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Abstract—The proliferation of machine learning (ML) applica-
tions has lately witnessed a considerable shift to more distributed
settings, even reaching hand-held mobile devices; there, contrary
to typical Centralized learning (CL) whereby the involved (large
amounts of) training data are centrally gathered to train models,
the load of training tasks is distributed across a set of capable
mobile learners at the expense of their own energy. The idea
of Federated learning (FL) has emerged as a privacy-preserving
mechanism suggesting that the ML model parameters rather than
data, are sent over the network to a central point of aggregation.
However, when relaxing the privacy concerns, the debate strongly
relates to the available network resources. Interestingly, the so-
far theoretical or even experimental comparison of the two
approaches overlooks network conditions and remains of low
realism.

In this work we rely on past measurement studies to introduce
a realistic system model that accounts for all involved mobile
network conditions such as bandwidth and data availability (af-
fecting training accuracy and model aggregation) as well as user
mobility patterns (affecting data loss). A dedicated simulation
framework we have developed replays rich mobile-traces allowing
for a comprehensive comparison of the two ML approaches over
a large set of training data shedding light on network-resources
utilization, energy efficiency and training convergence. Intuitively,
our results suggest that the ratio between the employed raw
data and the corresponding ML model shapes the conditions
under which FL acts as a network-efficient alternative to CL.
Interestingly enough, asymmetry in data availability across users
as well as their varying number are shown to hardly affect the
FL approach in traffic and energy needs, pointing both to its
promising potential and the need for further research.

Index Terms—Federated Learning, Network Optimization,
Simulation.

I. INTRODUCTION

Machine learning techniques have demonstrated great po-
tential in solving various classification and regression prob-
lems, where analytical or approximation methods are far less
effective. By exploiting available recorded data, ML frame-
works are able to identify patterns, analyse behaviors and even
predict future values [1]. As such, these data-driven methods
are typically employed to deal with challenges that emerge
in mobile (network) environments and require information ex-
change between network devices and a central entity realising
the learning process. Relevant applications span across differ-
ent domains (e.g., mobile applications, autonomous vehicles,
smart sensors, Internet of Things) and serve various objectives

(e.g., image recognition, natural language processing, e-health
etc.).

In the traditional approach of centralized learning (CL),
clients acquire raw data from the environment (e.g., mea-
surements, audio, images, video etc.) and after the initial
pre-processing, transmit it to a central server, which in turn
performs the respective computationally-heavy model training
task. Such a scheme however, places significant traffic over-
heads to the underlying (wireless) network, since training of
complex tasks generally requires the exchange of large chunks
of data, and also aggregates huge processing loads at a single
location.

Distributed learning (DL) techniques have risen, as an
alternative, seeking scalability by allocating the (learning)
computational load to the distributed devices rather than
the central server. Federated learning (FL), a Google driven
DL scheme [2], initially emerged as a privacy-preserving
mechanism, whereby the learning task is performed in a
distributed manner by the potentially mobile clients and only
the parameters of the learning model are communicated to
the central server. By delegating the computational load to the
clients, their (own) data is protected from third-parties access.
The server acts as a controller thereafter, in charge of client
selection, model parameter aggregation and scheduling. As
a result, in FL. the ML model is frequently transferred over
the network, as opposed to the data in the case of CL. FL
has already been employed in applications such as Google’s
predictive keyboards [3], healthcare with distributed data [4]
and object detection using images from a vehicle [5].

In this paper, we argue that once the focus is shifted from
privacy-concerns, to the ability of FL to distribute the load
across clients in a (mobile) network, a comparison between
CL and FL becomes increasingly interesting in understanding
the impact of the differentiation between the traffic patterns in
these two cases i.e., the training data exchange in CL vs. the
exchange of model parameters in FL. A differentiation that in
the presence of mobility has been so-far under-explored. In this
context, our goal is to explore and compare the performance
of the two approaches, in terms of i) network resource utiliza-
tion, ii) energy efficiency and iii) ML (training) convergence,
examining a realistically complex set of operating conditions
including: /) Bandwidth availability: training a complex ML
task in general requires exchange of large amount of data,



which can lead to congestion in the network, affecting also
the data/model transfer duration and the corresponding model
convergence, 2) Mobility: in a dynamic environment, client
availability depends on user’s mobility; if the user is offline,
this can lead to communication failure, 3) Data availability
and distribution: even when a client is available, existence of
adequate data is not always guaranteed, which in turn can
cause delays in the training process, 4) Client selection: refers
to the configuration of the training process, in what concerns
the selection of the total client set that will contribute to the
learning process.

Existing works so far have attempted to address these
questions in a restrictive manner. While there is extensive
research both theoretical [6] and experimental [7] on the
comparison between CL and FL in terms of ML convergence,
other parameters that can affect the system’s performance like
user mobility and network resources are largely neglected. On
the other hand, while there is considerable effort in optimizing
FL techniques e.g., in terms of communication efficiency [8]
or bandwidth efficiency [9], the focus is on privacy-sensitive
only environments, and hence an extensive evaluation and
comparison with the CL alternative is missing.

Our work seeks to fill these gaps by developing a concrete
and pragmatic system model and a correspondingly realistic
evaluation environment. To this end, we use a dedicated Arti-
ficial Intelligence (AI)/ML software environment to accurately
reproduce the ML process, we replay real-world mobility
traces to capture mobility patterns and we employ accu-
rate, measurement-based modeling assumptions e.g., regarding
bandwidth availability, to study the above debate.

The results point to a series of interesting outcomes; the
data/model size ratio determines the achievable accuracy of
the trained models with the centrally-derived one exhibiting
slightly better values, in line with previous observations.
Furthermore, the above ratio largely shapes both the point of
equal accommodated traffic and the point of equal energy con-
sumption needed for the learning process. Interestingly, when
more users share the available raw-data and contribute to the
two approaches, the federated instance exhibits low sensitivity
in both accommodated traffic and energy consumption terms.
Finally, a welcome FL property is revealed as it is shown
to remain robust when the raw-data is unevenly distributed
across the participating learners. On a more forward-looking
note, we highlight the need for in-depth exploration of both
ML processes in the course of time to gain further insights,
especially on the FL applicability.

The remainder of the paper is structured as follows. In
Section II we detail the relevant literature. The system model
is introduced in Section III. In Section IV, our extensive sim-
ulation results are provided, followed by concluding remarks
and pointers for future investigation in Section V.

II. RELATED WORK

A. Research on CL-FL comparison

Prior work performed on the comparison between CL
and FL is limited to certain system parameters. While such

an approach enabled the development of smart optimiza-
tion algorithms to address a specific problem, e.g., enhance
classification accuracy, the absence of a thorough parameter
investigation undermined a systematic and therefore more
realistic view on the CL-FL comparison.

Optimizing ML accuracy in relation to the communication
costs has lately attracted much attention. In [10], a clustering
FL algorithm is employed for energy demand prediction by
charging station providers, using data collected from charging
stations in electric vehicle networks. FL is reported to achieve
higher accuracy and reduction of communication costs by
83%, compared to CL algorithms, however it refers to a static
setup. A FL protocol which adapts to sudden state changes
(i.e., drifts) is presented in [11]. The protocol, which is in-
corporated in the ML training phase, is compared against CL,
in terms of training loss and communication costs. In [12], a
collaborative learning framework is proposed to predict battery
failure on electric vehicles, focusing on the comparison of CL-
FL in regards to throughput, convergence time and accuracy
and suggest fast convergence with similar-to-CL performance.

Reliability is another aspect that has been examined. In
specific, FL is employed for vehicle-to-vehicle (V2V) commu-
nication in [13], enabling vehicular users (VUE) to accurately
estimate the probability of an extreme event and thus facili-
tating ultra-reliable low-latency communication (URLLC) in
a vehicular network. Based on this, a joint power control and
resource allocation strategy is designed and compared against
CL at the Road Side Units (RSU). The results suggest that
the FL solution achieves higher levels of reliability, when the
number of VUEs exceeds a certain value.

Finally, an interesting approach is taken in [14], where FL
and CL are compared in a mobile network environment so that
an optimal resource block allocation policy can be established,
under imperfect channel state information (CSI). The study
focuses mainly on the transmission parameters of the physical
layer and on secondary factors, such as client fairness.

B. Research on FL optimization

Numerous studies have also been directed towards the opti-
mization of FL methods in wireless and mobile environments.
While these works study the effect of multiple parameters,
they lack comparison to the CL alternative. However, the
development of our system model was based on this research
of various system parameters.

Most of these studies focus on client selection (to carry-out
local training tasks) and the respective algorithms to improve
network-related issues. In [15], the functionality of FL in a
cellular environment is analysed. A closed-form optimization
problem is formulated that aims to increase training accuracy
compared to previous FL methods, using a joint client se-
lection and resource allocation scheme. A similar process is
followed in [16] whereby a scheduling policy is employed
to promote clients with recently acquired data, in order to
accelerate the convergence time of the training. Peer-to-peer
bandwidth is leveraged in [17] to offload the main transmission
channel. A gossip mechanism is designed to choose clients



taking into account the available bandwidth and inter-client
communication criteria. Finally, a holistic approach to client-
device selection is presented in [18]. A selection algorithm
is devised to maximize the number of available clients un-
der physical layer and communication restrictions, aiming to
decrease convergence time, without affecting accuracy.

Another group of studies, focuses on reducing the effects
of mobility in a wireless environment for the training process.
An asynchronous communication client-server mechanism that
provides resilience to dropouts is shown in [19]. Similarly,
in [20] a surveillance mechanism is introduced as a means of
inspecting the system as a whole during training. Additionally,
this study accounts for the incorporation of different hetero-
geneous devices in the process. A distributed optimization
algorithm is presented in [21], as a solution for training in
environments with intermittent client availability. Lastly, the
distribution of available client data has also drawn attention
and specifically the effect on the training process, under the
assumption that data is distributed in an non independent and
identically distributed manner (i.e., non-i.i.d). In specific, [22]
provides the theoretical framework for accuracy reduction
under non-i.i.d. data. The same problem is analysed in [23],
but is countered using compression techniques, while the the-
oretical conditions for convergence for non-i.i.d. data training
are provided in [24].

In our work, we aim to address the gaps appearing along the
two above-mentioned threads of research, exploring in-detail
the involved parameters that determine the corresponding
system’s performance. Contrary to these works, we establish a
system model that encapsulates all aforementioned parameters
bounded to the constraints of a realistic system, as captured
by measurement-based models and real mobility traces, en-
abling the accurate experimental comparison of CL and FL
performance in dynamic mobile environments.

1II. SYSTEM MODEL

In our model, we consider a network environment compris-
ing of several mobile clients and a central entity-server. The
system’s objective is to utilize available client data in order
for the server, which operates as a training control manager
for the whole process, to perform a machine-learning task.
In the CL setup, the clients are asked to upload their local
datasets to the server. When every transfer is completed, the
server trains the model using the data acquired in that round.
This process is repeated for several rounds, each time with
a selection of a different group of clients, until a specified
time limit is reached. For the FL example, the setup runs
in a similar manner, with the exception of communication
being limited to exchange of model parameters, instead of the
complete datasets (Fig. 1). After the server shares the model to
the clients, each selected client trains the model locally using
its own data and computing resources. Then, it communicates
the updated model parameters to the server. The server acts
as a model aggregator, whose only subsequent task is to (re)-
distribute the updated model to the clients that will participate
in the next round.

A. Network model

1, Central server broadcasts

Cloud
Server
4. Central server aggregates

the local models
parameters

2. Clients train the
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Fig. 1. In CL, clients moving (green arrows) between cells (hexagons) upload
their data to the cloud server for training, while in FL they perform the training
themselves (recursive arrows) and only upload the model’s parameters.

We consider a mobile Long-Term Evolution (LTE) network,
where the central entity refers to a cloud server or a data
centre. We assume a total of K7 mobile clients in a time-
period of T'rorar, within the overall network area under con-
sideration. In each communication round the server identifies
which clients are currently online (K ) and selects a portion
of them (Kg) to participate in the round’s training.

The client throughput (RR) in both the uplink (UL) and the
downlink (DL) is described by the user equipment’s (UE)
upload/download speed (in MBytes/sec), which is modelled
as a Gaussian random variable (N). Its mean value is assumed
equal to the average cell throughput (C)', divided by the
number of online clients, while an artificial standard deviation
parameter (sigma) is introduced, equal to 20% of the mean
value, to account for throughput variations e.g., due to path
loss and interference. This choice allows to factor-in the way
the locally-present number of users shapes the throughput
provision in the considered area. Given that a client is online,
we also assume that there exists a minimum throughput
threshold (C),;») to enable server-client communication, both
in DL and in UL. For LTE, C,,;, is assumed equal to the 5%
cell edge rate”. Thus, client throughput is given by:

-, C
R = max{N(———, sigma), Cpnin} ()
Kol
where ||.|| denotes a vector’s norm.

B. Mobility model

Real-world traces promise realistic performance evaluation
and credible results compared to the use of synthetic ones.
However, concerns are typically expressed on their repre-
sentativeness and generality of the evaluation results. Along
this line, performing multiple iterations on a public dataset,

! Average cell throughput values (speed) for LTE are 5.9 (UL) / 6.7 (DL)
MBytes/sec [25]
2That is, 0.24 (UL)/ 0.22 (DL) MBytes/sec [25]



increases the generality of our results. In specific, we have
chosen the Shanghai Telecom Dataset [26] for LTE traces.

The Shanghai Telecom Dataset contains records of UEs
accessing the Internet through base stations in a total period of
15 days. Each node denotes a base station in Shanghai, China.
The database includes timestamps (taken every minutes, which
is the dataset’s time granularity) for connection initialization
and termination, thus online presence can be calculated. The
clients are monitored and are considered online, as long as
they remain in the network, while communication is performed
between the various clients and the cloud server. When a client
moves to another cell, a handover (HO) is assumed, in order
to capture service continuity.

We ignore the communication disruption during the HO
process. However, a change of cell (and therefore base-station)
will affect client throughput, depending on the corresponding
congestion (III-A). The dataset provides a large set of clients,
thus an initial pool for Kt is randomly generated.

Handover across network cells is also taken into account.
A mobile client is thus considered able to communicate with
the central server according to the Boolean rule:

HO(t) =not online(t) AND
online(t — Ty) AND 2)
online(t + Ty),

where t denotes the current time and T a threshold period
for the HO. In our experiments, we assume a threshold equal
to 1.5 times the time granularity of the LTE dataset i.e., the
minimum that can be obtained in the given dataset, resulting
in Ty = 90 secs. This might deviate from the achievable HO
times in practice, but allows us to be consistent with the dataset
semantics. We also note that communication disruption during
the HO process is ignored.

C. Dataset acquisition & distribution

In general, there are numerous issues that arise in terms
of raw data acquisition, related to each client’s acquisition
rate, the UE’s data storage capacity and the data staleness
level [16]. In our configuration, adequate in-volume data is
assumed to become available in the clients’ devices. Thus,
the investigation is mainly focused on the distribution of
the existing data. Two distinctive dataset distributions are
studied, namely the evenly distributed setting (e.d), whereby
data samples can be found in different users with the same
probability and the non-e.d. setting, whereby data is distributed
asymmetrically across clients. This distinction refers to the
dataset size distribution, though the class distribution of the
training is always considered independent and identically
distributed (i.i.d.).

1) On e.d. setting: When the system runs under the e.d. as-
sumption the total training dataset (data and labels) is equally
divided to the (Kp) clients. To ensure true data randomness,
the original dataset is firstly randomly shuffled and afterwards
the client that will receive each dataset record is determined
by the following rule:

client_id = mod(dataset_sample_id, Kt) 3)

where mod denotes the modulo operation, ensuring that all
clients will receive the same amount of data in a sequential,
yet independent manner.

2) On non-e.d. setting: For the non-e.d. setting, we assume
a Gaussian distribution of data across the clients with a mean
value equal to 50% and a standard deviation parameter (sd).
Thus, Eq. (3) becomes:

client_id = N (Kt % 50%, Kt * sd) )

D. Client selection model

As discussed in Section II-B, various communication mod-
els have been so-far studied in order to enhance the perfor-
mance of machine learning in wireless/mobile environments.
In the present analysis however, no optimization technique
has been introduced to the model, so that the strengths and
weaknesses of the two methods can be revealed. As a result,
the client selection process is performed in a randomized
manner. The decision-making algorithm operates as follows:

In each communication round, the server identifies online
clients (K ) as a subset of total clients (K7). The server keeps
track of all clients that participated in the training process, so
it excludes the ones that their data has already been used,
resulting in the subset of available clients (K 4). Then, it aims
to randomly select a (predetermined) fixed number of clients
(K ) that are required for the training round. If there are
not enough K4, all currently available clients are selected.
Selection process can then be described by the following rule:

Ks = {rand(KA,KN),
KA7

if Kgy > Ky
otherwise

®)

where rand(S, z) is a random selection of = from a set of S
and Ky are the selected clients. If no clients are found or all
clients have already participated in the process, the round is
repeated after a waiting period of 60 secs, to account for the
mobility dataset semantics (III-B).

In the CL case, the selected players upload their lo-
cal datasets to the central server in a parallel manner.
The time required for each upload is simply modelled
as T = Dataset_Size/Client_Throughput [18], where
Client_Throughput follows the Section III-A description.

When all players upload their datasets, the central server
performs the ML task and marks the end of the round (we
assume infinite resources for the central server i.e., zero
computation time for the ML task [18]). The time to upload all
datasets equals to that of the “slowest” client. This procedure is
repeated until a global time limit, set by the server is reached.
In case a player goes offline during upload (irrespective of the
upload completion percentage), we define a communication
failure. If such a failure occurs, the client’s contribution is
neglected by the central server. However, to account for the
time and resources spent for the (partial) communication, we
consider the delay time equal to the estimated upload time,
assuming the worst-case scenario that connection is lost, when
almost all the data was uploaded. The estimated upload time
can be calculated, given our constant throughput model, as



described in Eq. (1) and the a-priori known per-client dataset
size.

The same settings overall apply to the FL case. The main
difference is that the server shares the training model with
the clients, then the clients train the model with their local
individual datasets and finally return the updated model to the
server (Fig. 1). Again, this is performed in a parallel manner.
In the FL case, communication failure can also occur when
the server shares the model with the clients and vice versa.

E. Computational and Energy Consumption model

The computational throughput (V) of a mobile device to
perform a ML task, measured in (processed) training sam-
ples/sec depends on the dataset content, the UE’s capabilities
and the training model’s complexity. A good approximation
for some popular large-scale classification tasks can however
be deducted from [27], since different models have been tested
in various configurations. To enhance precision, we calculate
the computational time needed for a UE’s training round by
measuring the actual time spent by our setup to perform the
task, since our system’s processing capacity (CPU) is similar
to that of a modern smartphone equipped with a graphics
(GPU) or neural (NPU) processing unit [28].

Regarding energy consumption, the UE’s functions related
to the study of the present system are considered in isolation.
Any consumption related e.g., to the device’s operating system
functionalities or displaying, is neglected and we focus on
energy expenditure due to transmission (TX)/ receiption (RX)
of data and ML training tasks. Thus, the energy consumption
(battery discharge) of a device (E;) is then the sum of all these
functions, E;=E] X+ERX+ ML

Energy consumption in a period (t) per UE can be calculated
as Ey = P; xt, where P; stands for the respective power
consumption. For the transmission expenditure we are based
on [29], where average power consumption valuesare reported
PTX=22 Watts, P¥=1.5 Watts for LTE. For the training
expenditure, based on [27], we assume Pf/[ L=2 Watts for our
training task of SVHN (see Section III-F). The sum of all E;
is used to compared the total (system) energy consumption
between the FL and the CL setup.

F. Machine Learning
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Fig. 2. Representation of SVHN
dataset

Fig. 3. Neural network model ar-
chitecture

A representative machine-learning task, namely the Street
View House Numbers (SVHN) dataset is selected as an appli-
cation model. SVHN is a dataset corresponding to an image
classification problem and is widely used in bibliography

e.g., [30]. It is based on a real-world image dataset (Fig.
2), with digits from natural scene images (house numbers in
Google Street View). It contains 531,131 32x32 colour training
images (1.3 GB) in 10 classes (for digits 0-9) and 26,032 test
images.

To solve the above-mentioned task, a neural network was
built (Fig. 3), to be used in both CL and FL case. The
network is comprised of an input layer of 3072 neurons,
which correspond to the total pixels of the input images of
SVHN (32x32x3), an output layer of 10 neurons, equal to the
total output classes of SVHN and an intermediate (hidden)
layer of 512 neurons. Rectified Linear Unit (ReLU) activation
is applied on the hidden linear layer (ReLU functions as a
filter, allowing only positive values to pass through), while
on the output layer LogSoftmax activation [31] is selected,
being more effective for N-element classification tasks. To
calculate training loss (loss layer), the negative log-likelihood
loss function (NLLLoss) is preferred [31], since it couples
together with LogSoftmax for classification tasks. In regards
to hyper-parameter settings, a batch size of 64 samples was
chosen, along with a learning rate of 0.1. The total model size
reaches 6.1 MB.

IV. EXPERIMENTAL EVALUATION

Based on the above system model, here we focus on
evaluating the performance of the two considered ML setups
(i.e., FL and CL) in an effort to gain a better understanding of
the impact of the considerably differentiated traffic and com-
puting patters (distributed vs. centralized). Through extensive
simulation study we mainly seek to address the following
questions: /) Network resource consumption is obviously
expected to be affected by the differentiated traffic patterns.
As the FL and CL traffic loads are mainly dictated by the
ML model size and the training dataset size (i.e., the set
of data delivered by a client at each round of the learning
process), respectively exchanged over the network, we expect
the dataset/model size ratio to heavily shape the resulting
comparison in what concerns network resource consumption
i.e., a large ratio points to a larger impact of a CL setup on
network resource utilization, while a low value is expected
to associate FL with higher network loads. This obviously
affects a series of aspects related not only to network resource
consumption, but also to energy consumption, the impact of
network disconnections efc. An emerging question then is:
what is the impact of the dataset/model size ratio on the CL
vs. FL comparison, in presence of the effects of mobility and a
varying throughput? 2) The raw data distribution (e.d. vs. non-
e.d.) is expected to mainly shape the resulted ML accuracy.
Does the non-e.d. setting favor CL over FL? And if so, to
what extend are network resources and energy consumption
(indirectly) affected? 3) The option to (dynamically) scale the
number of participating users per round is essential from a
system management point of view to mitigate the effects of
mobility or to speed up the process, when quick convergence
is desired. What is the effect of such scaling in the resulted



accuracy? Is there any dependency between the per round
participants and the total resource consumption?

A. Simulation setup

The simulations were performed on a single desktop ma-
chine with the following characteristics: Intel Core 17-10700
CPU @ 2.9 GHz, 64-bit, RAM 16 GB, OS Windows 10.
To emulate the distributed learning environment Pysyft li-
brary [32] was used. For each measurement the following
process is assumed for CL and FL case. An initial pool of
K clients is selected. The total training dataset is distributed
among them, as described in Section III-C. Also, the number
of clients that need to participate per round (K ) is set. Then,
using the mobility dataset’s timeframe as global base, the
training process (realised as a Pysyft simulation) runs for a
total duration of Tro1ar, = 2 hr. All relevant measurements
are taken on the expiration of the global time limit.

B. Evaluation metrics

The following metrics are used to evaluate the performance
of CL vs. FL.

1) Training Loss: Refers to neural network’s loss function,
which is the function we aim to minimize during the learning
process optimization. This is a parameter related to the training
data. Ideal value is equal to O (dimensionless).

2) Test Accuracy: The effectiveness of the trained model is
evaluated on the test data. The percentage of successful to total
classifications provides the test accuracy metric. Ideal value is
equal to 100%.

3) Traffic Volume: The network traffic volume, due to the
transmission of the training data or the ML model parameters.
In particular, it is calculated by aggregating all the data
exchanged between the central server and the clients during
the training process (measured in MB), as described in III-A-
III-D. In case of CL, the exchanged data refers to the actual
data uploaded by the clients during the training rounds, while
in FL it refers to the model parameters uploaded by the clients
plus the ones shared by the central server (Fig. 1). It is noted
that the above calculation does not account for multi-hop
transmissions; we assume one direct transfer to the central
server. For the sake of clear representation, traffic volume is
normalized to the total dataset size (1.3 GB).

4) Energy Consumption: Captures the users’ energy expen-
diture during the learning tasks. It is calculated by combining
the total energy spent for ML processing and server-client
communication (Section III-E).

C. Effect of the client dataset/model size ratio

To study the importance of client dataset size to model size
ratio, the following setup is assumed. The training dataset is
uniformly divided into a number of initial clients, i.e., Kp,
which varies from a minimum of 20 to a maximum of 800 (16
values totally). Since the model size if fixed, this essentially
is equal to a varying value of the per client dataset size. We
also assume a fixed K = 5, in each round. Each experiment
is repeated for 12 different time periods, randomly chosen

from the LTE mobility dataset, with a constant duration of
Trorar = 2 hr each. Effectively, this gives a total of 192
pairs of CL-FL experiments. The results i.e., mean values out
of the 12 samples together with the corresponding standard
deviations, are depicted in Figs. 4-7.

In the presence of enough data per user, at least 2 times
the size of the model, FL is shown to achieve an equivalent
performance to that of CL, in terms of both ML theoretical
convergence (as analysed in IV-B) i.e., reduction of training
loss (Fig. 4) and practical implementation i.e., accuracy of
classification of test data (Fig. 5). On the other hand, FL fails
to converge when data size is close to the model size, since
the individuals learners do not have enough local data to train
the model [33], thus propagate erroneous parameters. As a
result, in the area of the ratio equals unity or less, FL, in our
setup, consumes ineffectively large quantities of bandwidth
and energy (due to transmission). Given that in FL, models are
exchanged twice (upload/download) per round, traffic volume
exceeds the total dataset size.

Interestingly, there is an area of a relative equilibrium, for
small values of data/model ratio. When the considered ratio
equals 2, CL has similar network performance with FL (Fig.
6), though outperforms FL in energy consumption by 21%
(Fig. 7). For this ratio value, the network traffic induced is
by definition equivalent, while, as expected, the FL suffers
from the additional energy costs of the training process. For
ratio=3, FL has similar energy performance with CL, though
outperforms it, in terms of network resource consumption
by 27%. We deduct that there is no straightforward choice
for this area and the selection depends on the viewpoint of
the problem. For example, from the user’s perspective, CL is
preferable for ratio=2, in order to minimize battery depletion
effects. On the other hand, for ratio=3, a user would be
indifferent, in what concerns battery depletion, but from the
providers point of view, FL is preferable, to minimize network
costs. For a higher ratio values, namely in the area of 10, FL.
on average outperforms CL, both in regards to network (by
82%) and energy consumption (by 42%). In sharp contrast
to the case of small ratio values, the relatively small model
size clearly benefits FL applications allowing for cost-effective
transfers.
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D. Effect of data distribution

To understand how different training data (volume) distri-
bution settings affects the system performance, we assume
non-e.d. settings and choose varying values for sd in Eq.
(4), namely [20%, 40%, 80%, 160%, 320%], resulting in a
mixture of balanced and unbalanced distributions (of raw data
availability across the clients), as shown in Fig. 8. We fix the
values of K7=100 and K n=5 and repeat each experiment for
5 different time periods. The accuracy averages are depicted
in Fig. 9.

Unlike FL’s vulnerability in unbalanced class distribu-
tion [22], in the case of unbalanced client dataset distribution,
FL has proven to exhibit considerable robustness, in what
concerns the achieved accuracy. Under asymmetry, a limited
number of users hold considerable amounts of data and con-
tribute accurately-trained models; that is shown to be enough
for achieving a stable yet closely approximating (less than 8%)
the centralised case.
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Fig. 9. Effect of data distribution
on accuracy

E. Effect of scaling the number of users per round

For this set of simulations, K is fixed to 100 clients (sug-
gesting a client dataset to model ratio equal to 2). Given the
above-mentioned results, we have chosen this value, in the area
where CL’s performance is similar to that of FL. To examine
the effect of scaling the number of users participating at each
ML training round, we vary Ky=[5, 10, 15, 20, 25]. Each
experiment is repeated for 5 different time periods. The results
are depicted in Fig. 10-11. Increasing the participating users
in each round does not have an effect on the final accuracy or

network resource expenditure for CL or FL. In other words,
given enough total data, with a few or many contributions
per round, whether data chunks or model parameters, the ML
task is effectively presenting a fairly stable behavior at the
end of the overall training process. Thus, in terms of network
management, the central server is flexible to decide whether to
accept a burst of clients in order to accelerate the ML process,
or proceed gradually with the process in case of network
resource restrictions, without affecting the outcome of the ML
task.
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F. The data loss dimension

The selection of T = 90 sec, as described in Eq. (2),
is dataset-specific i.e., determined essentially by the dataset
specifications even if not reflecting highly realistic HO time
values. To estimate the effect of this assumption on the per-
formance metrics, we -in all cases- measure the total data lost.
That is due to the users’ mobility and the corresponding offline
periods. We report the mean and max values of data lost, as a
percentage of the total dataset size in TABLE 1. We deduct that
losses are minor in relation to the size of the dataset, thus our
initial assumption has not considerably affected the derived
results. However, in other congested network environments
(potentially captured by other mobility traces) the question
of data loss remains open and seems of particular interest for
future investigation.

TABLE 1
DATA LOST PER SIMULATION

[ Data Lost/Dataset Size (%) || Sec. IV-C ][ Sec. IV-D [ Sec. IV-E |

Mean (CL) 0.40 0.51 0.49
Max (CL) 1.06 0.76 0.82
Mean (FL) 0.26 0.15 0.18
Max (FL) 1.07 0.47 0.28

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel systematic model, based on
previous measurement studies and realistic modelling assump-
tions aiming to establish a solid framework for the comparison
of centralized (CL) and federated (FL) learning instances in
mobile environments. Our carefully designed model accounts
for all involved network conditions (e.g., bandwith availability)
as well as user characteristics (e.g., mobility profiles) and



assess the way that the two ML instances compare (in terms
of accuracy) and at the same time shape network resources
and energy consumption. Simulation results suggest that FL
exhibits robustness against non-uniform data volume distribu-
tions, while the number of clients sharing the available raw
data per training round is not a key factor for the achievable
accuracy and network performance; importantly, the critical
role for the render one approach outperform the other in the
mobile environment is played by the data to model size ratio.

Our current findings call for some interesting extensions;
one would involve the training of more complex models and
exploration in greater depth the effect of data to model ratio
for the selection of CL vs. FL. This could also be extended to
the training of regression ML tasks. The exploration of other
wireless environment and the relevant mobility patterns e.g., in
wireless local area network (WLAN) hot-spots could add to
completeness of this study. Finally, grasping the way that the
training evolves across time remains an open issue. Along
this line, the questions of the achievable accuracy in each
CL or FL training round as well as the implications of large
datasets, complex models and number of users in the training
completion time constitute the subjects of our upcoming work.
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