
A Distributed ML Framework for Service
Deployment in the 5G-based Automotive Vertical

Vasilis Sourlas∗, Amr Rizk†, Konstantinos V. Katsaros∗, Panagiotis Pantazopoulos∗,
Georgios Drainakis∗, and Angelos Amditis∗

∗Institute of Communication and Computer Systems (ICCS-NTUA), Athens, Greece.
†University of Duisburg-Essen, Germany.

Email: v.sourlas@iccs.gr, amr.rizk@uni-due.de, {k.katsaros, ppantaz, giorgos.drainakis, a.amditis}@iccs.gr

Abstract—5G is the convergence technology for the new gen-
eration of mobile networks, expected to be massively deployed
in the coming years. Building on network slicing and edge
computing capabilities, 5G promises to address the diverse and
quite demanding performance requirements of a wide range of
use cases (UCs). As a result of these technological transforma-
tions, vertical industries will have enhanced technical capacity
available to trigger the development of new products and services.
Driven by these advances, Machine learning (ML) applications
are headed towards collaborative distributed (CDL) schemes, to
exploit the abundance of clients’ data. Contrary to the tradi-
tional cloud-based centralized solutions (CML), in CDL schemes,
computational load is shifted to the intelligent edge and extends
further beyond, to the user-equipment (including connected
vehicles). Here, we present a distributed ML (DML) framework,
that will provide functionalities for simplified management and
orchestration of collections of ML service components and will
allow ML-based applications to penetrate the Automotive world.

I. INTRODUCTION

5G-based Automotive-related services (i.e., Connected and
Automated Mobility services) constitute a broad range of
digital services in and around vehicles including both safety-
related and other commercial services provided, enabled, or
supported by 5G networks. The imminent rollout of 5G is
expected to become a “game changer”. For the first time, mo-
bile networks will offer a broad range of connectivity features
including gigabit speeds and mission critical reliability needed
for the Automotive vertical. Most importantly, the prospect
that 5G will be a unified multi-service platform, serving not
only the traditional mobile broadband market but also enabling
digital transformation in a number of vertical industries, is
expected to result in the creation of unprecedented opportuni-
ties for innovation and economic growth. It is forecasted that
more than 125 million passenger vehicles produced in the next
four years will be equipped with embedded connectivity, out
of a total of 1.2 billion motor vehicles in use worldwide. It
is therefore expected that the economic and societal impact
of connected mobility will be significant, and that mobile
communication systems such as 5G will play a central role
in the future transport ecosystem. Indeed, the majority of the
5G-based Automotive-related services will require a highly
reliable and safe guidance infrastructure, which will have to
combine all available technologies: sensors (in vehicles and on
the ground), high accuracy localization, precise positioning,
high definition mapping, converged AI on devices, at the
mobile network edge and in the cloud, and, in particular

Fig. 1. The H2020 5G-IANA experimentation platform

high quality (i.e., D2D) direct and network communications
between all moving and fixed elements (vehicles, bikes, pedes-
trians and road infrastructure). Functional redundancy and
complementarity in the architecture will be necessary to be
able to meet the demanding KPIs of such services (e.g., full
automation, remote driving, etc.).

In view of these challenges, the H2020 5G-IANA project
(https://www.5g-iana.eu/) aims at providing an open and en-
hanced experimentation platform (see Fig. 1) that will provide
access to 5G network resources, on top of which third party
experimenters (i.e., SMEs) in the Automotive-related 5G-PPP
vertical will have the opportunity to develop, deploy and test
their services. In the context of 5G-IANA, an Automotive
Open Experimental Platform (AOEP) will be specified, as the
whole set of hardware and software resources that provides the
compute and communication/transport infrastructure as well
as the management and orchestration components tailored to
the Automotive sector. The 5G-IANA platform will expose to
experimenters secured and standardized APIs for facilitating
all the different steps towards the production stage of a new
service.

5G-IANA targets different virtualization technologies in-
tegrating different management and orchestration (MANO)
frameworks for enabling the deployment of the end-to-end net-
work services across different domains (vehicles, road infras-
tructure, MEC nodes and cloud resources). 5G-IANA proposes
a new Automotive VNFs Repository including an extended list
of ready to use open accessible Automotive-related VNFs and
NetApp templates, that will form a repository for SMEs to

use and develop new applications. Additionally, 5G-IANA will
develop a distributed ML (DML) framework (i.e., composed
of a set of ready to use VNFs), that will provide functionalities
for simplified management and orchestration of collections of
ML service components. This DML framework, will allow
ML-based applications to penetrate the Automotive world, due
to its inherent privacy preserving nature.

In this paper, we provide a description of the 5G-IANA
DML framework as well as the Use Case where it will be
facilitated to perform network status monitoring in Section
II and Section III accordingly. In Section IV an indicative
preliminary experiment of the framework’s capabilities is
presented, whereas Section V concludes the paper.

II. DISTRIBUTED ML FRAMEWORK FOR THE
AUTOMOTIVE VERTICAL AND BEYOND

A. State of the art

The research and innovation areas of Artificial Intelligence
(AI) and Machine Learning (ML) have recently witnessed
wide attention due to significant advantages fuelled by the
availability of high volumes of training data, as well as
progress made on the hardware front e.g., GPUs. Typically,
data required for ML training is by nature associated with myr-
iad distributed end-user devices, which are usually restricted
by their battery life and network connectivity. On the other
hand, computational power is inherently centralized, residing
for instance in high-performance cloud servers.

In view of this gap, traditional approaches employ central-
ized machine learning (CML), where clients transmit their
acquired raw data to a central server that is responsible there-
after to perform the computationally-heavy model training
task. Driven by the network’s evolution towards transferring
intelligence and processing power to the edge and beyond [1],
reaching the user equipment (UE), collaborative-distributed
learning (CDL) schemes have emerged as an alternative to
CML. Relevant examples include split [2] or peer-to-peer
(server-less) learning [3], whereby computational tasks are
offloaded to the edge or to the clients themselves i.e., the far-
edge. That trend is also evident on an application level for
far-edge analytics [4].

Along these lines and motivated by privacy concerns, Fed-
erated Machine Learning (FML), a Google driven distributed
learning scheme [5] has recently emerged. FML allows a ML
model to be (a)synchronously dispatched to distributed data
source locations so as to be locally trained. The resulting
updated ML models are subsequently aggregated (averaged)
at a central location i.e., the trained model parameters are
transferred instead of the data, delivering a new updated
global model ready for subsequent dispatching cycles. As a
result, potential sensitive data is not exposed to the entity that
maintains the global ML model. In certain cases, this further
yields network resource savings, where training data transfer
volume exceeds that of the ML model e.g., video stream data.
Finally, middle-ground approaches, such as hybrid learning [6]
which seek to strike a balance between the benefits of CML
and FML techniques, have also been added to the ML scheme
solution space.

Focusing on the inherently distributed nature of CDL and
FML in particular, as well as the dynamic nature of potential
training data sources in mobile networks i.e., vehicles in the
Automotive world, a particular research challenge relates to
the selection of the client/node/UE/vehicle population par-
ticipating a training/averaging cycle and the corresponding
interplay between global model accuracy, convergence speed
and resource utilization. In a work focused on vehicle-captured
image classification, client selection is based on the estimated
local data quality i.e., image blur as a function of vehicle
velocity, and the availability of computation resources [7].
Elsewhere, client selection is driven by limitations in com-
putation and wireless network resources, and corresponding
estimations on response time, seeking to maximize the training
efficiency [8]. Further challenges relate to the tradeoff of
model consistency and training performance.

In our work, we argue that in order to facilitate any ML
scheme, all the participating actors, namely the cloud, the
core network, the intelligent edge and the involved clients
(i.e., vehicles and road equipment) are to be considered;
therefore, an end-to-end resource analysis is required and a
versatile framework to enable the most appropriate scheme.

B. The proposed DML framework

The 5G-IANA DML framework identifies and targets two
particular limitations in the current state-of-the-art, both re-
lated to the practical application of the CDL concept in future
mobile networks. The first relates to the currently oversim-
plification of the system model, with the vast majority of
related work adopting one or more of the following unrealistic
assumptions: i) homogeneous network conditions e.g., band-
width availability [9], ii) stable network conditions throughout
a training/aggregation cycle, iii) node availability [10], iv)
homogeneous data availability (volume) per client/node, v)
homogeneous data quality/importance that may be challenged
in the sense that non-iid data have been frequently stud-
ied while they can conditionally be seen as of low qual-
ity/importance, vi) fixed distributed (federated) learning con-
figuration e.g., fixed training schedule. The second limitation
relates to the lack of a system design solution that will enable
the intelligent orchestration of distributed learning in mobile
network environments. Such solutions require the operation of
key monitoring information regarding the overall resource and
data availability in a distributed and inherently non-uniform
environment. Hence, the applicable solution is not merely the
concatenation/combination of individual heuristic/algorithmic
solutions encountered in literature, but has to go through a
rigorous assessment/verification of underlying assumptions.

The corresponding system level requirements point out an
interplay between resource level conditions e.g., bandwidth
availability, intermittent connectivity, data storage, etc., and
application level conditions e.g., data volume and quality. As
a result, we argue, that a holistic distributed machine learning
orchestration framework is required to establish the following
functionalities, in tight integration with the overall network
MANO architecture (designed in 5G-IANA for the Automotive
vertical): i) the monitoring mechanisms at discrete resource

and data/application levels, ii) the model and/or data transfer
mechanisms, taking into account device heterogeneity, iii) the
decision making mechanisms that based on the input informa-
tion, will have the role to orchestrate the distributed learning
process, providing adaptations to the varying conditions of the
considered environment.

The proposed DML framework provides multiple func-
tionalities to optimize parameter and gradient compression,
e.g., through quantization and sparsification. The framework
also provides functionalities for model consolidation that span
different parameter consistencies, with different rates of pa-
rameter updates and synchronization techniques that start with
basic elastic model averaging up to e.g., synchronous and asyn-
chronous Stochastic Gradient descent. For adaptive configura-
tions, i.e., when the distributed architecture is allowed to be
changed by the DML orchestrator, an architecture search will
be conducted based on online optimization techniques such as
reinforcement learning and Sequential Model-Based Optimiza-
tion. The framework implements a novel DML representation
that provides functionalities such as ML topology selection
and various performance and privacy configurations along
the spectrum of ML model/parameter consistency and data
distribution, respectively. For example, configurations include
synchronization options for decentralized training as well as
placement restrictions for the ML nodes. These functionalities
are mapped into chained VNFs that provide different ML
capabilities to other VNFs. ML VNFs can be categorized
into different types such as Model Nodes, Aggregation Nodes,
Parameter Server Nodes and Orchestrator Nodes (see Section
III).

A ML related VNF can be deployed on different virtualized
environments such as OBUs (On Board vehicle Units), RSUs
(Road Side Units) or MEC (Multi-access Edge Computing)
nodes in the corresponding Automotive vertical. In particular,
to facilitate the composition of distributed ML topologies,
new ML service requests will provide a specification of the
required ML functionality as well as the grade of distribu-
tion, e.g., choosing model and/or data parallelism or hybrid
parallelism and pipelining. Further, when a service request
is annotated with the distribution grade, it also may choose
a corresponding topology for the distributed ML service,
i.e., tree-like, or geographically distributed P2P-like topologies
connecting the ML nodes. The framework calculates a default
number of required ML nodes and their placement in the
network (or network slice), e.g., on the OBUs, RSUs or
the MEC nodes. The placement of the ML nodes is carried
out by the ML Orchestrator which provides for simplicity
first a basic ML topology that chains the ML VNFs in a
predefined topology if a standard service is requested. The
orchestrator also calculates and deploys a placement of ML
VNFs for customized service requests that adhere to certain
privacy constraints such as ML VNFs on OBUs that only
communicate certain parts of the results to the aggregation
node. This allows for example for shared model parameters
between different chained services. The framework allows the
ML service to request adaptive distributed ML configurations
such that the ML Orchestrator may change the configuration of

the DML service, e.g., the number of ML nodes, to increase
the accuracy of the model. Note that this requires feedback
from the initialized service.

The DML framework will be showcased in the course of
the H2020 5G-IANA project through a distributed network
monitoring service. The Network monitoring service provides
an overview of the status of network components such as
OBUs and draws conclusions and predictions with respect to
the performance of the monitored components. More details
on the network monitoring service can be found in Section III.

III. NETWORK MONITORING SERVICE FOR THE
AUTOMOTIVE VERTICAL

As 5G networks promise a broad range of network slic-
ing possibilities (including different V2X slices for different
services such as autonomous driving of various vendors) a
network monitoring service is required not only to obtain
resource status and statistics but also within a slice to enable
tying the (spatial) network connectivity status to the expected
performance of distributed applications. This allows adaptive
services of the automotive vertical to make fine-grained deci-
sions based on the network spatiotemporal state. This could
also support vehicles to switch if necessary from the home
network (or home slice) into a different network (or slice)
without sacrificing service quality. However, to obtain accurate
spatiotemporal network information a large amount of network
measurement data needs to be continuously collected and
analyzed.

The Network Monitoring Service (NMS) has the goal to
minimize the data collection effort by utilizing a distributed
Machine Learning approach, i.e., instead of collecting large
amounts of network monitoring data to be centrally analysed,
the ML analysis/prediction model is distributed on the VNFs
located at the RSUs and the vehicles i.e., OBUs. To this
end, the NMS utilizes V2X communications (i.e., through the
corresponding VNFs, see Fig. 1) to deliver predictions of the
network quality to a central computation entity at the cloud
or a MEC server. In essence, the goal of the NMS is i) to
learn data traffic patterns for data traffic prediction, ii) to learn
network condition models to provide QoS predictions, and iii)
to learn to distinguish between normal and abnormal network
behaviours to detect and predict faults.

The NMS chains the following VNFs from the 5G-IANA
VNFs Repository:

• Distributed ML Orchestrator (DMLO): The DMLO
VNF initializes and operates the DML service. It decides
on the DML topology as well as the roles of the involved
ML-nodes.

• DML Parameter Server (PS): The DML PS VNF pro-
vides a parameter server for distributed ML scenarios. It
allows each of a set of model replicas to share parameters
in synchronous or asynchronous communication.

• DML Aggregation Node (AggN): The DML AggN
aggregates the local models and broadcasts the averaged
result back to the local ML-node VNFs. The DML AggN
can also work as Ensemble Aggregator.

• ML node -Training Agent (MLN): The MLN runs
the local ML model (training agent) on local data and
connects to one or many of the following VNFs: PS for
synchronized model parameters, DMLO for initialization
and operation.

• Network (NW) monitoring: The NW VNF monitors the
wireless network conditions as seen from the OBU or
RSU against relevant KPIs for the NetApps and keeps a
history of the NW conditions.

• QoS prediction: The QoS VNF uses the NW monitoring
VNF data to fit the NetApps needs for wireless QoS with
the actual network conditions.

Note that the NW and QoS VNFs are broader to the ML
framework and are essential for the NMS service. Also, other
VNFs are chained for the implementation of the Network
Monitoring Service e.g., for the communication between the
devices of the network but are not presented here since they
are not part of the service itself. The proposed 5G-IANA DML
framework presented in Section II consists by the DMLO, the
PS, the AggN and the MLN VNFs (see Fig. 1).

The Network Monitoring Service will be initiated at the
DML Orchestrator that will chain multiple ML nodes as VNFs
on a subset of the available OBUs and/or RSUs. These VNFs
(NW monitoring) will collect network state information such
as response times and packet data rates to update network
performance models, as well as, models of normal network
behaviour. The ML nodes will train local models that will be
combined for consistency using two methods i) synchronous
and ii) asynchronous parameter server (PS) VNF that is located
at RSU or MEC or that is hierarchically built using multiple
aggregation node (AggN) VNFs at RSUs with root PS at
MEC. Finally, a network monitoring orchestrator VNF (NMO)
decides on the hierarchy of the network monitoring service,
i.e., the grade of the distribution of the ML training based on
the OBUs/RSUs network traffic logs.

In the course of 5G-IANA project we will also show a
centralized Ensemble Learning case where the Aggregation
VNF at the MEC server or the cloud collects data logs from
the OBUs or RSUs first to perform model stacking, i.e., train-
ing multiple classifiers on the dataset. We will compare the
computing load on the MEC server for both cases. Traffic and
QoS predictions will be shown to be deduced from the local
model replicas as well as from the centralized model. There
we will explore the prediction latency vs. accuracy trade-off
in comparing the distributed case vs. a centralized model at
the edge or the cloud.

We will show that distributed and predictive Network Mon-
itoring supports 5G based applications to make efficient use
of their data and resources. The result of this service will
support the deployment of new types of 5G mobile services
such as autonomous driving. For example, the NMS will
additionally show how network monitoring information can
be provided with and without guarantees to a MEC-side
application, e.g., predicting vehicle trajectories. In case of
guarantees on the delay of network monitoring results, through
using a URLLC slice, the MEC-side application is expected to
have a higher prediction accuracy. This will demonstrate the

Fig. 2. A representative DML illustration, where the ML task can take place
at the user or the MEC level

potentials of Distributed ML schemes in 5G-PPP verticals like
the Automotive one where the network is volatile and privacy
concerns is of utmost importance.

IV. DISTRIBUTED ML FRAMEWORK INITIAL
EXPERIMENTATION

In order to demonstrate the capabilities and the versatility
of the DML framework, regardless of its use in the Network
Monitoring Service, we experimentally evaluate a Machine
Learning (ML) task, when performed in a data centre/cloud
(Centralized Learning - CML) or offloaded (enabling the DML
framework) to the edge of the network (EML) or at the mobile
devices i.e., OBUs and RSUs (Federated Machine Learning
- FML). The EML approach functions as a middle-ground
solution between CML and FML. In each learning round, each
edge node receives the central model from the central server
and the data from the clients in its service area. Thereafter,
the models are trained and the respective model parameters
are sent to the central server, which in turn performs the
aggregation (similarly to the FML case).

A. ML task

We have selected an image-classification problem,
as a representative ML task of automotive relevance
e.g., licence plates/traffic signs recognition scenarios, and
in specific digit recognition from given images taken
from the Street View House Numbers (SVHN) dataset
(http://ufldl.stanford.edu/housenumbers/). SVHN, is based on
a set of real-world images, with digits taken from natural
scenes (house numbers in Google Street View). It contains a
training dataset of 531K 32x32 colour training images (of 1.3
GB size) split in 10 classes (for digits 0-9) and a test dataset
of 26K test images. The original SVHN training dataset is
replicated 10 times, adding a random Gaussian noise factor
(blurring) to the images vectors, essentially resulting in a
total synthetic 13GB dataset.

A neural network has been developed to address the above-
mentioned task, comprised of an input layer of 3072 neurons,
which correspond to the total pixels of the input SVHN
images (32x32x3), an output layer of 10 neurons, equal to

the total output classes of SVHN and a hidden layer of 512
neurons. Rectified Linear Unit (ReLU) activation is applied on
the hidden linear layer (ReLU functions as a filter, allowing
only positive values to pass through), while on the output
layer LogSoftmax activation [11] is selected, being more
effective for N-element classification tasks. Regarding hyper-
parameter settings, a batch size of 64 samples was chosen,
along with a learning rate of 0.1, based on the default settings
for similar image classification tasks in PySyft library [12].
The total model size reaches 6.1MB. Federated Averaging
(FedAvg [13]) algorithm is used in all distributed learning
cases in our PySyft implementation [12].

B. Network model

As 5G networks are currently under deployment, we assume
a mobile Long-Term Evolution (LTE) cellular network com-
prised of several mobile clients i.e., vehicles equipped with
LTE-enabled RSUs, each holding an amount of training data.
In each cell, a wireless link connects the clients with the base
station unit (BS). Also, BSs are able to communicate with
the edge nodes and with a central data centre (DC) cloud
server, via the intermediate core (wired) network (Fig. 2).
The system’s aim is to perform a ML task, utilizing available
client data through the three mentioned schemes (i.e., CML,
FML and EML). In the EML we assume that within the
intermediate core (wired) network exist a few edge node
MEC servers. Real-world traces were selected to capture
our network’s dynamics. In specific, the Shanghai Telecom
Dataset [14] was used, which contains records (LTE traces)
of UEs accessing the Internet through a BS in a period of 15
days (the corresponding network assumes 1853 BSs).

The UEs throughput in both the uplink (UL) and the down-
link (DL) (in MBytes/sec) is modelled as a Gaussian random
variable. Its mean value is assumed equal to the average
cell throughput, which is 5.9 (UL)/7.73 (DL) MBytes/sec for
2.5 GHz LTE according to [15], divided by the number of
online clients. Here for simplicity we assume that all BSs
are equally loaded. In an actual network, the identification
of the MEC server locations would ideally be the outcome
of a facility location problem, accounting for various factors
i.e., spatial characteristics, cellular architecture, average user
demand, etc. As our baseline approach, a uniform distribution
of cells across the MEC nodes is considered. Although non-
realistic, it is insightful as it reduces the involved problem
parameters. A more skewed distribution is left for future work.
For our case we assume 5 MEC nodes within the network.

C. Training process and entities computational characteristics

The training dataset, including data and labels, is firstly
shuffled and then uniformly divided into / partitions. Then, a
fixed number of per round participating clients # is chosen
(# < /) and each one is assigned a dataset partition. In
the CML case, the selected clients upload their local datasets
to the central server (running DMLO, PS, AggN, MLN VNF
instances) in a parallel manner. The central server, thereafter
merges the datasets into a single super-dataset and performs
the ML training task, marking the end of the round. Same

settings overall apply to the FML case. Here, the central
server first shares the training model to the clients (DMLO, PS
and AggN VNFs). Then, each client (MLN VNF) trains the
model using only its available (local) data and finally uploads
the updated model back to the server, again in a parallel
manner. The server is the one to perform aggregation of all
the collected models. Finally, in EML each participating client
uploads its data to its serving MEC node (MLN VNF); the
latter has already received the training model from the central
server and then the training process occurs per edge node.
Subsequently, updated models are sent back to the central
server, similar to the FML case.

The computational capacity of a UE (in Automotive world
a vehicle OBU or an RSU) to perform a ML task, measured
in (processed) training samples/sec depends on the dataset
content e.g., images pose different requirements than natu-
ral language, the UE’s capabilities and the training model’s
complexity. A good approximation for popular large-scale
classification tasks can however be deducted from [16]. For
our case, we use a reference (average) value of 125 training
samples/sec. For the MEC nodes/servers we have considered
as our main reference the latest commercial solutions specified
by Amazon’s AWS Wavelength services [17]. It offers cloud
services specialized for ML (Amazon EC2 P3 instances) and
is equipped with an NVIDIA Tesla V100 Graphics Processing
Unit (GPU). GPU computational capacity values for ML can
be found in [18], where we select an average value of 6000
training samples/sec. Finally, the computational tasks for the
cloud server include training (in the CML case) and model
parameter aggregation (FML, EML cases). For the former
we select an average value of 40,000 training samples/sec,
assuming a Data Center is equipped with a Tensor Processing
Unit (TPU). For the latter (model parameter aggregation), no
reference values can be found in the literature, thus we rely
on an empirical approach; we measure the average capacity
for training and aggregation tasks in our personal computer
(PC) setup (i.e., 6250 training samples/sec and 1.56 model
aggregations/sec respectively) and compare against the training
capacity reference value of 40,000 training samples/sec that
was selected, according to [18]. Assuming a linear relation, the
average cloud aggregation capacity is calculated as 10 model
aggregations/sec.

D. Simulation environment and results

The simulation environment was set-up in a single desktop
machine with the following characteristics: Intel Core i7-
10700 CPU @ 2.9 GHz, 64-bit, RAM 16 GB, OS Windows
10. We have chosen the following scenario, based on our
previous work [19]; / = 500, accounting for a per client
data to model ratio A ≈ 4. Per round participants (#) is
fixed to 50. To evaluate the performance of each ML scheme
the following metrics are considered: 1) Testing Accuracy,
representing the ratio (%) of successful to total classifications.
2) Traffic Volume overhead, calculated as the sum of total data
exchanged between the central server and the clients (FML,
CML) or between the central server, the MEC nodes and the
clients (EML). For the sake of clear representation, traffic

Fig. 3. Testing accuracy w.r.t time

volume overhead is normalized to the total training dataset
size (i.e., 13 GB).

In terms of the resulted accuracy i.e., the accuracy achieved
at the end of training, EML exhibits similar performance
to CML, both outperforming that of FML by an average
value of 8% (Fig. 3). This observation matches the intuitive
expectation of EML approaching the behavior of CML, since
in both cases large amounts of data are collected and trained
centrally. A similar observation can be made in regards to the
resulted bandwidth expenditure (Fig. 4), where both EML and
CML demonstrate similar values of traffic overhead. In the
CML case, the value of total data exchanged approximates
the 100% of the training dataset, which stems from the fact
that all client data is uploaded centrally. EML exceeds slightly
100% (by an average amount of 5%) since apart from all the
available data uploaded to the edge servers, the (lightweight)
model parameters and aggregated result are exchanged with
the central server. Note though, that this traffic is accumulated
towards the edge of the network, where MEC nodes reside
and has less impact on the network performance and resource
allocation (we leave this for future investigation). FML, on the
other hand, appears as more bandwidth-efficient by (at least)
an amount of 50%, compared to CML-EML. Such behavior is
expected, since only models are exchanged between the central
server and the clients, whose size is 4 times less, compared
to the (actual) per client data (A=4). Overall, a trade-off is
emerging; a direction towards centralized methods provides
better results in terms of accuracy, applying however higher
(twice as much in our case) communication costs. From the
viewpoint of convergence speed, CML and EML are able to
reach their peak accuracy during the very first training rounds
(in less than 200 secs). At this stage, they outperform FML
by 23% (Fig. 3). The slow accuracy improvement of FML
compared to other schemes is mainly dictated by the low
client processing capacity, as opposed to an edge node (GPU)
or the cloud server (TPU). The faster convergence of CML-
EML comes at a cost in bandwidth expenditure (Fig. 4). In
specific, CML and EML at 200 secs require 5 times more data
as compared to FML.

V. CONCLUSIONS

In this work we introduced a Distributed ML framework
that will provide functionalities for simplified management and
orchestration of collections of ML service components to the
Automotive 5G-PPP vertical. Besides the functionality of the
DML components we also presented the Network Monitoring

Fig. 4. Traffic overhead w.r.t time

Service where the DML will be mainly used as well as an
initial experiment that showcases the framework’s potentials
in distributing ML tasks across a network.

ACKNOWLEDGEMENTS

This paper is part of the 5G-IANA project, co-funded by
the EU under the H2020 Research and Innovation Programme
(grant agreement No 101016427).

REFERENCES

[1] W. Shi et al., “Edge computing: Vision and challenges,”IEEE Internet
of Things Journal,vol. 3, no. 5, 2016.

[2] M. G. Poirot et al., “Split learning for collaborative deep learning in
healthcare,”arXiv preprint arXiv:1912.12115, 2019.

[3] S. Savazzi et al., “Federated learning with cooperating devices: A
consensus approach for massive IoT networks,”IEEE Internet of Things
Journal, vol. 7, no. 5, 2020.

[4] K. A. Alam et al., “Enabling far-edge analytics: performance profiling
of frequent pattern mining algorithms,”IEEE Access, vol. 5, 2017.

[5] B. McMahan and D. Ramage, “Google AI blog: Federated
learning: Collaborative machine learning without centralized train-
ing data,” https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html, April 2017, (Accessed on 10/27/2020)

[6] A. M. Elbir, “Hybrid federated and centralized learning,”arXiv preprint
arXiv:2011.06892, 2020

[7] D. Ye et al., “Federated Learning in Vehicular Edge Computing: A
Selective Model Aggregation Approach,” in IEEE Access, 2020.

[8] T. Nishio et al., “Client selection for federated learning with heteroge-
neous resources in mobile edge,” IEEE ICC, 2019.

[9] L. Liu et al., “Edge-assisted hierarchical federated learning with non-iid
data,” arXiv preprint arXiv:1905.06641.

[10] G. Zhu et al., “Low-latency broadband analog aggregation for federated
edge learning,” arXiv preprint arXiv:1812.11494.

[11] PyTorch Neural Network API. [Online]. Available:
https://pytorch.org/docs/stable/nn.html

[12] T. Ryffel et al., “A generic framework for privacy preserving deep
learning,” arXiv preprint arXiv:1811.04017, 2018.

[13] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Artificial Intelligence and Statistics, 2017.

[14] S. Wang et al., “Edge server placement in mobile edge computing,”
Journal of Parallel and Distributed Computing, vol. 127, 2019.

[15] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE Journal on Selected Areas in Communica-
tions, vol. 32, no. 6, 2014.

[16] J. Liu et al., “Performance analysis and characterization of training deep
learning models on mobile device,” in 25th IEEE Intern’l Conf. on
Parallel and Distributed Systems, 2019.

[17] Amazon AWS Wavelength - EC2 instance types. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/

[18] Y. Kochura et al., “Batch size influence on performance of graphic
and tensor processing units during training and inference phases,”
in International Conference on Computer Science, Engineering and
Education Applications. Springer, 2019.

[19] G. Drainakis et al., “Federated vs. centralized machine learning under
privacy-elastic users: A comparative analysis,” in IEEE 19th Intern’l
Symposium on Network Computing and Applications, 2020.

