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Abstract—The advent of 5G and beyond systems is expected
to shape the automotive vertical, as safety-critical vehicular
applications rely on the network to meet their stringent Quality
of Service (QoS) requirements. Predictive QoS (pQoS) has been
proposed as a mechanism that allows automotive applications to
proactively adapt in view of forthcoming QoS changes. Although
pQoS is typically facilitated via classical (centralized) Machine
Learning (ML) methods, the demand for data privacy has led
to the emergence of distributed ML schemes. Efficient training
of ML models however requires large volumes of (kinematic-
state and connectivity) QoS data, so as to capture the involved
spatio-temporal effects.

To that end we hereby present and publicly share NordicDat, a
QoS dataset collected during a two-week measurement campaign,
driving across three European countries. NordicDat contains
over 90K samples of physical layer, network and mobility-related
features. Contrary to prior works, it includes multiple instances
of cross-boarder roaming, diverse vehicle speed profiles and
radio access technologies (generations). Further, we provide a
thorough NordicDat data analysis, highlighting the dependencies
between the NordicDat’s features and the resulting QoS values
(throughput, delay). To showcase its broad usability, we train
pQoS ML models over NordicDat in classical and distributed
fashion. Our results demonstrate for the first time the viability
of distributed pQoS with real-word data, which achieves similar
(within a margin of 10%) accuracy to that of classical ML,
cropping privacy-preserving benefits.

Index Terms—Dataset, Predictive QoS, Automotive, Cross-
Border Roaming, 5G-NSA, Distributed AI/ML

I. INTRODUCTION

Cooperative, connected and automated mobility (CCAM)
technologies are expected to revolutionize the mobility sec-
tor towards safer, efficient and sustainable transport. Typical
automotive applications span from tele-operated driving, co-
operative lane merge, etc. [1] to 5G cross-border corridors and
platooning [2]. Mobile network connectivity is a key enabler
towards this development, since such applications often require
Quality of Service (QoS) guarantees e.g., ubiquitous coverage,
minimum required rates, etc. [3]. Despite the latest cellular
generation technology aiming to provide QoS guarantees [3],
connectivity remains subject to numerous environmental and
technical factors affecting the achievable QoS, which in turn
can threat user experience or even jeopardize safety [1].

To mitigate such risks, the notion of predictive Quality of
Service (pQoS) has been introduced by the 5G Automotive
Assosiation (5GAA) [3]. pQoS is a mechanism that estimates

future network QoS values and informs the automotive appli-
cation about a forthcoming QoS degradation event. This allows
the automotive application to proactively adapt its functional-
ity, by taking responsive actions to the estimated QoS changes
e.g., speed reduction, fail-safe maneuver, abortion/overtaking
of an operation, etc. pQoS is typically facilitated by the mobile
network operator (MNO) that has access to detailed radio and
network level information e.g., cell capacity, traffic prioriti-
sation, mobility management optimization, etc. [3]. An alter-
native approach is an Over-The-Top (OTT) solution, where
pQoS is provided by a third party e.g., a car manufacturer,
automotive supplier, etc. [3]. Our work focuses on OTT-based
pQoS, to tackle any QoS data availability issues due to MNO
confidentiality limitations.

Estimating QoS values in vehicular environments is a com-
plex task, since radio conditions can rapidly vary in the course
of time [4]. Artificial Intelligence and Machine Learning
(AI/ML) is a key enabling technology towards accurate QoS
prediction, so far demonstrating prominent results [5], [6], [4].
Classical AI/ML (CL) pipelines include QoS data collection
in a centralized entity e.g., a cloud server, where AI/ML
model training occurs thereafter. Motivated by the demand for
user-privacy, reduction of communication costs and scalability
gains, distributed pQoS schemes have recently emerged that
allow for collaborative AI/ML model training [7], [8]. A
typical example is Federated Learning (FL) [7], where training
is locally performed in the client-vehicles side. The server
is thereafter responsible to collect and merge (aggregate) the
trained local models into a collective (global) model. QoS
data remains at the client-vehicles at all times, thus privacy
is ensured.

As AI/ML is gaining ground to facilitate pQoS, there
is an increasing demand for QoS data to effectively train
AI/ML models. The process of data acquisition poses several
challenges e.g., high cost of measurements campaigns, quality
of captured data, etc. [4]. In fact, QoS values exhibit high
volatility and multiple inter-dependencies that are related to
network and radio parameters, user mobility, spatio-temporal
effects, etc. [4]. As such, a careful design of data collection
process is required to capture a diverse set of features under
various (mobility and network) scenarios [4].

Although a rich set of measurements campaigns has been
performed so far [9], [10], [11], the obtained QoS datasets



pose several limitations that render their application for pQoS
ineffective: a) they are focused on Long-Term Evolution (LTE)
radio-access network (RAN) technologies; only few of them
study 5G and beyond deployments, b) they are performed in
urban or indoor locations, disregarding the effect of high-speed
mobility e.g., in highways, a typical environment for vehicu-
lar applications, c) they are restricted to national networks,
neglecting the effects of cross-border roaming, a major cause
of QoS degradation [12], as shown in this work.

Seeking to overcome the above limitations, we present
NordicDat, a QoS dataset obtained during a measurement
campaign that spans across three European countries i.e.,
Finland, Sweden and Norway. NordicDat comprises of 25
hours of driving runs with diverse speed patterns (speed,
acceleration, direction), typically categorized under the speed
profiles of highway driving. The dataset includes physical and
network-layer features, as well as information on the vehicle’s
kinematics. The measurement area is set near each country’s
border, to specifically capture the effect of roaming on QoS
values. Our measurements capture traces from both LTE and
5G RAN. As our data analysis reveals changes in terms of
roaming, speed profile and RAN have major impact on the
resulting QoS values. Our produced dataset is then utilized to
showcase distributed pQoS via FL emulation, for throughput
and delay prediction tasks. To our knowledge, this is the first
attempt to present distributed pQoS using real-world public
data. Our results reveal that for both tasks, FL’s accuracy
performance is similar to that of classical ML (by an average
margin of 10%).

The captured dataset (accompanied by a short documenta-
tion) is publicly shared in an open repository [13] to support
further research in the field of pQoS and fill the respective
research gaps. The rest of the paper is organized as follows.
State of the art (SotA) is presented in Sec. II. In Sec. III
the data acquisition process is described, followed by data
analysis. Preliminary results are shown in Sec. IV and we
conclude in Sec. V.

II. MOTIVATION AND RELATED WORK

Training and evaluation of AI/ML QoS prediction algo-
rithms is often based on network simulation-based datasets
[5], [6]. Such datasets however have limited credibility, since
they rather fail to reveal the complex patterns that are observed
in a real network environment [4]. As such, a demand for real-
world QoS datasets that are able to capture the dependencies
between network operations, the radio environment and the
user-equipment (UE)’s behavior, emerges.

A plethora of datasets has so far been developed via mea-
surement campaigns for various mobility scenarios and RAN
technologies (see Table I). Several studies focus on driving
scenarios that are in line with the automotive applications
of pQoS. Existing works however are either mostly limited
to LTE in terms of RAN [14], [15], [9], [11], [16], or to
urban/sub-urban driving speed profiles in terms of mobility
[17], [18]. Only few works provide results that include 5G
measurements in highway mobility scenarios [19], [20], [21],

but the involved experiments are conducted within a single
country therefore fail to capture the effects of roaming. An-
other series of studies have investigated network properties
under low-speed mobility scenarios e.g., pedestrian or station-
ary (no-mobility) environments [22], [10], [23], [24]. Among
them, a few measurement campaigns have been performed
across various European countries to study the effect of
roaming [12], [25], [26], however their usability is limited
for pQoS, being performed in stationary or near-stationary
environments. Finally, few works have focused on indoor
network environments, utilizing mobility scenarios via auto-
mated guided vehicles (AGVs) [27], [28] or stationary states
(office environments) [29]. Such datasets are mostly tailored to
industrial networks e.g., private 5G networks, device-to-device
(D2D) communications, etc.

Our shared dataset aims to fill these research gaps and
enable research in the area of pQoS, since a) it is exclusively
developed via drive tests (under various mobility scenarios),
b) it includes both LTE and 5G RAN technologies and most
importantly, c) it is acquired in a cross-border area between
three countries and therefore captures the effects of roaming
on QoS values.

III. DATASET DESCRIPTION

The NordicDat dataset combines measurements from a 5G
modem, external positioning sensors and the vehicle internal
data from the Controller Area Network (CAN) protocol [30].
The aim was to collect measurement sequences which combine
connectivity, positioning and kinematic data of the vehicle
in geographical areas which present QoS degradation. The
dataset contains 25 hours of such sequences, collected in
arctic rural regions of Finland, Norway and Sweden. The
sequences contain sections of low connectivity and total loss
of connection, including handover events at national borders.

A. Measurement setup and data collection

The dataset was collected using a research vehicle (Martti)
(see Fig. 1) offered by Valtion Teknillinen Tutkimuskeskus
(VTT): a Volkswagen Touareg passenger car with modifica-
tions and external sensor installations for self-driving research
purposes. All the recorded values (features) of the dataset are
listed in Table II. It includes a) physical-layer parameters e.g.,
Reference Signal Received Quality, Power, Strength Indicator
(RSRQ, RSRP, RSSI, respectively), Signal to Interference
plus Noise Ratio (SINR), b) network-layer parameters e.g.,
band, RAN, serving cell, operator (coded as integer values for
data anonymization), c) mobility-related values e.g., position
(latitude, longitude, elevation), velocity and acceleration and
finally d) QoS parameters e.g., downlink (DL) and uplink (UL)
throughput as well as delay.

The positioning data of the vehicle was collected using
two external sensors. The Global Navigation Satellite System
(GNSS) data was provided by Ublox ZED-F9P Real-Time
Kinematic (RTK) GNSS sensor. The latitude, longitude, alti-
tude and GNSS service quality were recorded. The accuracy of
the GNSS positioning varies in the measurement sequences, as



TABLE I: Comparison of public cellular QoS datasets
Dataset Mobility RAN Location Area Types

Urban Suburban Highway Indoor
5G Connected Mobility [14] driving LTE Nuremberg, Germany ✓ ✓ ✓
5G Meas [19] driving, walking, static 5G Indianapolis and Chicago, US ✓ ✓ ✓
5G Wild [20] driving, walking, static 5G 2 US cities ✓ ✓
5Gophers [17] driving, walking 5G Minneapolis, Chicago, Atlanta, US ✓ ✓ ✓
BerlinV2X [15] driving LTE Berlin, Germany ✓ ✓ ✓
Beyond Throughput [9] driving, static LTE Ireland ✓ ✓ ✓ ✓
Lumos5G [18] driving, walking mmWave 5G Minneapolis, US ✓ ✓
Rome [21] driving, walking LTE, NB-IoT, 5G Rome, Italy ✓ ✓
SRFG [11] driving LTE Salzburg, Austria ✓
Terminal [16] driving LTE Single city ✓

5G Beams [22] walking mmWave 5G Chicago, US ✓ ✓
5G Consumption [10] walking 5G Campus ✓ ✓
5G PHY Latency [23] walking, static 5G Minneapolis, US ✓
Experience [12] mobile, static LTE Italy, Norway, Spain, Sweden, UK, Germany ✓
MONROE [25] mobile, static LTE Italy, Norway, Spain, Sweden, UK, Germany ✓
Roaming [26] static 5G France, Italy, Spain ✓
UE Network Traffic [24] static, emulated driving LTE Volos, Greece ✓

AGV [27] mobile D2D Industrial ✓
IV2V/IV2I+ [28] mobile LTE Industrial ✓
Urban Office [29] static LTE Vienna, Austria ✓

NordicDat [13] driving LTE, 5G-NSA Finland, Sweden, Norway (cross-border) ✓ ✓

Fig. 1: Martti research vehi-
cle
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Fig. 2: Software architec-
ture

the RTK correction signal relies on mobile connectivity [31].
The GNSS service quality ranges between Differential GNSS
(DGNSS), RTK float and RTK fix. Due to this variance of the
GNSS measurement accuracy, the vehicle velocity data was
obtained by reading wheel speeds from the CAN bus, and
converting those to vehicle speed. The vehicle orientation is
obtained from Xsens MTi-680g inertia measurement unit.

The mobile connectivity data was obtained from a Teltonika
RUTX50 5G modem, placed on the vehicle dashboard. AT
commands (’AT’ standing for ’Attention’) are Application
Programming Interfaces (APIs) for communicating with a
cellular modem [32]. In collection of this dataset, AT com-
mands were utilized to retrieve connectivity parameters from
the device. For the inclusion of relevant network DL and
UL speeds, intentional (bandwidth) strain was applied to the
connection by actively downloading large files over the mobile
connection during the measurements. UL and DL throughput
was measured at the application-level using the ifstat API
[33]. Similarly, the network delay was obtained at application
level by the Linux ping utility [34]. The data saver software
implemented the ping request, and reception of the response.

The software architecture of the data collection is shown
in Fig. 2. The vehicle internal network communication occurs
over Ethernet, with the Teltonika router using a commercially
available subscription, and acting as the only gateway to the
internet. Independent sensor driver software was implemented
for the positioning sensors, the vehicle CAN bus, and the

TABLE II: Description of dataset values
Data source Rate Parameter Unit

Teltonika RUTX50 1 Hz

timestamp seconds (s)
RSRQ decibel (dB)
RSRP decibel (dB)
RSSI decibel (dB)
SINR decibel (dB)
band string
RAN string

serving cell ID integer
delay (network ping) milliseconds (ms)

service status boolean
operator integer

DL throughput (ifstat in) kilobytes per second (kb/s)
UL throughput (ifstat out) kilobytes per second (kb/s)

Ublox ZED-F9P 10 Hz

latitude degrees
longitude degrees
elevation meters (m)

GNSS mode integer

Xsens MTi-680g 100 Hz
heading degrees

lateral acceleration meters per second squared (m/s2)
longitudinal acceleration meters per second squared (m/s2)

absolute acceleration meters per second squared (m/s2)

Vehicle CAN bus 72 Hz absolute velocity meters per second (m/s)
longitudinal velocity meters per second (m/s)

Teltonika router. Measurements from each sensor driver were
published over the vehicle local network using Data Distribu-
tion Service (DDS) protocol [35], and received at a data saver
application. As the measurement setup contained multiple
sensors and devices with varying data rates, the data points
were recorded in the data saver application as snapshots of
the latest measurement value of each device at an 1 Hz refresh
rate.

The NordicDat dataset was collected in a number of sepa-
rate measurement sessions which included lengthy continuous
drives with velocities ranging from low urban speeds up to
100 km/h. The data collection was conducted in the arctic rural
areas of northern Finland, Norway and Sweden, highlighted in
Fig. 3. While a large part of the dataset consists of dynamic
driving on longer routes, the dataset also contains a number
of cross-border events where handover occurs between service
providers of the countries. The effect of connection loss in
cross-border scenarios is reflected on weakened GNSS signal
mode. The driving routes were selected with the purpose of
including a variety of different levels of QoS. This includes
areas of poor cellular coverage, or in some cases areas of
complete connection loss. The aim of the data collection was
to obtain natural dynamic measurements from challenging



Fig. 3: Spatial effects on QoS (DL Throughput)

Fig. 4: NordicDat feature correlation

realistic environments. In total, the dataset contains more than
25 hours of measurements, covering close to 1200 km of
driving.

B. Data analysis and statistics
Predicting QoS values is a complex task, due to the volatile

nature of the involved network parameters [4]. The vehicle’s
location plays a key role in the resulted prediction [36],
since it reflects the spatial effects due to e.g., physical layer
parameters, the characteristics of the surrounding environment,
etc. These findings are also validated in our dataset. As shown
in the spatial effects heatmap (see Fig. 3), DL throughput
varies in range of [0, 20] Mbps, across the route of the
measurement campaign. Specifically throughout the campaign,
the 25th, 50th and 75th throughput percentiles values are
0.38, 4.39 and 12.03 Mbps, respectively. An overview of
the (linear) relations between the pQoS values (DL and UL
throughput, delay) and the respective network, spatial and
mobility features is depicted in Fig. 4. A close examination
shows no significant evidence of a linear correlation between
the involved values. Interestingly though, DL throughput is

Fig. 5: Temporal autocor-
relation

Fig. 6: Feature dependen-
cies

mostly affected by mobility (velocity) and certain network-
level parameters (band, RAN, service cell, operator), whereas
UL throughput and delay mostly depend on physical layer
parameters (RSRQ, SINR).

In terms of temporal effects i.e., to what extend previous
values affect future ones, the involved QoS values exhibit
high diversity (see Fig. 5). Specifically for a time interval
larger than 5 seconds, consecutive delay observations exhibit
an autocorrelation value of less than 0.5; linear temporal
dependencies are therefore negligible. Throughput values on
the other hand exhibit larger temporal effects; autocorrelation
values larger than 0.8, for a horizon of up to 50 seconds.
Finally, our dataset validates the results of previous studies
(see Sec. II) and highlights the importance of the following
factors a) RAN technology, b) Roaming effects and c) Mobility
pattern on the respective QoS values. As depicted in Fig.
6, the average throughput is degraded and the density of
extreme values (outliers) is higher in all the following bilateral
comparisons: a) LTE vs. 5G, b) Roaming vs. national network
and c) Highway vs. urban mobility (velocities up to 25 km/h).
The respective P values that express the similarity between
the bilateral distributions in all cases (calculated using the
Mann–Whitney test) are almost zero for all cases, demonstrat-
ing that the above-mentioned factors have a significant effect
on the resulted QoS value.

C. Potential usage and limitations

NordicDat exposes a wide range of features that include a)
mobility-related metrics e.g., position, speed, acceleration, b)
physical layer cellular parameters e.g., SNR, RSRQ, RSSI, c)
network-level parameters e.g., cell number, RAN, operator and
finally d) QoS values, such as (appplication-level) throughput
and delay. The resulted dataset is formulated as a time-series
table and it can therefore be utilized to perform a series of
relevant prediction tasks, besides pQoS. Relevant examples
include handover (change of cell) prediction, vehicle trajectory
prediction and driver intention classification.

The dataset’s limitations are summarized as follows: 1)
All features are obtained from the vehicle’s devices, in-line
with the OTT approach described in Section I. Though such
an approach bypasses any MNO-related data confidentiality
issues, it lacks information in regards to the overview of
the network e.g., cell capacity, total number of active UEs,
distance to basestation, slicing policies, etc. [3]. 2) The 5G
modem’s available interfaces (see Sec. III-A) do not provide
support for additional features that could enhance the accuracy
of pQoS e.g., resource blocks, Reference Signal Signal to
Noise Ratio (RSSNR), Channel Quality Information (CQI),
carriers number, coding schemes, etc. [4], [6]. 3) DL and
UL throughput are measured via the Linux ifstat (application-
level) API (see Sec. III-A). As such, no information is given
in regards to the transport, network, or link layer. 4) Data
collection focuses on cross-border scenarios and thus the
locations under study mostly include highway road segments
of low-traffic, as compared to an urban environment. The
dataset thus lacks instances of QoS degradation that are



Fig. 7: DL Throughput inference Fig. 8: Delay inference Fig. 9: FL horizons: DL Throughput

Fig. 10: FL horizons: Delay Fig. 11: CL vs. FL (DL Throughput) Fig. 12: CL vs. FL (Delay)

found in crowded urban areas, due to multiple parallel user
transmissions. 5) Due to practical limitations, a single vehicle
is used for the measurements. Multiple client scenarios e.g.,
distributed AI/ML tasks can be emulated by techniques, such
as dataset federation (see Sec. IV).

IV. NORDICDAT-DRIVEN EXPERIMENTATION

A. Problem statement and evaluation methodology

Motivated by the recent advances in distributed AI/ML (see
Sec. I), we use our dataset to demonstrate pQoS via FL, also
comparing against its centralized alternative. To the best of
our knowledge this is the first attempt to employ distributed
pQoS on a real-world public dataset. To emulate an FL setup
with multiple clients, we split our dataset into 10 parts of
equal size, each representing a single vehicle-client.1 We then
run a series of pQoS training tasks using both centralized
(CL) and distributed (FL) ML to predict a) delay and b) DL
throughput, for a total of 400 experiments (2 ML approaches
× 100 repetitions × 2 QoS values). For each client, data is
split at a typical 80%-20% ratio [37]. In each training round,
we select 8 clients for training and 2 for testing [38]. Round
duration is set to 800 secs [37], for a total of 10 rounds per
experiment. We address QoS prediction as a typical time-
series problem i.e., we predict future QoS values based on
previous QoS observations. For that cause we train a custom
Long Short-Term Memory (LSTM) model with the following
characteristics: 22 input features (equal to the total features of
NordicDat) and 8 output features i.e., a prediction horizon
of 8 sec (typical for automotive applications [39]). Hyper-
parameter tuning on the LSTM model via grid-search resulted
in the following values: sliding window=75, hidden size=50,
Min-Max normalization, decay=10−5, Rectified Linear Unit
activation and Mean Square Error loss function, batch size=64,
learning rate=10−5, epochs=50. QoS Prediction accuracy is
evaluated using the Root Mean Square Error (RMSE) metric
[37].

1The impact of the split strategy on prediction performance has already
been examined [4] and is therefore excluded from our comparison.

B. QoS Prediction

We firstly present two representative instances (for a single
vehicle-client during a single experiment) of the inference
results achieved by our FL model, in terms of DL throughput
(see Fig. 7) and delay prediction (see Fig. 8). These qualitative
representations suggest that the FL model is able to track the
complex patterns and variations of the QoS values under study
(throughput and delay), across time. The quantitative results
that present the mean inference values of all clients, across
all experiments, for all prediction horizons (from 1 up to 8
seconds ahead) are depicted in Fig. 9 and 10. As expected,
longer prediction horizons are prone to larger prediction errors
(RMSE) of the QoS value, as compared to shorter ones. Inter-
estingly, the horizon’s impact on throughput is much higher
as compared to delay. Specifically for throughput, increasing
the horizon from 1 to 3, 5 and 8 sec, results in an increase
of RMSE by 5.55%, 10.09% and 15.07% (averaged across all
rounds), respectively (see Fig. 9). For delay prediction on the
other hand, the respective values are 2.36%, 3.67% and 4.11%
(see Fig. 10).

Having said that, we fix the horizon value to 8 sec and
compare the performance of distributed pQoS (FL) to that
of the classical ML approach (CL), for both throughput
and delay prediction tasks. We present the mean inference
values and (shady) standard deviations of all clients, across
all experiments in a per-round basis (see Fig. 11, 12). For
throughput prediction, FL converges similarly to CL in the
first rounds of the experiments. For throughput prediction, CL
outperforms FL by an average of 9.37% across all rounds
(see Fig. 11). In fact, CL exhibits a maximum performance
enhancement of 27.73% against FL. Interestingly though, FL
achieves outperforms CL by 9.16%, during the experiment’s
last round. Unlike throughput, FL for delay prediction achieves
a very similar performance to that of CL (see Fig. 12); on
average CL outperforms FL by 2.08% across all rounds.
FL tracks the performance of CL in the course of the time
(rounds), even achieving better inference results (lower RMSE
values) in certain instances. Overall our preliminary results
suggest that FL can achieve similar accuracy levels to that of



its centralized alternative, whilst preserving data privacy.

V. CONCLUSIONS

We have presented NordicDat, a dataset collected in the
cross-border area of Finland, Norway and Sweden over the
course of two weeks. The dataset contains a rich set of features
that are related to cellular QoS values (e.g., throughput,
delay), network characteristics (e.g., cell, operator) and vehicle
kinematics (e.g., speed, location). As such, it can be utilized
to effectively train (classical and distributed) AI/ML models
for a diverse set of use-cases e.g., trajectory, handover or
QoS prediction; the latter being identified as a key enabler
for future automotive applications. Our data analysis has
revealed non-linear correlations between the dataset’s features
and the involved QoS values. Nevertheless both roaming and
speed, as well as radio access technology are identified as
key factors that shape the QoS values’ patterns across time
and space. Finally, we have showcased distributed AI/ML for
QoS (throughput and delay) prediction. To our knowledge that
is the first demonstration of distributed pQoS on real-world
data. Our preliminary results suggest that distributed pQoS
achieves similar performance to that of classical ML; classical
ML outperforms distributed ML by 10% and 28% (average
and maximum values, respectively). Future research directions
include additional measurements to capture diverse scenarios
e.g., urban traffic cases, as well as large-scale campaigns with
multiple vehicles.
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