,k(i) : Shortest path length via k, αi,j : Adjacency matrix element d : Damping factor, Bi: Set of nodes linked to i, Lv : Out-degree of node v

in it the seven centrality indices (Section II), thus generating
seven different node rankings per topology. Then, we compute
pairwise correlation measures over these rankings. We consider
two different measures, one accounting for the full node
rankings and the other only for the most highly-ranked nodes.

A. Index correlation measures and router-level topologies

Index correlation measures. The first correlation measure is
the nonparametric Spearman’s rank-correlation coefficient, ρV ,
and is computed over the full node rankings. The coefficient
assesses how well a monotonic function can describe the
rankings induced by the two centrality indices on the network
nodes. For a given network topology node set V , it is:

ρV (C1, C2) = 1−

6
∑
u∈V

(rC1(u)− rC2(u))
2

|V |(|V |2 − 1)

where rC1(u) and rC2(u) are the ranks of node u in line with
centrality indices C1 and C2, respectively. It lies in [−1, 1],
with high positive (negative) values denoting strong positive
(negative) correlation1. The second correlation measure is the
percentage overlap between the sets of the k most highly
ranked (top-k) nodes that are generated by two indices.

ovV (C1, C2; k) =
|{v ∈ V : rC1 (v) ≤ k}

⋂
{v ∈ V : rC2 (v) ≤ k}|

k
· 100%

Contrary to the Spearman’s ρV , the percentage overlap
is computed over a subset of the full node rankings and
takes values in [0, 100]. The relevance of the two measures
depends on the usage context of centrality-based ranks. The
decisions that relate to the DTN forwarding, CCN caching
and P2P node search examples rely on full node rankings;
whereas, vulnerability analysis is usually concerned with the
subset of nodes that are important (“central”) for the network.
High correlation between the rankings of two indices implies
that a computationally complex index can be approximated

1We have also computed two other popular coefficients; one is the Kendall’s
τ for rank-correlation which generally gives similar results with ρ. The other
is the Pearson coefficient r that assesses how linear is the relationship between
the actual values of the indices rather than their rankings, is found high for
highly rank-correlated centrality pairs, yet of lower strength [10].
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DC
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a. b.

Fig. 1. Graph-based illustration for the averages values of the Spearman
coefficients (a) and top-5% overlap (b) among centrality indices. In (a) solid
bold and dashed plain lines denote coefficients in the intervals [0.7-1],[0.3-
0.7), respectively. In (b), solid bold, dashed bold and dashed plain lines denote
overlap higher than 70%, between 40-70%, and lower than 40%, respectively.
Over CAIDA, BC-CC and BC-HC are exceptions to this rule exhibiting
reduced top-5% overlap values.

by a simpler one without significant penalties for the protocol
operation or the conclusions of the vulnerability analysis.

Router-level ISP topologies. All our experiments are carried
out over four datasets. Three of them relate to measurement
projects and are referred to as Rocketfuel [18], CAIDA [19],
and mrinfo (Tier-1 and Transit) [20] datasets, respectively.
They report binary router-level graphs for different Internet
ASes. We experiment with 9 RocketFuel snapshots, 7 CAIDA,
8 Tier-1, 6 Transit with size range 41-9418, 1831-81121,
76-741, 336-1240 nodes, respectively. On the contrary, the
last dataset, called Topology Zoo (we use 18 snapshots of
20-74 nodes), contains capacitated topologies at the router-
and Point-of-Presence (PoP) level [21], collected directly by
network operators of academic and research networks. The
basic properties of all datasets are summarized in [10].

B. Results

Full-ranking correlation over binary graphs. Table III reports
averages of the Spearman’s rank correlation, as computed over
all snapshots of a given binary dataset (i.e., CAIDA, Rocket-
fuel, MrInfo -Tier1 and -Transit). The first remark is that not
a single centrality pair is negatively correlated over any of the
studied topologies. We empirically characterize the pairwise
index correlation as high and low when the corresponding ρV
values lie in the intervals [0.7,1] and [0.3,0.7), respectively. On
the other hand, two indices are considered non-correlated when
their ρV lies in [0-0.3). The second point is that the indices’
correlation values follow similar trends across all datasets so
that they can summarized graphically in a graph like the one of



Fig. 1.a. Solid bold edges in the graph denote high correlation
between two indices, whereas dashed edges represent low
values. No edges are added for non-correlated index pairs. In
what follows, index pairs of interest are discussed in detail.
Where appropriate we refer to studies reporting relevant results
on different kinds of networks. The full set of results can be
found in [10].

TABLE III. SPEARMAN COEFFICIENT AVERAGES FOR ALL DATASETS

CC HC EC ECC DC BC PG dataset

CC 1 CAIDA

1 RocketFuel

1 MrInfo-Tier1

1 MrInfo-Transit

HC 0.99 1 -//-

0.98 1

0.95 1

0.99 1

EC 0.93 0.95 1 -//-

0.80 0.83 1

0.66 0.69 1

0.86 0.88 1

ECC 0.84 0.84 0.84 1 -//-

0.73 0.67 0.56 1

0.80 0.69 0.52 1

0.89 0.88 0.75 1

DC 0.28 0.28 0.29 0.25 1 -//-

0.48 0.53 0.45 0.38 1

0.43 0.59 0.47 0.30 1

0.50 0.55 0.49 0.45 1

BC 0.29 0.29 0.28 0.27 0.90 1 -//-

0.45 0.50 0.40 0.37 0.94 1

0.50 0.61 0.30 0.38 0.69 1

0.54 0.58 0.48 0.47 0.88 1

PG 0.04 0.05 0.05 0.04 0.86 0.80 1 -//-

0.25 0.30 0.14 0.20 0.83 0.80 1

0.34 0.49 0.30 0.24 0.90 0.74 1

0.40 0.44 0.36 0.35 0.92 0.88 1

Betweenness vs. Degree centrality: Degree centrality (DC)
captures, at least phenomenally, a completely different notion
of centrality than Betweenness (BC). DC takes into account
only the node’s local neighbors, whereas BC considers the
position of the node within the whole network. Therefore, in
some cases DC can evaluate nodes’ position very differently
than BC; it may overestimate the importance of nodes belong-
ing to isolated subgraphs (high DC-low BC) or underestimate
the role of nodes acting as bridges between groups of nodes
(low DC-high BC). On the other hand, high-degree nodes have
better chances to be parts of the shortest paths linking node
pairs. In our datasets, the two indices are found consistently
highly correlated, in agreement with earlier studies [15], [22],
[23] that report positive Pearson correlation between DC and
BC over a wide range of networks such as random graphs and
real-world complex networks.

Pagerank vs. Degree centrality: Another persistent result, im-
mediately apparent from Figure 1.a, is the strong correlation
between Pagerank (PG) and DC. Pagerank is principally de-
fined for digraphs discriminating between incoming and outgo-
ing connections at each node. The DC-PG correlation increases
with the damping factor d of PG, as shown in Fig. 2.a. It also
shows similar association between the d factor and the PG-BC
ρ values. Taking into account the aforementioned strong BC-
DC correlation, a triangle-like schema emerges and may be of
practical importance as it relates DC, the only local, index with
two globally-determined ones. Grolmusz shows in [24] for
undirected general graphs that Pagerank is statistically close
but not identical to the degree distribution. Positive correlation
between the three indices (PG-DC-BC), with ρ values in [0.66,
0.95] for all three index pairs, is also reported in [25] over
coauthorship real-world data (directed graphs).
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Fig. 2. a) Rank-correlation scaling as PG increasingly depends on DC and
BC. b) Rank-correlation between EC and PG against the damping factor d.

Pagerank vs. Eigenvector centrality: PG, and EC centrality
are the two spectral indices we experiment with. Both express
the stationary probability of a random surfer to reside on some
page while moving on the Web graph. Hence, one would
expect some positive correlation between these indices. How-
ever, our results indicate the absence of such a relationship.
A possible cause is that their actual interpretation differs as,
contrary to EC, the PG centrality utilizes the damping factor d
to determine the “jump” probability. However, as a couple of
indicative experiments suggest (Fig. 2.b), the rank correlation
between the two metrics increases yet does not reach very
high values as d moves to unity i.e., the surfer moves only
to neighboring pages. It seems then that d can only partially
justify the poor PG-EC correlation strength; as the PG formula
suggests (Table II) a node’s (i.e., Web page) PG rank value is
evenly divided (Lu term) over its neighbors, which for the case
of undirected graphs corresponds to its DC value. The fact that
DC index is found to be weakly correlated with EC (Table III)
can further distort any anticipated PG-EC correlation.

Eccentricity vs. Closeness centrality: Another strong correla-
tion that we observe in our study is between the Eccentricity
and Closeness centrality indices. Recalling the definitions of
the two indices (ref. Table II), there is absolute positive
ECC-CC correlation if it holds that ECC(n1) > ECC(n2)
whenever CC(n1) > CC(n2), for all n1, n2 ∈ V . We can
rewrite the former equation as maxj∈V dn2,j > maxj∈V dn1,j

and the latter as
∑

j∈V dn2,j >
∑

j∈V dn1,j . Hence, looking at
the last two inequalities, the question becomes when the order
in maximum index values is also preserved for their averages
over the studied graph. This holds in several trivial graphs
(e.g., line graph, rectangular grid) but not in all graphs. One
simple counterexample is the 4-node star network with a 2-
node line graph attached to one of its leaf nodes (compare the
two indices for the hub node and the leaf node, where the line
is attached).

Additional remarks: There exist further centrality pairs yield-
ing positive correlations, which are less straightforward to
reason about. For instance, in our results, high rank correlation
has been observed for pairs such as Eigenvector-Harmonic
and Eigenvector-Closeness centrality. These findings seem
consistent with previous results. Iyer et al. [26] have noticed
that synthetic scale-free networks (whose degree distribution
follows a power law, at least asymptotically) present moderate
positive Pearson CC-EC correlation. Higher values (r=0.61)
are reported for networks with exponential degree distribution.
We have tried to identify how the degree distribution relates
to the EC-CC correlation. In Figure 3 left, we plot in log-log
scale the degree distribution of a 411-node large AS out of the
RocketFuel dataset, as a representative sample, with positive



Pearson EC-CC correlation (r=0.65). The straight-line points
to power-law degree distribution suggesting that this may be
beneficial for the positive correlation, as in [26]. On the other
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Fig. 3. Degree distribution for two indicative snapshots.

hand, the scale-free property is not a necessary condition for
high EC-CC correlation. In Figure 3 right, the degree distri-
bution of a 645-node large mrinfo Transit AS clearly deviates
from a power-law pattern, yet it features a considerably higher
Pearson coefficient (r=0.78). Similar remarks hold for the EC-
CC rank correlation over these snapshots (Spearman ρV =0.88
and ρV =0.96, respectively).

Top-k percentage overlap over binary graphs. So far, our
correlation analysis has taken into account the full rankings
produced by the seven centrality indices. We now focus our
attention on the top-5% most central nodes identified by each
index and investigate how large are the overlaps between
different rankings. The motivation for this set of experiments
is the existence of network protocols that seek to exploit a
small set of the most central nodes [12]. Likewise, vulnera-
bility studies of Internet graphs, as the one we carry out in
Section IV, are concerned with such node subsets.

In Figure 1.b we show a summarizing graph-based illustra-
tion of the overlap scores among the seven centrality indices.
The bold solid lines (e.g., between CC-HC) denote high top-
5% overlap between two indices i.e., beyond 70%. The dashed
solid lines (e.g., between EC-HC) reflect overlap values be-
tween 40-70%, whereas the dashed plain lines represent looser
relations. Additionally, figure 4 presents the average overlap of
nodes over all ASes of each dataset for the most significant
centrality pairs. On the one hand the overlap of some indices
(e.g., BC-CC or HC-BC) appear to be highly sensitive to the
considered topology, with differences that reach 40% across
different datasets. On the other, all pairs found earlier to be
strongly correlated in terms of full rankings, appear to be more
weakly associated in terms of overlap values2. Exceptions to
that rule are the HC-BC and CC-BC pairs that represent a
slight increase of the relation strength when passing from the
rank correlation to the overlap measure. Overall, only two of
the centrality index pairs combine high overlap values with
strong full rank-correlation (see Fig. 1.a). PG-DC and HC-
CC, both exhibiting larger than 80% overlap in the top-5%
node rankings they induce across all datasets, whereas all the
other pairs hardly exceed the 60% value. This result should
come as no surprise since rank correlation is determined over
all network nodes rather than a subset of cardinality k.

Let us look closer into the BC-DC pair. Figure 5 illus-
trates how the number of nodes with DC=1 affects the rank
correlation coefficient. It seems that (especially for Caida

2The characterization retains a loose empirical meaning since comparing a
correlation coefficient with the % overlap value is not straightforward.
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Fig. 4. Mean overlap (%) between the top-5% nodes of centrality rankings.

and RocketFuel datasets) the Spearman values between the
two indices increase with the number of DC=1 nodes. These
nodes are expected to positively contribute to the DC-BC
correlation as they also exhibit the lowest-ranked betweenness
value (i.e., BC=0). At the same time, the ones with the top
BC and DC values may not necessarily coincide as indicated
in Table IV. The above results suggest that the high DC-
BC correlation is mainly due to nodes of lowest ranks. This
observation warns against the actual value of high Spearman
rank correlation coefficients between two indices. On the other
hand, the overlap measure does not suffer from similar biases.
The repercussions of this will become clearer in the results of
the Section IV experiments.
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Fig. 5. The relation between the BC-DC rank correlation and the percentage
of nodes with degree equal to one. .

TABLE IV. RANK CORRELATION VS. OVERLAP(%) BETWEEN BC-DC

Dataset-ID BC-DC Top-5% Fraction of nodes

Spearman Coefficient Overlap having DC=1

CAIDA-1557 0.95 53% 54%

RocketFuel-1239 0.96 85% 82%

MrInfo, Tier1-1239 0.86 54% 43%

MrInfo, Transit-3292 0.94 40% 32%

Correlation/overlap results over capacitated graphs. We have
carried out a brief correlation study of the considered indices
over the topology Zoo dataset. To determine the node rankings
we had to carry out the centrality indices computations over
weighted graphs. This was mainly a question of computing
shortest paths over weighted graphs. Regarding the spectral
indices, in the Topology Zoo experiments we only employ
the EC index that lends to a straightforward extension over
the weighted graphs [10]. As such, we compute the Spearman
coefficients for the centrality pairs across all 18 snapshots and
present the average and variance values in Table V. Those
index pairs that were measured earlier to be strongly correlated
over the binary graphs (Figure 1.a), generally maintain similar
relations over the capacitated Zoo networks. BC-DC correla-
tion is again found high yet not as close to unity as before;
ECC and EC appear in most cases highly correlated except
for a few topologies that contribute to a high variance value



for the coefficient average. Clearly, these results are shaped by
both the topology and the link capacity values that are now
taken into account for the corresponding index computations.

TABLE V. TOPOLOGY ZOO: SPEARMAN AVERAGES AND VARIANCE

BC CC DC EC HC ECC

BC 1

CC 0.68±0.01 1

DC 0.75±0.01 0.85±0.02 1

EC 0.59±0.03 0.94±0.01 0.79±0.04 1

HC 0.68±0.01 0.98±0.01 0.87±0.01 0.95±0.01 1

ECC 0.64±0.01 0.87±0.04 0.80±0.02 0.77±0.16 0.86±0.04 1

TABLE VI. TOPOLOGY ZOO: AVERAGE TOP-15% OVERLAP (%)

BC CC DC EC HC ECC

BC 1

CC 75.55 1

DC 78.38 84.36 1

EC 67.40 84.07 78.06 1

HC 75.55 89.63 85.10 87.77 1

ECC 69.99 77.91 73.62 71.24 73.09 1

In Table VI we present our results for the overlap between
the k% top central nodes averaged over the whole Zoo dataset.
As their size is relatively small, we set k=15% in order to each
time avail vectors of at least 5 nodes’ size. Compared to the
top-k overlap measured over the binary graphs, we have found
the same index pairs to exhibit high values; one exception is the
HC-DC pair which now appears of considerably high overlap.
In the next section we will see how theses overlap values reflect
on the (similar) effects of the corresponding node removals.

IV. CENTRALITY AND NETWORK VULNERABILITY

The correlation study yields a first indirect indication of
how different centrality indices compare and whether they
could be interchanged in the context of a network protocol
or analysis that draws on node rankings. The ultimate reply to
this question is, however, protocol/analysis-dependent. In this
section, we seek to come up with a reply in the context of
the network vulnerability to node failures. More specifically,
we ask how similar are the conclusions about the network
vulnerability when relying on different centrality indices to
identify and remove its most central nodes3.

The network vulnerability analysis is of interest to various
parties. A potential attacker would like to know which index
results in node removals with the most significant impact
on the network performance so as to orchestrate the most
effective attack. From the network operator’s side, the dual
aim is to identify and better protect those critical nodes,
whose failure would result in maximum network performance
degradation. In this paper, we relate the term “performance”
to fundamental connectivity and traffic capacity properties of
the network rather than the scores achieved by specific proto-
cols/applications. This way we get away with their engineering
details that shape the end impact and place the emphasis on
the network topologies per se.

3In this paper, nodes are removed simultaneously after being ranked in
order of decreasing centrality. An alternative called sequential targeted attack
strategy, is to recalculate the rankings of the residual nodes after each removal.
As intuitively expected and shown in [26], [27] the impact of such sequential
node removals upon the network connectivity is more dramatic. Expanding
our study to the sequential node removal case is straightforward.

A. Centrality-driven node removals and connectivity

The experiments of this section explore how the size of the
giant connected component and the total number of connected
components in each topology are affected when up to 5% of
the network nodes are removed4. The experiments are carried
out over the binary datasets described in the subsection III-A.

Figures 6a,b-d,e show representative plots of the two connec-
tivity measures as a function of the number of removed nodes.
Besides the two connectivity measures also plotted in dashed
line (and measured on right Y axis) is the Max/Min ratio.
This is the ratio of the maximum over the minimum value the
connectivity measure assumes for a given number of removed
nodes and over all centrality indices. The Max/Min ratio
essentially quantifies the variance in the connectivity measure
value as a result of the choice of centrality index for identifying
central nodes. Next, we comment on the experimentation
outcomes and relate them to the earlier observed correlations.

Size of giant connected component (GCC): The GCC size re-
flects the number of nodes that can communicate with each
other. Figs. 6.a,d suggest that removing those vertices that
the ECC index identifies as most central has the minimum
impact on GCC. All other indices expose more quickly the
vulnerability of the network but we cannot identify any dom-
inance relationship among them that persists over all datasets.
However, the behavior of certain index pairs such as the HC-
CC and PG-DC is in good agreement with the earlier observed
strong correlation, both full rank and top-k percentage overlap
(ρV and ovV exceed 0.85 and 85%, respectively); indeed,
the corresponding curves in Figs 6.a,d (partially) coincide
or exhibit small GCC size differences with the number of
removed nodes. A closer look reveals that it is the top-k
overlap between two indices, rather than their rank-correlation,
that essentially determines how similar is the impact of the
corresponding removals. A relevant example is the BC-DC
pair over AS1239. Their highly dissimilar impact, as shown
in Fig 6.d, can be predicted by the 68% top-5% percentage
overlap; it cannot be inferred by the high Spearman rank
correlation (ρV =0.94).

In [27] Holme et al. show that DC- and BC-driven node re-
movals are equally harmful over synthetic (scale-free) graphs,
while a distinct real-world co-authorship network appears more
vulnerable to BC-driven attacks. In our broad dataset of real-
world topologies we do not witness the latter effect; on the
contrary, the local DC index occasionally has more dramatic
impact than the global BC. Overall, a concluding note would
be that any two indices measured with high top-k overlap
values are expected to give rise to similar GCC sizes, and
vice versa. The full-rank correlation values are not always in
line with the experienced impact due to the biases discussed
in Section III.

Number of connected components: Again, the ECC index
yields node removals that result in minimum network frag-
mentation (Figs. 6.b,e). According to the ECC definition [11],
a node is central when its maximum distance to any other node
is close to the radius of the graph. Hence, a node can exhibit a
significantly low ECC value when only a few other nodes lie

4The measured impact is essentially a worst-case result for the network
connectivity. In reality, some hidden redundancy remains unnoticed even if
our datasets have been extracted by different topology discovery tools.
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Fig. 6. a,b,d,e) Effect of node removals on the size of the giant-connected component (a,d) and the number of components (b,e) for two indicative ASes. c,f)
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Fig. 7. Envelope plots of the DC-based node removal effects on GCC.

far away (from it) in the topology. This sensitivity makes ECC
assign less significance to nodes considered highly-central
according to other indices. So the top-5% ranked nodes may
not actually include those holding prominent network locations
and this prevents the fast fragmentation of the topology. In
sharp contrast, DC and PG are together dominant in terms of
partitioning the topology, as their high correlation suggests.
Interestingly, DC, a purely local index succeeds in removing
nodes that play critical role in connectivity as opposed to the
other global and more complex ones (except PG). On the
other hand, BC and DC which were also found strongly rank-
correlated yet of weaker top-k overlap, have different impact
on the connected components. Removing nodes according to
DC, the number of components increases constantly compared
to the impact of BC. This implies that the network connectivity
mainly relies on strategic hub-nodes rather than bridging nodes
that are typically of high BC.

Local vs. global centrality indices: Figures 6.a,b,d,e clearly
show that the removal of the most central nodes affects differ-
ently the connectivity measures depending on which centrality
index is used to determine them. For each number k of
removed nodes, one can identify best- and worst-case values,
mbc(k) and mwc(k) respectively, for the two performance
metrics. These values may be obtained by different centrality

indices as the considered metric m changes and outline an
envelope, marked by the shaded area in Fig. 7. What we ask
next is where in this envelope the metric values corresponding
to the degree centrality, lie. Essentially, we seek to quantify
how close to the best-/worst-case is the impact of removals
when directed by the single locally computable centrality
index. To this end, for each centrality index c, topology G,
number of removed nodes k and performance metric m(k; c)
we define a normalized distance measure, hereafter called
impact factor IFG(k; c) as:

IFG(k; c) =
|m(k; c) −mwc(k)|

|mbc(k)−mwc(k)|

Note that depending on the metric, the worst-case value may
coincide with the minimum or maximum value the metric gets
over all indices. It is then straightforward to derive a topology-
average measure of the impact factor as:

IFG(c) =
1

|K|

∑

k∈K

|m(k; c)−mwc(k)|

|mbc(k)−mwc(k)|

where K is the set of k values considered in the evaluation.
Clearly, both IFG(k; c), k ∈ K and IFG(c) take values in
[0, 1]. We are particularly interested in IFG(DC) and Fig. 6.c
plots the empirical probability mass function of the IFG(DC)
values over all topologies of a given dataset, when the metricm
is the size of the GCC. Despite its local nature, DC-driven node
removals in most cases affect significantly the GCC size. To
which extent this impact approximates the worst-case over all
indices depends on the underlying topology. Over the CAIDA
networks DC closely approximates the low end of the enve-
lope. The approximation is looser over Rocketfuel, whereas
in the mrinfo (Tier-1) and (Transit) networks, considerable
mass is accumulated at medium and high IFG(DC) values,
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respectively.

B. Centrality-driven node removals and traffic capacity

We now turn our attention to a much less investigated topic,
the comparative impact of centrality-driven node removals
on the network traffic serving capacity. Such a task is not
straightforward. One approach would be to consider a given
traffic matrix, determining either the node pairs that exchange
traffic only or the node pairs plus the average traffic loads that
are (expected to be) served for each one of them. Then, the
traffic-serving capacity of the network could be given by the
solution of an instance of the multicommodity flow (MCF)
problem [10]. Yet doing so bears some significant challenges:
First, the traffic demand matrix is rarely known a priori and
often varies broadly over different time scales. This may be
partially addressed by employing synthetically generated dy-
namic traffic matrices [28]. However, such a choice introduces
an extra variable in the process of assessment i.e., the accuracy
of the traffic model. Therefore, it does not provide us with a
solid reference for comparison of the metrics. Secondly, and
most importantly, the MCF problem is an NP-complete prob-
lem [29], with the computational complexity raising fast with
the number of commodities. To overcome those limitations, we
have taken a simpler approach and estimate the traffic serving
capacity of the network as the sum of maximum flows over
all network node pairs. Namely, we iterate over all node pairs
and for each pair we solve an instance of the maximum flow
problem, i.e., compute the maximum traffic load that can be
served by the network when only the particular pair transfers
traffic across the network. Clearly, this sum is a (very) loose
upper bound of the traffic load that can simultaneously be
served by the network. However, it provides a traffic load-
neutral measure of what can the network carry and how is this
affected when a variable number of nodes is removed. To solve
the maximum flow problem we have used the Edmonds-Karp
algorithm [30] with a O(V E2) polynomial-time complexity.

Experimentation methodology and results. Our experimen-
tal study is carried out over the Zoo Internet topologies
with capacitated links, described in III-A. We remove nodes
in decreasing order of centrality and measure the aggregate
maximum flow over all node pairs. The computed aggregate
maximum flow over an indicative set of networks is plotted
in Figs. 8.a-c. We have obtained similar results for the rest
of Zoo datasets (totally 18 snapshots). The rate of aggregate
max flow reduction with the fraction of removed nodes varies
wildly. This results in high best- to worst-case flow values and
wide envelopes, as shown in Fig. 8.d. Highly correlated index

pairs, especially those with high top-k percentage overlaps,
affect the accommodated flow in similar ways (i.e., intersection
of corresponding curves). In particular, certain index pairs
that have been earlier measured with high rank-correlation,
and most notably top-k overlap, yield similar curves over a
sequence of removals; for instance, the highly associated pairs
of EC-CC, EC-HC and HC-CC (see Tables V and VI) are
seen in Figs. 8.b,c. Similar impact of BC- and DC-driven node
removals has been reported over synthetic graphs (i.e., Erdős-
Rényi and small-world networks) in [31]; in our case the
impact of those indices is typically different over the Internet
snapshots. Finally, weakly correlated pairs e.g., EC-BC, ECC-
BC, inline with intuition, yield well-separated flow curves.

On a positive note, when node removals are driven by
the DC index, the resulting aggregate maximum flow in most
cases of Fig. 8.a-c is very close to the worst achieved over all
indices. This is more clearly shown in the empirical probability
mass function of the IFG(DC) measure in Fig. 6.f, whose
mass is highly concentrated at (very) low values close to
zero. On the contrary, the considered networks exhibit their
highest resilience against the ECC-driven node removals. This
behavior can be explained along the same arguments employed
earlier, when discussing how node removals affect the con-
nected components. Having a single node i.e., the furthest one,
determine ECC may result in some of the most central nodes
not being included in the top positions of the ECC ranking.

V. RELATED WORK

Regarding survey studies, Freeman back in 1979 reviewed
several centrality indices proposed by that time and reduced
them down to three fundamental notions, expressed by the
degree, closeness and betweenness centrality [6]. Much later,
Borgatti [32] introduced a typology of the different types of
network flows and associated the various centrality measures
with the flows that they are most appropriate for. A graph-
theoretic review in [16] classifies centrality measures according
to their computational requirements. Compared to them, we
review a great body of centrality indices of different origins
and classify them along multiple dimensions [10]. Particular
care is taken for “engineering” properties such as the index
computational complexity in distributed Internet environments.

With respect to centrality correlation studies, we are aware
of two works that compute linear correlation between the DC
and BC indices: one over a random network and a couple of
real-world topologies with a single router-level snapshot [22]
and another over three AS-level snapshots [23]. Neither of



them assesses how the network is affected when different
indices are used to direct node removals. Work along this
thread typically addresses synthetic graphs and the removals’
impact is measured through purely topological measures.
Hence, in [33] the scale-free topologies are found vulnerable
to the removal of high-degree nodes and in [27] removals of
high-DC and -BC nodes in an AS-level topology are found
equally harmful in terms of the inverse geodesic length and the
number of connected components. More recently, Trajanovski
et al.in [34] consider both random node failures and centrality-
driven attacks in the context of a more general topological
robustness framework. Experimenting with random graphs,
power grids, railway and co-authorship networks the authors
show that many centrality indices drive removals of similar
impact and that DC and EC relate to the most harmful ones.
Our study sets its focus on Internet router-level graphs and
relates their vulnerability also to non-topological properties.

VI. CONCLUSIONS

We have undertaken a systematic approach to study the rel-
evance of node centrality indices to the Internet vulnerability.
Departing from an exhaustive survey and a novel classification
scheme of numerous centrality indices, we have carried out a
thorough correlation study of the node rankings the seven most
popular indices generate over a broad set of ISP router-level
topologies. Then, we have experimentally assessed the impact
of node removals determined by those rankings. Contrary to
previous works that consider only network connectivity issues
we have extended the vulnerability context to the network
traffic-serving capacity. Our main results follow:

• Certain index pairs (such as DC-BC, DC-PG) were consis-
tently found to be high (rank-)correlated across all datasets.
Yet a significant part of the high full rank correlation is due
to the nodes that are ranked last (e.g., DC=1, BC=0) so
that the association weakens when we measure the overlap
between the sets of the top-5% most central ones.

• Node removals based on initial centrality rankings showed
that index pairs may exhibit dissimilar impact on the con-
nectivity despite their high (rank-)correlation. As expected,
it is the top-5% overlap between the top nodes in those
rankings that more precisely prescribes how different is
the impact. This is a warning against the widespread use
of full rank correlation as a proxy for the “equivalence” of
two indices.

• ECC is consistently the index with the least impact. On the
other hand, local-only information (DC) will be practically
used to approximate the index with the worst impact. In
terms of connectivity, such an approximation depends on
the underlying network. In terms of the network traffic
capacity, the approximation is highly effective implying
that the complexity of global indices can then be escaped.
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