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Abstract

Machine Learning (ML) is increasingly implemented in a distributed fash-
ion to harness the data abundance generated in the mobile client devices.
Contrary to cloud-based centralized learning (CL), distributed schemes like
Federated Learning (FL) shift the computational load to the user-equipment.
Trying to compare and characterize the performance of the two schemes, ex-
isting literature focuses solely on model accuracy, neglecting the impact of
training tasks on the underlying network resources. In this work, we intro-
duce a realistic measurement-based model to thoroughly capture the cloud-
to-client bandwidth and energy footprint of ML training on the network,
while assessing the achieved accuracy, in the light of different data/model ra-
tios. Our model is implemented in an FL simulation framework that allows
trace-driven mobile users to conduct image classification tasks, under a vary-
ing exposure to training data heterogeneity. Having hyper-parameters tuned
inline with network resources, our experiments unveil how the data to model
ratio regulates both bandwidth expenditure and the client/infrastructure en-
ergy consumption, in cellular and wireless environments. Further simulation
results confirm CL’s superiority over FL under data heterogeneity and cap-
ture how FL trades-off accuracy and convergence time; thus, shedding light
into so-far open questions that shape (distributed) learning solutions in net-
worked environments.
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1. Introduction

The ever-increasing adoption of Artificial Intelligence (AI)/Machine Learn-
ing (ML) in a plethora of applications e.g., autonomous driving, data ana-
lytics, fraud detection etc. has raised the demand for intelligent network
services, needed to deal with the involved computationally-heavy big-data
driven ML tasks [1]. Such tasks are fed with data, which is typically associ-
ated with a myriad of distributed end-user devices; data acquisition is then
affected by user mobility, the devices’ battery life and network connectiv-
ity. On the other hand, computational power required to process this data
(i.e., ML model training) is inherently centralized, residing for instance in
high-performance cloud servers.

Traditional approaches employ Centralized Learning (CL) to address this
chasm; clients send their sensor-acquired raw data to a central entity that
thereafter performs the computationally-heavy ML training task. Driven
by networking technology trends |[2|, distributed machine learning (DML)
schemes have emerged as alternatives to CL. Relevant examples include hy-
brid [3] and peer-to-peer (server-less) learning [4], whereby computational
tasks are offloaded to the clients’ user equipment (UE). Along these lines,
Federated learning (FL), a Google driven DML scheme [5] has recently at-
tracted significant attention, being an inherently privacy-preserving scheme.
In FL, the ML task is performed in a distributed manner by the (potentially)
mobile clients, utilizing their own data and computing resources. Then, only
the outcome of the training i.e., the ML model’s parameters are sent back
to the central entity for aggregation; thus, not only the ML task is offloaded,
but also privacy is preserved.

Whether centralized or distributed, ML tasks can inflict huge stress on the
network resources; data volume required for training varies from few GBytes
to hundreds of TBytes [1], while data processing needs can reach up to thou-
sands of TeraFLOPS [1]. A fundamental problem therefore arises; which
ML scheme should be employed to train highly-accurate ML models (using
the generated data) subject to the resource consumption constraints? The
problem of ML scheme selection is by nature multi-parameter and inherently
complex. The network comprises of multiple stakeholders e.g., the clients,
the intermediate network operators, the cloud provider etc. Each stakeholder
poses different requirements and limitations that affect both the training
process (therefore the resulting ML model’s accuracy) and the accompany-
ing resource consumption. Relevant examples include a) client-related ones



e.g., data distribution, availability due to mobility, battery life restrictions,
b) network-related ones e.g., bandwidth availability, end-to-end delays, c)
cloud-related ones e.g., energy consumption limits. The problem’s complex-
ity is further increased by the engineering properties of the training process
itself e.g., ML hyperparameters, client selection etc.

To the best of our knowledge an in-depth analysis on the ML scheme
selection problem is missing from the current literature. Existing works have
attempted to address similar questions in a restrictive manner; there is an
extensive theoretical [6],|7] and experimental [8],|9] research on the compar-
ison between CL and DML in terms of convergence, but the relevance of
the two approaches to the underlying network is widely neglected. In this
work, we address the ML scheme selection problem from a system stand-
point i.e., by providing an end-to-end network-resource analysis, considering
all stakeholders. In view of the problem complexity and the ever-increasing
spectrum of centralized-to-distributed ML schemes, we restrict our analysis
on the two spectrum extremes i.e., the well-established CL and the recently
emerging -yet popular- FL1. As the preferred approach is affected by a com-
bination of parameters, we specifically focus on the following fundamental
questions: 1) How does the selection of ML hyper-parameters (being essen-
tial to tune before every ML task) affects the resource consumption of each
ML scheme?, 2) Given that the client data to ML model size ratio deter-
mines the network workload, how does it affect the performance of each ML
scheme in terms of accuracy, convergence speed and resource consumption
for each stakeholder?, 3) What is the ML schemes’ behavior in the course
of time (convergence speed)?, 4) How do ML schemes respond to scaling
i.e., including more client participants, in terms of convergence speed and
resulting accuracy? and 5) What is the effect of client data heterogeneity on
the ML scheme’s accuracy?

Our main contribution: we thoroughly explore and compare the CL ws.
FL performance by developing a solid and pragmatic cloud-to-client sys-
tem model. A dedicated AI/ML software environment? has been realized to
accurately reproduce the training process for each ML scheme. Two typi-
cal communication channels are considered, a mobile Long-Term Evolution

1Focusing on accuracy and network resource consumption, data privacy requirement
is relaxed to ensure a meaningful CL-FL comparison.
2The source code is publicly available at: https://github.com/giorgosdrainakis/dml



(LTE) and a wireless local area (WLAN) network, while in parallel, client
mobility is realistically captured in each setting by replaying real-world (LTE
and WLAN respectively) mobility traces. Credible measurement-based mod-
els are fabricated to estimate a real-world system performance in terms of
bandwidth availability, device energy consumption and processing capacity.
Moreover, a set of data distributions is employed to capture client data het-
erogeneity, resembling the conditions of a real system. This work significantly
extends our previous research [10]; our network resources analysis now incor-
porates all network stakeholders (from the cloud down to the client), while
new radio (WLAN) and heterogeneous data distribution settings are added
to capture several realistic scenarios. Lastly, the concept of evolution in time
is introduced as a key parameter in the evaluation of the two ML schemes.

Our results point to a series of important outcomes. Hyperparameter
tuning has a major impact on FL, as compared to CL, enabling FL to reach
CL’s accuracy levels, up to 85% on the Street View House Numbers (SVHN)
dataset. Having secured convergence via hyperparameter tuning, the per
client data to model size ratio regulates the end-to-end network utilization.
At the same time, FL in WLAN suffers from a 40% more data loss compared
to FL in an LTE setting. The above ratio also dictates both the clients’ and
the cloud’s energy consumption. On the clients side, a bound is found for
this ratio to avoid depletion of a typical smartphone’s battery. In parallel,
we show that the client energy costs are mainly dominated by the (ML)
processing on the UEs. In terms of convergence, CL demonstrates an up to
13 times speedup compared to FL, at the expense of a bursty network and
cloud resource utilization. On the other hand, in line with [11], we showcase
that FL’s convergence can be accelerated by up to 83%, if the number of
participating clients per round is increased (scaling), at a negligible cost on
the ML accuracy. Extensive experiments verify CL’s superiority in terms of
convergence over FL, under data heterogeneous conditions [7]; importantly,
CL’s insensitivity to data heterogeneity is not guaranteed unless shuffling
techniques are employed.

The remainder of the paper is structured as follows. In Section 2 we
detail the relevant literature. Our system model is introduced in Section 3.
In Section 4, extensive simulation results are analysed. Lastly, our concluding
remarks and pointers to future investigation appear in Section 5.



Table 1: Research directions in ML schemes comparison

ML schemes comparison

CL vs FL CL/FL vs other DML schemes
Investigation parameter | Research works || Investigation parameter | Research works
convergence rate 6], 9] convergence rate [12]
accuracy 19], 18], [13] accuracy [3], [14], [15], [4]
training loss 6 energy cost 3], [14]
ML hyperparameters 7 bandwidth cost 14
data distribution 7 privacy & security 14

2. Related Work

The debate of employing centralized vs. DML schemes in a network en-
vironment has been insufficiently addressed so far. Among DML schemes,
the exploration of FL as CL’s alternative has a prominent role (Table 1),
due to FL’s inherent privacy. FL-related works are primarily focused on the
resulted accuracy (Table 1), as in [8|, where FL is employed for intrusion
detection in an Internet of Things (IoT) environment. The proposed decen-
tralized scheme demonstrates comparable accuracy (maximum difference is
5%) to its centralized counterpart, while preserving privacy over the sensed
data. FL’s reliability against state-of-the-art CL solutions for sensitive hos-
pital data is studied in |13]. The investigation over three benchmark clinical
datasets concludes that FL can reach CL’s performance across a wide range
of ML metrics e.g., accuracy, recall etc. with a maximum difference of 4%.

Besides accuracy, FL’s algorithms are also evaluated in terms of their con-
vergence (Table 1) against CL, as in [6], where Distributed Stochastic Gra-
dient Descent (D-SGD) is applied in a cluster of computing nodes, placed in
a static network topology. D-SGD achieves similar training loss as CL, while
exhibiting faster convergence in presence of a low-bandwidth network. Sev-
eral connected nodes (distributed workers) of equal processing capacity are
assumed in [9], one of which acts as the central server. Tests on the Fashion-
MNIST dataset, suggest that CL achieves a 2% better accuracy compared to
FL, while FL converges almost 40% faster. Since the workers and the server
share the same specifications, its applicability on computationally-limited
hand-held devices is limited. Moving to more practical comparisons, various
FL algorithms e.g., FedAvg, Cooperative etc. are bench-marked against CL
in [7], after an exhaustive search is performed to tune the ML hyperparame-
ters. Bayesian-based accuracy metrics employed, show that CL provides more
accurate classifications at all times, with FedAvg showing promising perfor-



mance, only when data is independent and identically distributed (i.i.d.).

These CL-FL comparison studies have reduced applicability in a practical
system. Since they are centered towards the resulting ML model’s perfor-
mance, the expenditure on the underlying network’s resources is largely ne-
glected. On top, existing comparisons disregard the effect key environment
parameters (data distribution, client availability, communication delays etc. )
can have on the ML task. On the contrary, our study explores the conver-
gence of CL and FL with respect to their cost in terms of network resources
and quantifies the trade-offs between ML performance and resource efficiency.

Besides FL, a research direction is also developed towards other DML
schemes (Table 1), to be used as CL alternatives. Hybrid schemes, for exam-
ple are regarded as middle-ground solutions between CL and FL. A relevant
proposal in [3] demonstrates similar accuracy to CL, outperforming FL by
an average of 10%; at the same time it keeps a balance between the energy
efficiency of FL and the high energy cost of CL. In [14], the authors intro-
duce a hybrid edge-FL scheme, which enhances security via a block-chain
mechanism. The proposed solution outperforms both FL and CL in terms of
accuracy by a maximum of 5%, exhibiting almost 50% reduction in energy
consumption compared to CL, while consuming 25% more bandwidth.

Collaborative ML schemes on the other hand are investigated in an ef-
fort to minimize communication costs, since they do not require a dedicated
central server. The concept of Swarm learning is presented in [15], where
the clients (swarm nodes) share the model parameters with one another via
the swarm network. Experiments on clinical data showcase an accuracy im-
provement of the suggested schemes over CL, for various cases of patient
detection e.g., leukaemia, tuberculosis, COVID-19 etc. Gossip learning [12]
is a similar approach, where clients share a small portion of their trained
ML model parameters with their neighbors. Results in a trace-based mobile
network environment show similar accuracy to FL, yet with slower conver-
gence speed. Peer-to-peer learning [4] functions like FL, without the use of
a central server. Instead, the ML models are exchanged between the clients
via a secret peer-to-peer sharing schema. Although the suggested scheme’s
convergence rate is heavily dependent on the existence of i.i.d. data, its
accuracy levels are similar to those of CL.

While the majority of works on hybrid and collaborative schemes demon-
strate improvements over FL, they mostly focus on the resulted accuracy,
neglecting the effect on the system resources. We argue that (besides accu-
racy) without considering the consumed network resources, any ML scheme
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deployment over the network cannot be efficient. In our work, we seek to
shed light into the unexplored areas of the resource consumption of ML, in
an effort to accurately compare the performance of CL and FL.

3. System Model

Table 2: Nomenclature of involved quantities

[ Symbol{ Definition H Symbol‘ Definition ‘
dsample | Training dataset samples Ciid Independently and identically distributed
d Training dataset size (bytes) (i.1.d) level shape parameter
z Training dataset partitions (i.e., to- || v3L, | Client device computational capacity for
tal clients) training (samples/sec)

Tsample | Training dataset size to samples ra- 'U;“lf,ﬁd Cloud computational capacity for training
tio (samples/sec)

m ML model size (bytes) v4%, | Cloud computational capacity for model ag-

T'data Client data to model size ratio gregation (models/sec)

k Per round participating clients Colient Total energy expenditure for all clients (J)

q Online clients Dhns, | Client device power consumption for trans-

tupload | Total time for client data upload in mission (W)
each round (sec) phRne, | Client device power consumption for recep-

tend Maximum duration of ML task (sec) tion (W)

Setient | Client throughput - access network || piiL,, | Client device power consumption for training
(bytes/sec) (W)

cH Average area throughput - access || €core Total energy expenditure in the core network
network (bytes/sec) J)

o Client throughput standard devia- || €cous | Total energy expenditure in the cloud (J)
tion - access network pML | Cloud power consumption for training (W)

< Minimum client throughput - access || pac,; | Cloud power consumption for model aggre-
network (bytes/sec) gation (W)

Score Core network element’s throughput || fepochs | Number of epochs (ML hyperparameter)
(bytes/sec) heaten | Batch size (ML hyperparameter)

Ted Data skewness parameter Nrate Learning rate (ML hyperparameter)

We introduce our measurement-based system model as follows: We allow
for several mobile clients in a dynamic network environment, each holding
an amount of training data. Clients are able to exchange data with a central
entity e.g., a cloud server located in a data centre (DC), via the intermediate
core network. We do not consider any control messages to facilitate data
exchange e.g., coordination or signalling, given their negligible size compared
to the actual data.

Our system model focuses on the implementation of CL and FL. The ML
task is performed in several communication rounds. For CL, in each round,
the clients upload their local data to the cloud server for training (see Fig. 1a).
Note that although the ML task is performed in a centralized location, CL
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is not to be confused with the standard ML paradigm, where training is
performed using the entire dataset. The latter is referred to as Standard
Machine Learning (SL). Essentially, an implementation of SL would require
for the server to wait for all participating client datasets to arrive in order
to perform the training task. On the other hand, periodic training ¢.e., on a
per round basis occurs in CL, given that (recently generated) data arrives in
every round. In our study we focus on CL, rather than SL, since the way SL
functions deems it impractical for employment in a real system. Applications
either cannot afford waiting for the entire dataset to reach the data centre
or are agnostic to the entire client dataset. More importantly, SL lacks
adaptability, since it does not produce a global ML model on a per-round
basis. In an actual system, clients do not generate/acquire a single dataset,
which will be uploaded once; they rather repeatedly collect data e.g., user
analytics, network measurements etc. which can be potentially streamed to
the cloud in a continuous manner. Moreover, depending on the environment,
this data can change in time e.g., traffic scene images and therefore the output
of the ML task i.e., the ML model, needs to be updated on a regular basis.
As such, SL is not proposed as a practical solution, but serves as a baseline
to other centralized schemes. Moreover, CL is needed in our study to ensure
a fair and meaningful comparison to FL, given that a global ML model is
generated in every round.

In each FL round, the server communicates the (global) ML model to
the selected clients, which in turn train the model locally, using their own
(private) data and computing resources. Upon completion, the clients com-
municate the updated (local) model parameters to the central server, which
aggregates the local ML models into a new global ML model (see Fig. 1a).
In the following sections (3.1-3.6) we detail the elements that comprise our
system model. All involved quantities are summarized in Table 2.

3.1. Network architecture and attributes

The network includes the wireless (radio) and the wired part (see Fig.
1b). Two common cases are considered for the wireless part; a mobile Long-
Term Evolution (LTE) and a wireless local area (WLAN) network. In the
LTE case, a cellular architecture is assumed, where a basestation (BS) lies in
the centre of each cell. In the WLAN case, several access points (APs) are
assumed, which cover a local network area (coverage area). We refer to the
wireless part (link between clients and BS/AP) as the access network. The
wired part (from BS/AP up to the cloud) comprises the core network (see Fig.
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Figure 1: (a) In CL, mobile clients (green horizontal arrows) upload (blue vertical arrows)
their data via the core network to the cloud, which performs the training centrally. In FL,
the training is performed on the device (red recursive arrows) and only the ML models are
shared (red vertical arrows) to the cloud, where aggregation occurs. (b) The radio part
of the network (access) is connected to the cloud via the core network, which includes the
metro & edge, the backbone and the DC’s infrastructure part.

1b). The core network is divided to 1) the metro and edge network, where
edge nodes reside, 2) the backbone network, which includes core switches
and routers and 3) the infrastructure to reach the DC’s cloud server.
Access network throughput: The client throughput s.ie,: in both the
uplink (UL) and the downlink (DL) (in MBytes/sec) is modelled as a Gaus-
sian random variable (N). Its mean value equals the average area through-
put ¢c“ (where CH marks the corresponding radio technology i.e., LTE or
WLAN), divided by the number of online clients ¢q. The inclusion of the on-
line clients in the computation, allows to factor-in the way the locally-present
number of users shapes the throughput provision in the considered arca. ¢t7F
refers to the average cell throughput®, while ¢ “4Y to the average coverage
arca throughput*. The standard deviation parameter o, equal to 20% of the
client’s mean throughput [18] accounts for throughput variations e.g., due to
path loss and interference. Given that a client is found at a certain moment
connected/online, we also assume that there exists a minimum throughput
threshold () to enable server-client communication, both in DL and in

UL. ctTE is assumed equal to the 5% cell edge rate®, which represents the

min

3That is, 5.9 (UL)/7.73 (DL) MBytes/sec for 2.5 GHz LTE according to [16]
4That is, 2.25 (UL)/2.38 (DL) MBytes/sec for IEEE 802.11g according to [17]
SThat is, 0.24 (UL)/0.22 (DL) MBytes/sec according to [16]



worst radio conditions, while for WLAN, a similar value for the coverage area

(cWLANY) can be obtained®. Thus, suen: for UL and DL, is given by:
. (CH
Sclient = mal‘{N(_’ 0)7 CTCngL (1)
q

Core network throughput: The core network includes the following
elements [20]: 1) An interface to the access network (BS for LTE or AP for
WLAN); 2) The metro and edge network’s elements, i.e., an ethernet switch,
a broadband network gateway (BNG) and the edge router; 3) the backbone
network’s routers and 4) the DC’s elements, i.e., an edge router and a data
center switch. The average throughput of each element for the UL/DL (Score)
is based on Cisco routers/switches benchmarking [20] and measurements on
access network interfaces (3-sector 2x2 Multiple-Input-Multiple-Output re-
mote radio 4G/LTE) [20]. A total number of 3 backbone network’s routers is
considered, as a hopcount of maximum 3 in the backbone network suffices to
reach the DC for the majority of popular services e.g., Facebook, Google [21].

3.2. Client Mobility Pattern

Unlike the synthetic or the theoretical mobility models, real-world traces
promise realistic performance evaluation and credible results. However, con-
cerns are typically expressed on their representativeness and generality of the
evaluation results. Along this line, performing multiple iterations on pub-
lic datasets, increases the generality and credibility of our results. For our
system model, we have chosen the Shanghai Telecom Dataset [22] for LTE
traces and the Wifidog [23] for WLAN traces. The Shanghai Telecom Dataset
contains records of UEs accessing the Internet through a BS in a period of
15 days. The database includes timestamps (taken every minute, which is
the dataset’s time granularity) for connection initialization and termination;
thus, the online presence can be calculated. The clients are monitored and
are considered online as long as they remain in the network. When a client
moves to another cell i.e., serviced by another BS, a handover (HO) is as-
sumed, to capture service continuity. We ignore the communication disrup-
tion during the HO process. However, a change of cell will affect the client
throughput, which depends on the corresponding cell’s congestion (see para-
graph 3.1). The Wifidog dataset contains user-session traces from various

6That is, 0.03 (UL-DL) MBytes/sec according to [19]
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free WiFi hotspots in the city of Montreal, Quebec, Canada. Similarly to
the Shanghai dataset, each node denotes an AP, while timestamps are col-
lected for user login and logout times with a granularity of 1 sec. Clients are
considered online for a particular time period, if connected to a hotspot.

3.3. Client Data Acquisition and Distribution

Client devices acquire raw data via their sensors, cameras etc. which can
be used for training. The acquisition is shaped by the client’s acquisition
rate, the UE’s storage capacity and the data staleness level. To emulate such
a behavior, we divide our image-classification training dataset (see paragraph
3.6) into z partitions, which are assigned to the selected clients, representing
the data that the clients have generated and stored on their devices. We
define the dataset size to samples ratio 7sumpie = d/dsampie, Where dggmpie 15
the total number of dataset’s training samples and d the dataset’s size in
Bytes. Marking the per client dataset size as d;, the total dataset can be
written as: d = Y, , d;. Assuming a fixed ML model size m, the per client
data to model size ratio is defined as rgua, = d;j/m, i € [1,2]. Tgae Is a
key parameter in the ML scheme selection problem. Not only it regulates
the network’s resource consumption e.g., large chunks of data require more
bandwidth in order to be uploaded (CL) or more energy in order to be
processed (FL), but can also affect the convergence of the ML task itself.
Besides data acquisition, we also explore how this data is distributed across
clients i.e., data heterogeneity. We focus on two dimensions; variations in
size are modeled by the evenly distributed level (e.d.), while variations in
content are captured by the independent and identically distributed level
(i.i.d.). Generally, client data can experience various levels of e.d., i.i.d. or
combinations of both.

On the e.d. level: The e.d. level describes the dataset size distribu-
tion across clients. The size of each client’s dataset is modeled as a random
variable (F) that follows Zipf’s law, in line with related research [24]. To rep-
resent a random variable following Zipf’s law, we are using Zeta distribution,
which has a probability density function of p(z) = %, Oeq € (1,400). ¢
represents the Riemann Zeta function, while the Zeta distribution’s skewed
parameter o,y € (1,+00) shapes the e.d. level, moving from a uniform
data distribution (0.4 >> 0) towards higher asymmetry cases (0.4 close to
1); an additional restriction is also imposed that the minimum dataset size
equals the size of one batch hpgen (see paragraph 3.6), in order to ensure
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that training can occur at all cases. Therefore the client dataset size be-
comes d; = max{hbatch,ﬁ’(aed)},aed € (1,4+00),Vi € [1,2]. If the initial
dataset is evenly distributed among the clients (0.4 >> 1), the client dataset
size d; and dataset to ML model size ratio rg.,, are simplified to: d;=d/z,
Tdata;=d/(m - 2),Vi € [1, 2], respectively. A 0.4 value close to 1 on the other
hand marks a setting where few clients hold considerable amounts of data.
On the t.1.d. level: If a setting with independent and identically dis-
tributed (i.i.d) data is assumed, then the data samples in each client have the
same probability distribution and are mutually independent. In our image-
classification problem (see paragraph 3.6) that would essentially mean that
each user holds samples from all classes (unbiased setting). That is repre-
sented by the i.i.d. level 0;4, being equal to the total number of dataset
classes. For some real-world scenarios, non-i.i.d. (biased) settings could
occur, since each participating client might not be expected to possess a
representative subset of all classes in the total training dataset. To study
different levels of bias, we restrict the number of dataset classes a client can
hold i.e., the value of 0;;4 is smaller compared to the total number of classes.

3.4. Device Computational Capacity

User equipment: The computational capacity of a mobile device to per-
form a ML task v}L  measured in (processed) training samples,/sec depends
on the dataset content e.g., images pose different requirements than natural
language, the UE capabilities and the complexity of the ML model. We use
a reference (average) value of vML =125 training samples/sec, as the most
appropriate for our training dataset, ML model and ML hyperparameter set-
tings (see paragraph 3.6), based on approximations for popular large-scale
classification tasks |25].

Cloud server: Computational tasks for the cloud server include training
(in CL) and ML model parameter aggregation (in FL). Regarding training,
we assume that a DC is equipped with a Tensor Processing Unit (TPU),
which demonstrates an average computational capacity for training v}, =
40K training samples/sec [26]. In regards to aggregation, no reference val-
ues could be found in the literature, thus we rely on an empirical approach;
we measure the average capacity for training and aggregation tasks in our
setup (i.e., 6250 training samples/sec and 1.56 ML model aggregations/sec
respectively) and compare against the training capacity reference value of

40K training samples/sec [26]. Assuming a linear relation, the average cloud
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aggregation capacity becomes vﬁid:IO model aggregations/sec. Our as-

sumptions do not cover scale-out schemes, where clusters of servers may be
used to increase parallelism in DCs.

3.5. Device Energy Consumption

User equipment: Any consumption related to the UE’s standard op-
eration e.g., the device’s operating system functionalities or displaying, is
neglected and we focus on energy expenditure due to transmission (TX)/
reception (RX) of data and ML processing (training tasks). The energy
consumption eclwntl z' €. battery discharge of the i client’s device is com-
puted as: eient, =€ pent, +edwm +elil, . where the superscript TX, RX and
ML marks one of the aforementioned functions. In a given time period t,
this can be calculated as €cient; = Detient; * t, Where peient,,t € [1, 2] stands
for the respective (average) power consumption. Average power conbump—
tion values related to transmission are reported in [27] where plix,, =22
Watts and pffy,, —1.5 Watts, Vi € [1, 2] for LTE and p/;,,, —0.75 Watts and
Phin:, —0.25 Watts for WLAN. Likewise, for ML, based on [25], we assume
Ptk =2 Watts, Vi € [1, 2], as the most appropriate to our ML model’s hy-
perparameters and our choice of training task, being an image classification
problem (see paragraph 3.6). The sum of all device energies €en;, comprises
the total client energy expenditure e.ens-

Core network devices: Energy consumption in the core network €.,
is calculated by summing the energy consumption per core component (Fig.
1b) i.e., all routers, gateways and switches of the backbone, metro & edge
network and the cloud’s plus access network’s interfaces (BS for LTE and AP
for WLAN), which in turn is given by |20] in relation to the data exchanged
in the UL/DL direction (as average values measured in Joules/bit ).

Cloud server: The computational capacity values of cloud tasks (train-
ing and aggregation) are discussed in Sec. 3.4. Energy expenditure per task
can thus be calculated”, given an average power expenditure. For the train-
ing task (in CL), being an intensive processing task, we assume an average
power pML =384 Watts, based on Google’s TPU benchmarking [28]. For the
(less-intensive) aggregation task (FL), we assume piaS ,—15 Watts, based on

"Inference i.e., applying the trained ML model on new data also involves resources but
may come as a stand-alone task, much later than training which is far more demanding
in computations and network resources. Similarly, latency is not considered in our setup
as training time requirements typically dominate over any latency considerations.
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measurements for matrix multiplication tasks [29], which are similar in com-
plexity to weighted averaging (aggregation). The cloud energy consumption
eaoud then becomes:

(2)

ML ML
Coloud = Peioud d/(ucloud ' 7nsample), for CL
cloud = AG AG
Peioud Z/(vcloud)7 for FL

3.6. Machine Learning Task

A representative ML task, namely image-classification is chosen. Specifi-
cally, the Street View House Numbers (SVHN) dataset is selected, which is
widely used in prior works e.g., [30],[31]. It is based on a set of real-world im-
ages, with digits taken from natural scene images (house numbers in Google
Street View). It contains 531,131 32x32 colour training images (of 1.3 GB
size) split in 10 classes (for digits 0-9) and 26,032 test images (of 63 Mb size).
The split between training and test data is made by the providers.

To perform image-classification on SVHN, an artificial neural network
was developed, employed in both CL and FL case. For the FL case, the
Federated Averaging (FedAvg [5]) algorithm is used, as the default in our
implementation’s software (PySyft framework [32]). Note that in PySyft
a uniform ML model averaging is performed (all ML models are equally
weighted during aggregation), as opposed to the original FedAvg algorithm,
where a weighted averaging is assumed by the number of each client’s train-
ing samples. Our (linear) neural network is comprised of an input layer of
3072 neurons, which correspond to the total pixels of the input images of
SVHN (32x32x3), an output layer of 10 neurons, equal to the total output
classes of SVHN and an intermediate (hidden) layer of 512 neurons. Rectified
Linear Unit (ReLU) activation is applied on the hidden linear layer (ReLU
functions as a filter, allowing only positive values to pass through), while
on the output layer LogSoftmax activation [33] is selected, being more effec-
tive for N-element classification tasks. To calculate training loss (loss layer),
the negative log-likelihood loss function is preferred [33], since it couples to-
gether with LogSoftmax for classification tasks. The total size of the ML
model reaches 6.1 MB. Larger (up to hundreds of MBs) and more complex
ML models could be employed, like multi-layer convolutional neural networks
e.g., MobileNet, ResNet, DenseNet ete. [33], being specialized for providing
accurate predictions for image-classification tasks. This, however, would not
be in line with practical UE limitations e.g., disk capacity, processing power,
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memory, battery etc. and most likely would not favor the user willingness to
participate in the training process; thus, would limit our system’s realism.

Hyperparameter Tuning: Setting the ML model’s hyperparameters,
i.e., the control variables of the ML process e.g., number of epochs, batch
size, learning rate etc. is a standard procedure, prior to the ML training task.
Hyperparameters define the training process, but are not part of the resulting
ML model. They rather dictate how the ML model’s parameters (which we
refer to as the resulting ML model) will be trained. Tuning is achieved by
performing a series of training tasks (test-runs), using different combinations
of hyperparameter values. The combination that yields the most accurate
ML model is then used for the actual training task. Without tuning, the
ML task’s resulting accuracy can rapidly degrade, even fail to converge, as
shown for FL in our previous CL-FL comparison [10]. Contrary to the vast
majority of studies that explore hyperparameters solely on the basis of the re-
sulting ML model’s performance (e.g., convergence speed, resulting accuracy
etc. ), we also factor in the effect that their choice imposes on the underlying
network’s energy consumption, which is affected by processing.

For that purpose, our investigation starts from specifying the total num-
ber of epochs hepocns, which controls the number of times the learning algo-
rithm will work through the entire training dataset. As such, it does not only
affect the achievable performance of the ML model, but is also related to the
processing time and therefore consumed energy (for the clients in case of FL
and for the cloud server in case of CL). Upon securing the value of hepochs, we
also investigate the effect of two other fundamental hyperparameters, namely
the batch size (hpaten) and the learning rate (hyate). Rpaten defines the number
of training samples that are used in one iteration (forward/backward pass),
while A, refers to the step size at each iteration, essentially controlling how
much the ML model changes, each time the model’s weights are updated. The
selection of these hyperparameters primarily affects the achievable accuracy
of the ML model and to a lesser extent the processing time.

3.7. Emulation Environment Process

The following steps describe how the above-mentioned modelling com-
ponents, together with client selection and server-client communication are
incorporated in our emulation environment, both for the CL and FL case.

Initially, the cloud server generates a (non pre-trained) ML model, which
seeks to train by utilizing available client data. The server acts as a controller
during the training process. Also, the SVHN dataset (see paragraph 3.6) is
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split into z partitions (see paragraph 3.3). We then run a series of commu-
nication rounds, until all partitions are used or a predefined time deadline
(tena) is reached. The time deadline is selected, based on the respective time
granularity of each mobility dataset. In each communication round:

Step 1: The server identifies all online clients (¢) determined by the
corresponding mobility dataset (capturing the mobility dynamics).

Step 2: A total of £ < z clients are randomly selected, as a subset of
q, each of which is assigned a partition (see paragraph 3.3). If there are not
enough online clients present to satisfy our selected per round participating
client number (¢ < k), all the currently online clients are used. If no clients
are found at all (¢ = 0), the round is terminated and a waiting period is
introduced, equal to the mobility dataset’s time granularity; that is 60 sec for
the Shanghai Telecom and 1 sec for the Wifidog dataset (see paragraph 3.2).

Step 3: The ML scheme is initiated: In case of CL, the selected clients
upload their (raw) local datasets to the cloud server. The time (¢;) required
for each client’s dataset (d;,i € [1,z]) upload is equal to the time of the
access network upload plus the time of the core network upload, therefore
can be written as (see paragraph 3.1): t; = d;/s{f,, + > (di/styr.,), for j
core components. A parallel communication protocol is assumed, thus the
total time to upload all datasets (tupioaa) equals to that of the "slowest"
client: typioaa = maz{t;}. Upon collection, the server merges all round’s data
into a super-dataset, which is then randomly shuffled to mitigate the effects
of variance [34]. With the collected super-dataset the server trains the ML
model. Training time is calculated using the cloud server’s computational
capacity model (see paragraph 3.4). The completion of the ML training
marks the end of the round.

For the FL case, the cloud server firstly shares the training models (of
size m) to the selected clients (k). Afterwards, each client trains the model,
utilizing its assigned dataset and uploads the updated model back to the
server. When all models are uploaded back to the cloud server (again in a
parallel manner, similar to the CL case), the server performs model aggrega-
tion (averaging). The time needed for the federated training and the server’s
aggregation task is calculated from the UE’s and cloud servers computational
capacity model respectively (see paragraph 3.4).

Step 4: A communication failure is defined when a client goes offline,
while performing a task (training or data exchange), irrespective of the task’s
completion percentage. Such a failure is checked by parsing the correspond-
ing mobility dataset. In case of failure, the client’s contribution is neglected
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by the cloud server (training for CL /aggregation for FL). However, to account
for the time/resources spent for the partial communication, we consider a de-
lay time equal to the estimated task’s time, along with the respective resource
consumption, assuming the worst-case scenario i.e., that the connection is
lost, when the task was almost completed.

4. Experimental Evaluation

4.1. Simulation setup and evaluation metrics

The simulation environment was set-up in a single desktop machine with
the following characteristics: Intel Core i7-10700 (2.9 GHz), 64-bit, 16 GB
RAM, Winl10. To emulate the distributed learning environment the PySyft
library [32] was used. The DML environment? is wrapped using a custom
Python-based discrete event simulator, which emulates the underlying net-
work i.e., the mobile clients, the core network and the cloud server, as il-
lustrated in Fig. 1b. The network simulator software realizes the network
throughput, client mobility, data distribution, computational capacity and
encrgy consumption models, as presented in Sec. 3. Its clock is synced to
the mobility dataset’s timeframe, which is used as global (time) reference.
A deadline of t.,q = 24hrs is chosen across all experiments which are set
to terminate when all SVHN partitions are used or t.,q4 is reached. We re-
port that in 95% of the cases, termination occurred due to dataset depletion,
while the average termination (simulation) time was 4 hrs, throughout all
our experiments. Unlike the majority of works in literature that evaluate
the performance of CL ws. FL with regards to their accuracy, we employ a
broad set of carefully-selected metrics to capture all previously-overlooked
dimensions.

Test Accuracy: The effectiveness of the trained ML model is evaluated
on the SVHN test data (see paragraph 3.6). The percentage of successful
to total classifications provides the test accuracy metric, with an ideal value
of 100%. Both in CL and in FL, we assume that the cloud server has the
ability (and the capacity, given the ML model’s negligible size) to save each
round’s ML model, so that the most accurate MLL model can be extracted
in the end of the experiment. Keeping track of each round’s output is a
standard technique in ML training [35], to avoid over-training and therefore
parameter over-fitting, which results in less accurate ML models. Thus, the
term Test Accuracy refers to the maximum accuracy achieved during the
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Figure 2: ML hyperparameter tuning: Number of epochs

(CL/FL) experiment and not necessarily the accuracy of the chronologically
latest ML model.

Traffic Overhead: 1t is defined as the total amount of data exchanged
between the cloud server and the clients for the duration of the ML process,
multiplied by the total number of hops the data traverses, after leaving its
origin node i.e., hops = (total network nodes) — 1. In case of CL, the
exchanged data refers to the raw data uploaded by the clients, while in FL
it refers to the ML model’s parameters uploaded by the clients, plus the
ones distributed back to clients by the cloud server (Fig.la). For the sake
of clarity, traffic overhead is normalized to the total dataset size i.e., 1.3
GB. Traffic overhead reflects the total bandwidth consumed during the ML
process, accounting for both successful and unsuccessful communications.
On the contrary, the total overhead generated by communication failures
(see paragraph 3.7), is referred to as Traffic Loss.

Energy Consumption: It captures the energy expenditure in all in-
volved devices, during the ML process (paragraph 3.5), regardless the suc-
cess/failure of transmission. Specifically, for the clients, we consider the
total energy of all devices involved (due to ML processing and transmis-
sion/reception). For the core network it is only limited to expenditure due
to data exchange. Lastly, for the cloud server, we only account for consump-
tion due to processing (either model aggregation in FL or ML training in
CL). Similarly to the definition of Traffic Loss, we also define the Energy
Loss, as the total energy consumed (e.g., by a client’s device for training a
model in FL), but the result was not utilized due to a subsequent client-server
communication failure.
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Figure 3: ML hyperparameter tuning: Batch size and Learning Rate

4.2. CL vs. FL: Energy-aware hyperparameter exploration

The exploration of the ML hyperparameter values (tuning) is performed
prior to the actual ML tasks (experiments), as discussed in paragraph 3.6.
Starting from the number of epochs hpoens We consider the following values:
{1,5,10,25,50,100,200}, which are commonly used in bibliography for image-
classification tasks and SVHN specifically [31]. Our test-runs suggest that
our ML model achieves a maximum accuracy of 85%, if hepocns € [25,100]
both for CL and FL (see Fig. 2a). When looking to the underlying energy
consumption in the clients side, one observes that an increase on hepochs
causes a linear increase in energy consumption, with angles of incline equal
to 0.46 and 0.78 rad for CL and FL, respectively (see Fig. 2b). To account
for both accuracy and the consumed energy, a value of hepoens =25 is selected.

Moving to the batch size hyu, and learning rate h,.., we perform an
exhaustive search over the following values: {64,128,500,1000} for Ayue, and
{0.0001,0.0005,0.001,0.005,0.01,0.05,0.1} for A, based on [31], [30]. In the
CL case (see Fig. 3a), the maximum accuracy is achieved for a combination
of hpaten > 128, hyate > 0.05 and for the FL case (see Fig. 3b) hpaten, <
128, hyare > 0.05. For a fair comparison of the two ML schemes (CL, FL),
we assume a common set of values of hputer, = 128, hyate = 0.1. The selected
hyperparameter values are kept fixed throughout our experiments.

4.8. CL vs. FL: The effect of client data to model size ratio 4.,

In this section, we investigate the way the per client data to model ra-
ti0 7gure Shapes the performance of the ML schemes under evaluation. Es-
sentially, 7444, indicates the amount of data a client holds (in relation to
the fixed ML model size m). For this set of experiments, we assume data
is symmetric across all clients (i.e., i.i.d. and e.d. setting) and vary the
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number of dataset partitions i.e., total clients z = {15, 30, 60, 90, 120, 150,
190, 230, 260, 300, 330, 360, 400}. Therefore the data to model ratio becomes
Tdata;=d/(m - 2),Vi € [1, 2] (see paragraph 3.3). We also, for now, assume a
constant value for the per round participants £k=5. Keeping in mind that the
total dataset (SVHN) size d is fixed to 1.3 GB (see paragraph 3.6), larger
values of 744, represent setups, where fewer clients with larger dataset par-
titions (z) participate in total, in the ML scheme. Vice versa, smaller 7444
values represent a situation, where more clients with fewer data participate in
total. Nevertheless, the aggregated (total) training data (SVHN) in each ex-
periment remains the same, ensuring a fair comparison for all training tasks.
Each of the 13 experiments (representing different r4,, or equivalently z val-
ues) runs with both LTE and WLAN settings, for 10 different sample time
periods taken randomly from the respective mobility dataset, yielding a to-
tal of 260 pairs of CL-FL experiments. All measurements of this section are
taken at the end of each experiment and mean values out of the 10 samples
are depicted together with the corresponding 95% confidence intervals.®

Impact of r4ua o1 the achievable testing accuracy: Both CL and
FL manage to converge, achieving an average testing accuracy level of 85%,
in both the LTE and the WLAN case (see Fig. 4a), for all values of rg., €
[0.5,15] (or z € [14,426] - for the sake of clarity we use a dual-valued x-axis
i.e., showing the datasets partitions z on the top and the rg4,, parameter at
the bottom). The reported accuracy value equals to the maximum accuracy
achieved during the ML hyperparameter tuning process (see Fig. 3). Our
results match previous findings, where hyperparameter tuning and increas-
ing the number of epochs has been identified as a promising technique to
enhance the convergence of FL’s default algorithm i.e., FedAvg [7]. It is now
demonstrated that determining the ML hyperparameters prior to training,
enables FL to converge for all values of 744, € [0.5,15], achieving in fact the
same accuracy as CL.

Impact of ryu:a on the bandwidth consumption: The impact of 744,
on the ML schemes’ network resource utilization (reflected by the normal-
ized traffic overhead) is depicted in Fig. 4b. We observe that for low ratios
(Tdgata<2), FL is bandwidth-demanding, consuming exponentially more data

8For the sake of clarity in the Appendix A, we present indicative performance results
employing a larger model (CNN). Even with that size i.e., tens of MBs, its achievable
applicability over hand-held devices is questionable, thus we maintain our focus on the
originally considered, light-weight one.
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in comparison to CL. This stems from the fact that more clients participate
in the training process, therefore more ML models are uploaded /downloaded
to/from the server. In contrast, for large ratios (7., >3), where the total
number of clients decreases, FL. naturally becomes more bandwidth efficient.
In fact FL demonstrates an exponential decrease of (exchanged) data com-
pared to CL. This holds for both studied network settings, namely in LTE
and WLAN. Note that this behavior is not related to the number of training
rounds, since in our simulation training stops upon dataset depletion. In-
terestingly, a relative-equilibrium area exists (2<7gq,<3), where CL and FL
share similar network resource utilization profiles.

An increased 7444, i.€., a setup where few clients hold more data, would
also benefit FL in terms of traffic loss, which basically represents unnecessary
bandwidth usage from communication failures due to client mobility. Note
that our setup does not focus on fairness or resilience aspects e.g., replacing
a failed node or investigation of asynchronous schemes [36]; it rather studies
the effect of mobility on the default CL/FL setup, where failed nodes are
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excluded from the training/aggregation phases, respectively. As a result,
performing FL with 74, >> 3 results in a traffic loss reduction up to 67%
for LTE (see Fig. 5a) and up to 41% for WLAN (see Fig. 5b), as opposed to
FL with r4., < 2. This reduction relates to the fact that in FL the client only
exchanges ML models (of fixed size m) with the cloud server, regardless the
actual amount of (raw) data he holds. Thus, a lower number of participating
clients (for 744, >> 3) results in a lower number of exchanged ML models
(i.e., exchanged MBytes) and therefore decreased data loss. In FL (unlike
CL) the traffic overhead and traffic loss accordingly is not dictated by the size
of each client dataset, but by the number of the total participants. Another
point to mention is that FL. on a WLAN channel exhibits on average 40%
more data loss compared to FL with LTE; at the same time, data loss in
WLAN has larger confidence intervals compared to LTE. These observations
reflect the average time a client is likely to remain (connected) in a service
area; for WLAN that is by nature limited and erratic, as opposed to LTE,
where users can potentially be always-on.

Contrary to the FL case, traffic loss is close to zero in CL, unless rgqzq >
10, where it reaches a maximum of 10%. In CL, no local processing (which is
a time-consuming task in a resource-limited UE device) is required from the
mobile clients; therefore delays may only occur due to transmission, which in
turn minimizes the probability of a device drop. On a more general remark
for both ML schemes in LTE and WLAN, the traffic loss reaches a maximum
of 16% of the total traffic overhead; this low percentage of losses is also
reflected in the consistently almost-negligible confidence interval size of all
graphs in Fig. 4b. Thus, the overall bandwidth expenditure (traffic overhead)
appears (under the considered conditions) significantly more sensitive to the
portion of data (7r4..) each user holds, rather than his own mobility.

Impact of r4,, on the energy consumption:

Investigating the overall energy expenditure from the client’s perspective,
as analyzed in paragraph 3.5, our experimentation suggests that CL outper-
forms FL for all values of r4,. Specifically, if FL is employed the clients
collectively consume 300 times more energy in the LTE case (that is 350 for
WIFI), as opposed to CL (Fig. 6a). The CL energy-efficiency (compared
to FL) in the clients stems from the fact that it is the processing (i.e., on-
device ML training in FL) rather than data transmission which constitutes
the prime factor for a UE’s energy expenditure and thus its battery deple-
tion. In fact, the total energy consumption in FL due to processing (proc) is
100 times higher (Fig. 7a) compared to the total energy consumption due to
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transmission-reception (trx) in the LTE case (that is 280 times in WLAN -
Fig. 7b). Since CL does not require local processing in the clients side, any
minor gains in energy consumption due to transmission in FL (FL-trx) for
larger 74414 values (Fig. 7) do not affect the overall ML schemes expenditure
comparison. These minor gains stem from the fact that less ML models are
exchanged in FL for higher 744, values.

A secondary point to note is that the average per client energy expen-
diture (i.e., the total energy expenditure divided by the number of clients)
increases linearly as 7444, increases (Fig. 6b - note the logarithmic scale
in y-axis). For our configuration, the mean client consumption varies in
the interval [0.64,20.7]KJ for LTE and [0.81,28.8] K.J for WLAN. The fact
that client consumption in WIFT is consistently increased compared to LTE
stems from WLAN’s lower data rates (see paragraph 3.1), combined with its
higher energy transmission costs (see paragraph 3.5). Assuming a modern
smartphone’s typical battery [37] with 2400 mAh/3.8 V| resulting in 32.8 K.J
battery capacity, we deduce that in the worst-case scenario of our configu-
ration (rgee =~ 14), 63% of each UE’s battery energy is depleted in the LTE
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case (that is 88% for WLAN).

The results so far suggest that for rg.:, > 4, FL is on average 24% more
energy efficient in an LTE setting, as opposed to WLAN (Fig. 6). However,
LTE’s energy-efficiency does not appear in the CL case, although transmis-
sions of large size datasets (instead of ML models) occur. As portrayed in
Fig. 8, LTE’s energy-efficiency is related to processing and specific to energy
loss (see paragraph 4.1) i.e., energy consumed for local processing, but fol-
lowed by a communication failure. Since more communication failures occur
in a WLAN setting compared to LTE, as discussed carlier in paragraph 4.3,
the amount of Energy Loss (and thus total energy expenditure) is higher.
In fact, energy loss is largely affected by 7444; larger r4., values represent
larger per client dataset sizes implying higher energy consumption to perform
training over these datasets. Thus, a potential communication failure of a
client with a large rg., essentially means larger energy loss compared to a
client with smaller r44,. In FL, energy loss amounts to less than 16% of the
total expenditure for rg., <2, while reaches 30% for rgq:, >10 in the LTE
case (Fig. 8a). The respective WLAN values are 18% and 53% (Fig. 8b).

Unlike the client energy expenditure, both the core network’s and the
cloud’s energy consumption exhibit an exponential reduction as 744, in-
creases (Fig. 9). For the core network, this reduction is only seen in the LTE
case; the difference between the LTE-WLAN is mainly shaped by the energy
expenditure in the network elements between the access and the metro & edge
network, namely the BS and the AP respectively (see paragraph 3.1). Inter-
estingly for the LTE case, a value exists for rg,, &~ 7, where an equilibrium
occurs between FL and CL (Fig. 9a). In any case, core expenditure in LTE is
at least two orders of magnitude greater compared to WLAN, regardless the
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Figure 10: End-to-end energy consumption for all network stakeholders

ML scheme. As expected, the cloud’s consumption is reduced, when the ML
task is offloaded to the clients (Fig. 9b); that reduction varies between 95%
and 99%, as rgq, increases from 0.5 up to 15 and relates to the total clients
i.e., the total (produced) ML models aggregated in the cloud. The over-
all (system-wise) energy footprint for cach ML scheme in the LTE and the
WLAN case is depicted in Fig.10. Overall, CL demonstrates a higher energy
efficiency compared to FL, both in LTE (Fig.10a) and in WLAN (Fig.10b).
For 74,4 = 1, CL outperforms FL by 83% in the LTE case and 82% in WIFI.
As rgata — 15 these values are increased to 86% and 90% respectively. CL’s
energy efficiency is mainly dictated by the lack of processing (as opposed to
FL) in clients’ devices.

Discussion on the effect of ry.,: The overall performance of CL and
FL as 144, increases is summarized in Table 3. A setting with reduced 744t4
values (Tgqq — 0) i.e., with many clients holding few data, greatly favors CL
over FL. When 7444, increases (7gquq — 00), several benefits emerge for FL.
FL becomes bandwidth-efficient, outperforming CL. As a result, the clients
(end-users) minimize their data consumption, which can be costly especially

25



Table 3: Effect of 7444, on CL/FL performance

Metric w.r.t. Tgara CL FL Winner (Tgqte — 0) | Winner (rgq1q — 00)
Achieved accuracy Constant | Constant (via tuning) None None

Bandwidth consumption Constant | Exponential decrease CL FL

Traffic loss Constant | Linear decrease CL None

Total client energy consumption | Constant | Linear increase CL CL

Per client energy consumption Constant | Linear increase CL CL

Energy loss Constant | Linear increase CL CL

Core energy consumption Constant | Exponential decrease CL FL

Cloud energy consumption Constant | Exponential decrease FL FL

in the LTE environment, given the limitations in the users’ monthly data
allowance. Furthermore, the network infrastructure is benefited, since band-
width reservation and congestion are reduced. An increased 4,4, also benefits
both the network and the cloud infrastructure energy-wise. However, energy
costs are distributed to the client devices, which can lead to client dropping,
due to battery unavailability in a resource (battery)-constrained environment
e.g., in smartphones or [oT devices. Regardless, in presence of clients holding
different volumes of data (744, varying across clients), elaborate client selec-
tion schemes can be employed to jointly optimize resource consumption for all
network stakeholders (clients, network infrastructure, cloud infrastructure);
that is subject to future exploration.

4.4. CL vs. FL: Convergence speed

In this section, we will analyse how ML schemes evolve across time. We
make use of the samples (experiments) described in paragraph 4.3, zooming
on the time dimension per experiment, instead of the final resulted values; for
example Testing Accuracy refers to the achieved accuracy per time instance.
Capitalizing on the results from the aforementioned paragraph, we limit our
investigation to two values for r44.,, namely 1.8 and 7, representing a setting
with more clients which hold few data and a setting with few clients holding
considerably more data, respectively.

As depicted in Fig. 11a, CL reaches its maximum accuracy levels in the
very first rounds (before 1K secs), utilizing the full dataset (Fig. 11b). At
that time it outperforms FL in terms of accuracy by an average of 22%. CL’s
faster convergence however, comes at a cost. In CL, data exchange is per-
formed in a bursty manner, which results in a consumption of 100% of CL’s
required bandwidth before 1K secs. At the same time, the cloud’s energy is
consumed early compared to FL (42 KJ in less than 1000 secs), due to ML
processing in the cloud server (Fig. 12b). FL, on the other hand, proceeds
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Figure 12: Evolution of energy consumption across simulation time

gradually (linear evolution) towards its completion (at 13K secs benchmark
for 7441 =1.8 and 15K for 74,4, =7) and so does the network’s data expen-
diture (Fig. 11b) as well as the client energy consumption (Fig. 12a). Since
FL’s accuracy reaches its peak before the end of the experiments (Fig. 11a),
any bandwidth or energy spent after the above-mentioned benchmarks has
no obvious benefit. It is also observed that an increased 7444, does not affect
CL’s behavior; in FL however, the ML task is performed in a total of less
client devices, therefore parallelism is decreased. As a result, the ML con-
vergence, as well as the respective resource consumption footprint expands
across time.

Overall, unless bandwidth limitations are posed in the system, CL is the
preferable choice over FL, to accelerate the training process. As a result, CL
could be utilized in ML applications whose data varies in time e.g., time-series
forecasting, to constantly produce up-to-date global ML models. Also, since
CL has faster completion times, network resources are occupied for less time,
leaving room for other applications and potentially avoid bottlenecks. FL,

27



100

3 025000 ——C
< g0 8 —— FL
2 © 20000
[ £
< 60 E
3 o % 15000
b [
< a0 2
Y = 10000
£ -3
= —
% 20 c E s000
K —— FL S
° 10 20 30 40 50 o 10 20 30 a0 50
Per round participants (k) Per round participants (k)
(a) Resulted accuracy w.r.t. per round partici- (b) Task completion time w.r.t. per round par-
pants ticipants

Figure 13: Impact of increasing the number of participating clients per round

on the other hand could be employed for a more balanced transition towards
the maximum achievable ML, accuracy, when network resource economy is
of greater importance compared to time e.g., in data analytics. On top, FL
could be further optimized via a mechanism that monitors the FL’s accuracy
improvement, avoiding the resource waste that occurs, when convergence
is reached. Finally, a smart dynamic setting, similar to Hybrid learning [3]
could be utilized, to adapt between CL-FL, according to the ML application’s
requirements and the system’s available resources.

4.5. CL vs. FL: Varying the number of participating clients

We now fix the number of clients/partitions to z = 100, or 744, ~ 2,
an area where CL and FL demonstrate a similar bandwidth consumption
profile; morcover, FL exhibits certain gains in terms of the client energy
consumption (see paragraph 4.3). Our goal is to investigate how each ML
scheme’s accuracy is affected, when the number of participating clients per
round k varies. Essentially, a small value of k represents a setting where
few clients are selected in each round e.g., due to low availability or client
scarcity, therefore more communication rounds are required to complete the
ML task. Vice versa, an increased k suggests a client-rich setting, where
more clients participate in each round. We vary k from 5 clients per round
(which was our initial setting) up to 50, with a step of 5. Each experiment is
repeated for 10 different time periods/samples, taken from the LTE mobility
dataset, resulting in a total of 100 pairs of CL-FL experiments.

The results suggest that scaling the participants has practically no ef-
fect on CL’s accuracy (Fig. 13a) nor on its completion time (Fig. 13b).
FL’s accuracy on the other hand is reduced up to 4%, when k increases.
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This result is in line with [5], [11], where it is shown that increasing paral-
lelism (i.e., allowing for more per round participants and decreasing the total
rounds) degrades the overall accuracy, due to the smaller number of aggrega-
tion (FedAvg) steps. In fact, it is suggested that an optimal £ value exists in
FL’s client selection process, depending on the total number of online clients,
the selected ML hyperparameters and the nature of the ML task. For image
classification tasks like SVHN with a batch size of 128, the ratio of k/z needs
to be close to 0.1.

Interestingly, FL enjoys a nearly-exponential reduction in completion
time, as k (linearly) increases i.e., an increase of k from 5 to 50 reduces
the completion time by 83% (Fig. 13b). The relatively small number of
extra participating clients 4.e., no more than 50, should be easy to realise
in a real-world system of hundreds of users e.g., mobile devices in an urban
cellular network. If & — 50, the (completion) time gap between CL and FL
is drastically decreased; at the same time FL is getting somewhat restricted,
due to the reduction of the resulted accuracy. Such a trade-off is not present
in the case of CL, whereby scaling the number of clients has no actual im-
pact. A noteworthy closing remark involves the impact of scaling on the
network resources consumption. The relevant quantities (see paragraph 4.3)
increase analogously without any irregularities and therefore, we omit the
corresponding plots.

4.6. CL vs. FL: Effect of data heterogeneity

Thus far the SVHN dataset was assumed to be evenly distributed (in size)
across the clients (e.d.) and that each client’s subdataset is representative
compared to SVHN (i.i.d.). We now investigate the ML schemes’ response
(in terms of achieved accuracy), when the above-mentioned assumptions are
relaxed (see paragraph 3.3). For the non-e.d. setting, we assume four cases
for the Zipf parameter o4 € {1.7,2,2.3,1000}, representing various degrees
of data distribution skewness; as 0.4 — 1, the skewness degree becomes
severe. Similarly for the non-i.i.d. setting, we select four cases for the i.i.d.
parameter o,y € {3,5,7,10}, which represent the total number of classes
contained in a client’s subdataset. SVHN contains samples from all 10 classes,
thus a 0,4 = 10 is essentially an i.i.d. setting, while smaller o;;; values mark
increasing non-i.i.d. conditions. We also assume a total number of clients
z = 100 and fix the per round participants £k = 10, as suggested by the
results of paragraph 4.5. For comparison purposes, we include two extra
centralized ML schemes besides CL i.e., Standard Machine Learning (SL)
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Figure 14: Effect of client data size (e.d.) and content (i.i.d.) variations

and CL without (w/o) shuffling and one additional federated i.e., Federated
Learning with weighted averaging (FLw). For SL, the server waits for the
majority (at least 80%) of SVHN data to arrive and then performs training.
CL without shuffling is identical to CL, however no data shuffling occurs
prior to training. FLw uses a weighted averaging scheme during aggregation,
as opposed to FL’s uniform aggregation (see Sec. 3.6). Each experiment is
repeated 10 times, using LTE traces, resulting in a total of 160 sextuples of
{SL, CL w/o shuflling, CL, FL, FLw} experiments.

From all centralized ML schemes (SL, CL and CL w/o shuffling), SL
exhibits the highest performance, reaching an accuracy of 85% (Fig. 14).
SL’s performance is not affected by the various degrees of non-edness or
non-iidness, essentially reflecting the advantages of centralized ML under
heterogeneous environments [7]. In SL, the cloud server waits for almost all
subdatasets to arrive, before merging them into a super-dataset and initiating
the ML training. Therefore, any stochasticity introduced in the (distributed)
client subdatasets, either in size or content, is eliminated when the merging
occurs. As discussed in paragraph 3, SL is impractical in a real system, so it
is merely used for comparison purposes.

CL w/o shuffling can be regarded as a dynamic alternative to SL, since
training is performed in cach communication round, using the collected round’s

30



client data. Under an i.i.d. setting (Fig. 14a), CL w/o shuffling achieves sim-
ilar performance to SL, which is not affected by the data size distribution
(non-edness). When non-iidness appears and as it increases (Fig. 14b-Fig.
14d), CL w/o shuffling exhibits lower accuracy levels (down to 56%). The
introduction of non-edness further diminishes its performance, which drops
down to 44% for severe non-i.i.d. and non-e.d. conditions (Fig. 14d). This
degradation is related to the distributed manner of client data and the fact
that ML training is performed in each round. Under high data heterogeneity,
consecutive series of non-representative data samples can be uploaded in the
cloud server e.g., several batches containing only one SVHN class out of ten.
Such bias is likely to have a detrimental effect on the ML training task. More-
over, given that each round’s ML model is used for the next round training,
any abnormalities will be cascaded, resulting in less accurate ML models.
To mitigate those negative effects, we apply and experimentally evaluate a
popular technique prior to ML training i.e., shuffling [34]. CL with shuffling
is referred to as CL, for simplicity. As portrayed in Fig. 14, CL achieves the
same or higher accuracy levels compared to CL w/o shuffling. In fact, SL
only outclasses CL by a maximum of 2% for mild (Fig. 14a-14b) and 7% for
major (Fig. 14c-14d) data heterogeneity respectively.

FL on the other hand, being a distributed learning scheme is affected
both from non-iidness and non-edness; even the introduction of small levels
of non-iidness can lead to accuracy drops down to 53% (Fig. 14b). When
in fact non-iidness is combined with non-edness, the training task cannot
converge (Fig. 14d), therefore accuracy drops below 40%. Such performance
is related to FL’s training algorithm (uniform FedAvg). As such, a ML model
trained with high diversity data will be equally weighted with another model
(from another client) trained with low diversity (biased) data. FLw (FedAvg
with weighted averaging) introduces a simple bias mitigation technique by
rewarding ML models trained with larger datasets with larger weights. When
non-iidness is low, this technique enables FLw to achieve an up to 11% better
accuracy compared to FL for various levels of non-edness (Fig. 14a-14b).
However, under the presence of higher levels of non-iidness (Fig. 14c-14d)
FL achieves similar or (up to 8%) better accuracy compared to FLw. This
is because weighted averaging (FLw) rewards ML models according to their
training data quantity (larger datasets have larger weights) and not quality
i.e., data diversity, entropy, number of classes in the dataset etc. As such,
not only FLw is prone to non-iidness (similarly to FL), but can potentially
demonstrate erratic behavior [38]|. Overall, it becomes evident that applying
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FL over highly heterogeneous data environments requires advanced statistical
methods that deserve a dedicated exploration.

5. Conclusions

We have identified the need for deeper understanding of the underly-
ing network resources’ relevance with the ML-schemes running on-top; in
response, we have contributed an end-to-end systematic analysis. A novel
measurement-based, pragmatic model has been introduced to account for
the end-to-end network resources and energy consumption involved when
CL and FL compete on image-classification tasks. User mobility patterns
are incorporated into the model via real-world traces to capture the environ-
ment’s dynamicity while different channels (LTE and WLAN) facilitate the
involved communications. The main results of our experimentation with the
SVHN dataset, using simulation code that we release, are summarized in the
following points:

e Hyperparameter tuning prior to ML training and specifically, configuring
the number of training epochs is needed to ensure FL convergence, espe-
cially when clients local datasets are less than 2 times the ML model’s size.
Incrementing the number of local FL epochs yields comparable accuracy
to CL, (lincarly) increasing the client energy consumption.

e When clients hold large datasets compared to the ML model, several
benefits emerge for the infrastructure, if FL is used; 1) bandwidth expen-
diture is exponentially decreased and so do the cloud energy needs, as
well as the core network’s energy expenditure (only in LTE), 2) data loss
due to mobility reduces for at least 40%.

e FL clients’ energy consumption is dominated by ML processing which
appears multiple times more energy-hungry than transmission, regardless
the communication channel (LTE/WLAN). Large local datasets (more
than 10 times the size of the ML model) deplete at least 63% of an
average UE’s battery, potentially discouraging client participation in FL.

e CL, which demonstrates a 13 times greater convergence speed compared
to FL, emerges as a candidate to minimize the allocation time of system
devices by ML tasks. This comes at the expense of energy (in the cloud)
and bandwidth consumption spikes. FL, on the other hand achieves sim-
ilar accuracy in a more progressive and bandwidth-efficient manner.

e Confirming previous studies, a speed-up in FL’s convergence time is ob-
served when more clients are involved in the training process (per round)
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at the expense of a slight downgrade on the resulted accuracy.

e F'L exhibits a large accuracy degradation under data asymmetry (in size
or content); for CL, however, this can be mitigated, if shuffling techniques
are introduced prior to the centralized ML training.

Our work also reveals some interesting future research directions that
can be explored using our released simulation software; the role of training
data-to-model ratio deserves an exhaustive study over more complex mod-
els both in terms of size and neural-network architecture. Data acquisition
rate and client storage constraints could increase the level of realism, if con-
sidered. Bias (non-iidness) mitigation algorithms for FL constitute another
research direction. Finally, putting more dynamic ML schemes, such as Hy-
brid Learning under the microscope could provide further insights for those
parameters shaping the ML scheme selection in resource-constrained network
environments.

Appendix A. Impact of r4414: From ANN to CNN model
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Figure A.15: Testing accuracy and normalized traffic overhead w.r.t. data to model ratio
for CNN model

In this section we run a number of of experiments as described in the
setup of Sec. 4.3, using a more complex ML model and specifically a custom
(untrained) Convolutional Neural Network (CNN). The model comprises of
two convolutional layers of sizes (3,32,5) and (32,256,5), followed by three
dense layers of sizes (6400,1024), (1024,128) and (128,10), reaching a total
size of 27 Mbytes. Note that our initial model had a size of 6 Mbytes. Our aim
is essentially to explore the performance of a larger model and verify that the
relevant behavior resembles the trends observed in our main experimentation.
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As depicted in Fig. A.15a the CNN model achieves an average of 93%
accuracy for FL and 94% for CL. That is an improvement of 8% and 9%
respectively over the original linear (ANN) model. At the same time, traffic
overhead is increased for FL (up to 4.5 times more compared to our initial
setup). As expected, bandwidth consumption for FL follows an exponential
decrease, similar (but shifted to different r4,, values) to what was observed
for the original model (Fig. A.15b). Such behavior provides further evidence
for the validity of our prior results.

On a final, more practical note, the above performance figures require
considerable resources to be achieved (translated into over 300% more time to
perform a single training epoch compared to the original model). This implies
that any deployment of an FL solution (over hand-held devices of limited
resources) would call-for the usage of small-sized models at the expense of
slightly reduced accuracy.
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