
Distributed Predictive QoS in Automotive
Environments under Concept Drift
Georgios Drainakis∗, Panagiotis Pantazopoulos∗, Konstantinos V. Katsaros∗,

Vasilis Sourlas∗, Angelos Amditis∗, Dimitra I. Kaklamani†
∗Institute of Communication and Computer Systems (ICCS), Athens, Greece,

{giorgos.drainakis, ppantaz, k.katsaros, v.sourlas, a.amditis} @iccs.gr
†National Technical University of Athens (NTUA), Athens, Greece, dkaklam@mail.ntua.gr

Abstract—As network connectivity increasingly shapes mod-
ern vehicular applications, in-advance knowledge of Quality-
of-Service (QoS) degradation could unlock the potential for
efficient and safer mobility. Predictive QoS (pQoS) has long
resorted to traditional Machine Learning (ML) methods but
distributed approaches, such as Federated Learning (FL) have
lately emerged as alternatives promising performance (and pri-
vacy) gains. Vehicular environments however, appear prone to
concept drift; frequent changes in the underlying client data
distribution degrade the ML model’s accuracy. To mitigate
drift, existing FL algorithms employ continuous model training
at the expense of valuable network resources. DareFL, our
drift management algorithm for distributed pQoS a) detects
drift without violating FL’s privacy restrictions, and b) unlike
previous works, carefully schedules the (re-)training process
thereafter, achieving remarkably reduced resource consumption.
For evaluation purposes, we release a high-fidelity vehicular
network simulator. We then realize two intuitive drift scenarios
over which, DareFL consistently yields comparable accuracy
to existing FL schemes, while saving up to 70% on network
resources.

Index Terms—Predictive Quality of Service, Federated Learn-
ing, Concept drift

I. INTRODUCTION

Cooperative, connected and automated mobility (CCAM)
services e.g., automated driving (AD) functions, tele-operated
driving (ToD), platooning, etc. are expected to unlock a series
of benefits related to road safety, traffic efficiency and driving
comfort. To do so, they heavily rely on mobile network
connectivity, often posing stringent Quality of Service (QoS)
requirements in terms of data rate, packet loss, delay, etc.
Failure to meet these requirements e.g., due to undesired
network conditions, can lead to service degradation, which
in turn may reduce driving experience or even compromise
safety. To address such unexpected events, the notion of
predictive Quality of Service (pQoS) has been introduced by
the 5G Automotive Association (5GAA) [1]. pQoS enables
mobile networks to provide in-advance notifications about
predicted QoS changes. A critical situation can then be avoided
by timely adjusting the behavior of the CCAM service e.g.,
hand over an automated vehicle’s control to the driver.

pQoS has been realised through Machine Learning (ML)
[2], grace to its inherent ability to capture the volatility of
cellular QoS parameters. ML models are typically developed
using Centralized Learning (CL); data is collected from client

devices e.g., smartphones, on-board units, etc. in centralized
(clusters of) servers, where model training occurs thereafter.
Distributed ML solutions for pQoS have recently emerged as
alternatives, exhibiting ease of scalability, privacy-preservation
and most importantly communication cost reduction [3], [4].
A typical example is Federated Learning (FL), where training
is collaboratively carried out by the clients; user data remains
at the client devices and only the model updates are shared to
the server [3].

In an ever-changing network environment, a major challenge
that arises is concept drift: client data undergoes changes
across time due to seasonality, trends, user habit variations, etc.
[5]. If not mitigated e.g., by re-training the drifted ML model,
concept drift can lead to model drift i.e., degradation of the
model’s accuracy. In centralized pQoS, whereby data is cen-
trally collected, drift management i.e., detection and mitigation
is performed by directly applying statistical techniques to the
raw data [6]. Distributed (FL) environments however, pose
limitations that render the application of centralized solutions
inefficient: a) the FL server has no access to client data,
therefore cannot directly detect changes in the underlying
data distributions and b) client devices suffer from resource
scarcity e.g., processing capacity, storage, battery, and are
often unreliable e.g., due to connection unavailability, drop-
outs, etc. therefore, cannot effectively host drift management
mechanisms compared to a typically always-on server. As
such, we pose two fundamental research questions: 1) How is
drift detection facilitated in FL, subject to the above-mentioned
restrictions? and 2) How to reduce the resource consumption,
typically inflicted by drift mitigation mechanisms e.g., re-
training?

Drift management has been addressed for FL settings [7],
[8], however existing works either disregard FL’s data pri-
vacy restrictions or employ continuous training schemes with
increased resource consumption, as we also demonstrate in
this paper. In view of these research gaps, we propose our
Drift-aware resource-efficient algorithm for FL (DareFL), tai-
lored to resource-constrained vehicular network environments.
Our solution engineers a way to turn existing centralized
statistical drift detection techniques [5] to distributed, without
compromising data privacy. Upon detection, drift mitigation
is performed by re-training the drifted ML model. The (re-
)training periods are carefully selected via a control mecha-



nism, ensuring that both the ML model remains accurate at
all times and the underlying network resource consumption is
kept low.

Addressing the limited availability of public pQoS data
[9], we have generated synthetic datasets via a network and
traffic co-simulation coupled with real-world maps, to provide
a careful assessment of our solution. Our datasets capture two
distinct pQoS drift scenarios, one corresponding to the wireless
communication dynamics and another related to changes of
user (driving) behavior. The datasets are utilized via a dis-
tributed ML simulator that emulates the training process, at
the same time capturing energy and bandwidth consumption
aspects, based on credible measurements and commercial
product bench-marking. Our contribution is the following: 1)
we introduce an FL-based pQoS framework, 2) we propose a
novel drift management algorithm tailored for FL that reduces
resource consumption, while respecting the restrictions posed
by FL deployment, 3) we develop synthetic pQoS datasets with
realistic drift instances and a distributed ML simulator that are
both shared publicly to enable experiments reproducibility.

In our results, we evaluate our proposed drift management
solution (DareFL) in presence of drift against the baselines of
a) Vanilla FL [4] and b) a continuous training scheme, as well
as c) a representative state-of-the-art (SotA) drift-mitigation
solution [8]. Simulation results over the two scenarios under
study suggest that DareFL saves up to 70% on the resources
for the network infrastructure, the involved clients and the
server, whilst exhibiting an average of 10% reduction of
accuracy against its competing resource-hungry schemes. The
rest of the paper is organized as follows. Related work is
presented in Sec. II. In Sec. III we analyze our system
architecture, followed by our simulation framework in Sec.
IV. In Sec. V, we provide a simulation-based performance
evaluation of DareFL. Lastly, we conclude in Sec. VI.

II. RELATED WORK

Drift management i.e., detection and thereafter mitigation
has been extensively studied for CL, where data, training nodes
and ML models are centrally co-located. Detection occurs
via data distribution-based or performance-based detectors
[5]. The former detectors continuously compare the training
data against historical data to find drifts via statistical tests
e.g., Kullback-Leibler divergence [6]. Performance-based de-
tectors, track the changes in the model’s inference error, based
on the Probability Approximately Correct (PAC) concept [5].
PAC states that a model’s performance degradation implies
that the learned relationship between the input data and the
prediction variable is no longer valid i.e., a concept drift has
occurred. Upon detection, mitigation takes place by either re-
training the models with new data, combining old and new
models or by model re-configuration [6].

Concept drift management for FL includes a) Personalized
learning, b) Asynchronous FL schemes and c) Continuous
Learning techniques. In Personalized learning clients develop
user-specific models by re-training a generic global model
[10]. Other alternatives include training both a global and

Fig. 1: Vanilla FL pQoS framework
local client models, to allow the clients to choose the best fit
according to their data [11] or meta-data from other clients
[12]. This can be even generalized so that clients obtain
multiple personalized models from the server and perform
aggregation locally (client side) [13]. Maintaining multiple
models however as Personalized learning suggests can add
to the system’s complexity, especially in a scaled FL envi-
ronment with thousands of clients. Asynchronous Federated
Learning on the other hand suggests that each client trains
and uploads its model when needed e.g., when a drift occurs.
Drift detection occurs on the client-side e.g., by comparing
new to historical data [3] or by assessing the global model’s
inference results [14], [15]. Drift mitigation is also handled by
the clients via re-training [3], ensemble methods [14], or by
adapting their local cost function [15]. Although promising,
asynchronous techniques introduce an extra layer of complex-
ity (computational, storage) to the resource-constrained clients.
Finally, Continuous Federated Learning (ConFL) suggests to
repeatedly re-train the ML model and mitigate potential drift
effects. In [7], clients detect drifts using euclidean distance
metrics; then the clients that experience drift are isolated from
the training process by the server. This approach however,
cannot be implemented in a generalized global drift that
applies to all clients. Server-side drift detection has been
also proposed via convex optimization [16]; mitigation occurs
thereafter by adapting the number of training epochs, but is
demonstrated to mainly work for near-stationary environments.
Similarly to ConFL approaches, in AdaptFL [8] drift is de-
tected by comparing the received client models in the server-
side via moving average. Upon detection, the server adapts the
learning rate hyper-parameter for the next training round and
communicates this information to the clients. In the presence
of drift the learning rate is increased, otherwise it gradually
decreases. Though ConFL/AdaptFL is shown to successfully
mitigate concept drift it requires constant training, which in
absence of drift consumes excessive network resources with
no extra performance gains.

III. QOS PREDICTION SCHEME

We hereby introduce the fundamental concepts that facilitate
pQoS in distributed automotive environments. Consider a
centralized server e.g., in a cloud infrastructure and several
client-vehicles. Each vehicle is equipped with a) in-vehicle
sensors for raw data acquisition, b) on-board processing units
for computations and c) a modem to allow for connectivity to
the server via the cellular network. Training of a pQoS ML
model uses data features related to network properties and
client mobility e.g., signal strength, position, speed, etc. [9].



A. Vanilla Federated Learning framework for pQoS

Training in FL occurs in consecutive cycles i.e., training
rounds R, as shown in Fig. 1. Assume a total number of C
client-vehicles. In each round r ∈ [1, R] the server randomly
selects a specified number of K clients for training i.e., trainers
and M clients for inference i.e., testers, so that K +M ≤ C
[17]. The global ML model is distributed to the selected
trainers and testers. Then, each trainer trains the global model
with its acquired data, creating a new local model. Each tester
on the other hand tests the model on the current round’s
data. Upon training completion, the server collects all local
models and aggregates them to an updated global model,
via the FedAvg algorithm [8]. The server also collects the
inference results from the testers, to produce an evaluation
report of the model’s performance and marks the end of round
r. Subsequently, the server re-distributes the updated global
model to another set of K trainers and M testers, initiating
the next training round (r + 1). The process repeats until
termination criteria are met e.g., maximum number of rounds
is reached [4]. In terms of scheduling, the training process
is divided into equally timed rounds of specified duration q.
Clients are constantly collecting environment data (features)
at a frequency f , but only use those collected within one
round duration q. As such in every round, each selected trainer
c ∈ [1,K] splits its data into a training train(c, r) and a
validation dataset val(c, r). Similarly, each tester c ∈ [1,M ]
creates an inference dataset inf(c, r). The respective datasets
are depicted in blue, green and red color in Fig. 1. Note
that prior to the training process we allow for a ”warm-up”
period, which includes a series of test-runs with limited data
for calibration in the server-side.

B. Concept drift management for distributed pQoS

Concept drift in ML refers to the phenomenon whereby the
statistical properties of data change over time in unforeseen
ways. Vehicular environments have been shown to experience
frequent drifts whether in a suburban, rural or highway areas
[9]. SotA FL algorithms either do not account for drift or
resort in a repetition of the training phase, which can lead to
resource-waste, as we demonstrate in Sec. V. As such, we in-
troduce our novel Drift-aware resource-efficient algorithm for
FL (DareFL) that serves a two-fold objective: 1) It timely halts
training upon convergence and thus, reduces resource waste,
and 2) It accurately detects drift and carefully orchestrates re-
training as a targeted drift mitigation technique. Eventually
DareFL monitors the models’ performance and decides if
further training is required. While training occurs, the round
is marked as active; when training pauses, it is marked as
idle. During idle rounds, client devices save on the processing-
related resources e.g., power consumption and the server-client
communication cost is decreased. Our solution is based on
the accurate detection of: a) the completion of the training
process (convergence), and b) a change in the underlying data
distribution (drift), to timely halt or (re-)initiate the training,
respectively.

Deducing these events can be challenging in FL, due to pri-
vacy constraints and thus, we leverage on the inference results
that indicate the ML model’s performance. Such performance-
based detectors assume that the model’s performance degrades
due to the effects of over-fitting or due to concept drift (see
PAC model in Sec. II). Model performance evaluation is based
on relative metrics that compare the model’s performance
against that of a baseline naive algorithm [18]. For pQoS
(time-series), we employ the following rolling-means algo-
rithm as our baseline predictor: the (naive) prediction ŷi of the
sample’s i dependent variable yi (ground truth) in time ti is the
mean value of the dependent variable’s last w values, where w

stands for the time-window: ŷi = 1
w

i−1∑
x=i−w

yx with i < w.

Then for a series of (inference) samples, a client runs two
types of inference; one using the ML model and another
using the naive algorithm. The performance of each inference
is calculated using the Root Mean Square Error (RMSE)
metric, as the most relevant to time-series tasks [18]. The
two RMSE values are compared with one another yielding
a single indicator value, denoted as kpi that expresses the ML
model’s performance enhancement over the naive algorithm.
If RMSEml and RMSEnaive mark the performance metrics
of the ML models and the naive algorithm respectively, our
indicator kpi of a client c in a round r becomes: kpic,r =
100 · (RMSEc,r

naive −RMSEc,r
ml )/RMSEc,r

naive

DareFL functions as a synchronous FL framework, where
training is divided into rounds of equal duration q. Client
selection of K trainers and M testers occurs, similar to Vanilla
FL (see Sec III-A). In the end of each round r, the server
collects a kpic,r value from each tester c ∈ [1,M ] and forms
a kpi list, denoted as {kpi}. DareFL then employs a drift
detection (DD) and a convergence detection (CD) algorithm
(both of which require {kpi} as input) to determine if the
model needs further training or not i.e., whether the next
round will be active/idle, respectively. In an active round, both
training and inference take place and the server receives the
trained models from the trainers and the kpi (inference) values
from the testers. In an idle round, training is halted; clients do
not update their models and only inference and kpi collection
are carried out.

The drift detection (DD) algorithm is based on the cen-
tralized Drift Detection Method (DDM) [5], which operates
without accessing training data, aligning with the principles
of FL. DDM detects drifts in classification problems, by
evaluating the model’s accuracy error rate. For a sequence of
successful/unsuccessful classifications (0 and 1, respectively),
assuming pi and si is the error (unsuccessful) rate and standard
deviation at the sequence’s instance (sample) i and pmin and
smin the minimum recorded values, respectively, then the drift
detection result of DDM is:

DDM(β2, β3) =


warning, if pi + si ≥ β2 · smin

drift, if pi + si ≥ β3 · smin

no drift, otherwise
(1)

The values β2 and β3 denote DDM’s sensitivity parameters,
which are tuned via grid-search. To use DDM in distributed



settings, each client’s kpi value is transformed to 0 or 1, by
comparing to a tunable parameter β1. β1 is a threshold that
expresses the minimum ML model’s accuracy improvement
over the baseline (naive) algorithm’s accuracy, to account for a
successful classification. Its value is tuned during the ”warm-
up” period’s test-runs that provide initial statistics over the
ML model’s performance (see Sec. III-A). DDM is fed with
the transformed {kpi}, denoted as (DDM list) {ddm} so that
a potential drift can be detected [5]. For the convergence
detection (CD) algorithm, we calculate the central tendency
ckpi of each round’s kpi list {kpi}, as the average value of
all its elements. The server keeps track of all ckpi values (in a
per-round basis) in a ckpi list, denoted as {ckpi}. Convergence
detection is performed via the following rule: if ckpi is not
improved over the last β4 rounds we assume that convergence
is reached. Tuning is performed during the ”warm-up” period,
by monitoring each round’s accuracy to observe its rate of
change.

IV. SIMULATION ENVIRONMENT

In view of public pQoS data restrictions [9], we have
fabricated two synthetic datasets1 via a high fidelity network
simulation that realistically models distinct drift scenarios in
automotive environments. On top, we have built a distributed
ML simulator2 accompanied with resource consumption calcu-
lations, to utilize the datasets and evaluate our proposal. Both
the datasets and the ML simulator are publicly available to
promote reproducibility of results.

Generating pQoS datasets with concept drift: Our datasets
represent a dynamic environment, where several client-
vehicles are moving in an urban area. Each client runs a
streaming cloud service constantly receiving data packets.
This data can refer to various automotive applications e.g.,
commands for ToD, video for infotainment services, etc.
Network simulation is performed using Simu5G, a library
that emulates a 5G cellular environment in OMNeT++ [19].
The simulator’s radio parameters e.g., channel properties,
antenna settings, etc. are set according to the Macro-cell model
proposed by International Telecommunication Union [20]. The
map in our simulations comprises of an urban 600× 600 m2

area located in Drapetsona, a suburb of Piraeus, Greece. Inside
this area, four 5G base-stations (gNodeBs) have been installed
by the national network operator, enabling four 5G cells [21].
This area, divided into several blocks by the actual road
network is integrated in our simulation by an OpenStreetMap
(OSM) instance [22]. The total number of included vehicles
is set to 25, according to vehicle density statistics in the
corresponding country [23]. The road network’s traffic is
simulated by SUMO, a traffic simulation package [24] that
creates a digitized version of the (real-world) OSM map
and produces the route files for the vehicles. Route files are
loaded in the Simu5G simulator, where a network-vehicular
mobility co-simulation takes place. For each vehicle’s route

1https://zenodo.org/records/11084689
2https://github.com/gdrainakis/distributed pqos

we assume SUMO’s default parameters for urban environment
i.e., exponential speed model (with maximum speed restriction
as defined by the OSM traffic rules) and the probability matrix
at intersections for {lane keeping, turn left and right} as
{0.5, 0.25 and 0.25}, respectively. The following information
is collected for each vehicle using OMNeT++’s monitoring
service: timestamp, channel quality indicator, packet delay,
measured signal to noise ratio (SNR), 3D client position
and velocity (in Cartesian coordinates), received SNR, radio
link control throughput, serving cell, client throughput. These
features are sampled at 1 Hz and comprise the values of our
synthetic time-series QoS dataset.

We have created two drift datasets that correspond to com-
plementary cases of major long-term changes in the considered
environment: 1) a network infrastructure-driven scenario (Sc1)
and 2) a human behavior-driven scenario (Sc2). In Sc1 we
assume that two out of four gNodeBs are switched off under
a cost-reduction on/off policy. [25] For Sc2 we modify the
users’ mobility pattern; we assume that a ”hotspot” e.g., a
metro station, is created in the lower-right edge of the map
resulting in a traffic increase to that area [26]. This is achieved
by increasing the probabilities of the routes leading to the
”hotspot” in SUMO’s route planning. All generated datasets
have a total duration of 20 hrs (simulation time) and the
respective drift event is introduced at t=10 hrs. Prior to drift,
clients achieve an average throughput of 4.7±1.65 Mbps. This
is decreased to 3.32±1.79 and 4.03±1.74 Mbps for Sc1 and
Sc2, respectively. These changes will eventually be reflected
on the model prediction’s accuracy, as shown in Sec. V.

Distributed ML simulator: Our simulator implements the FL
framework of Sec. III, along with the involved client-server
communication and ML processing (consumption) costs. The
distributed ML (training and inference) is facilitated via Py-
torch, a Python deep ML library [27]. For the network resource
consumption modelling, we assume a setup with a cloud
server and several client-vehicles. Each vehicle, equipped
with a 5G modem, communicates with the cloud server via
the 5G cellular network. For the processing tasks (training,
inference) the server is equipped with a Graphics Processing
Units (GPU), while vehicles avail less powerful processing
capabilities utilizing a common Central Processing Unit (CPU)
[28]. Our simulator estimates the energy consumption im-
posed to the clients and the server due to processing and
transmission, based on credible measurements in literature
and device benchmarking. Namely, a typical 5G modem at
uplink and downlink data rates of 20 and 100 Mbps consumes
for transmission and reception 2.5 and 3.5 Watt, respectively
[29]. A typical CPU trains an ML model relevant to pQoS
data at a speed of 25 samples/sec, while a GPU reaches 900
samples/sec [30]. Those tasks require power of 200 Watt [31]
and 225 Watt [30], respectively. Model aggregation however,
has not been measured in literature thus we estimate the
server’s GPU computational speed and consumption based on
the computationally-similar matrix-to-matrix multiplication at
10 models/sec and 100 Watt, respectively [32].



Fig. 2: Sc1 - RMSE comparison

V. EXPERIMENTAL EVALUATION

Evaluation methodology: Our novel drift management FL
algorithm (DareFL) is compared against existing solutions:
1) Vanilla FL (see Sec. III-A), 2) Continuous FL (ConFL -
see Sec. II) and 3) Adaptive FL (AdaptFL) [8] under the two
pQoS drift scenarios (Sc1, Sc2) described in Sec. IV. Vanilla
and ConFL serve as baselines, while AdaptFL is selected as
a representative SotA drift management FL solution. Each
scenario is repeated 10 times for a total of 80 experiments (2
scenarios × 4 algorithms × 10 repetitions). QoS (throughput)
prediction accuracy across time is evaluated via the RMSE
metric (mean values across all clients). Resource consumption
metrics include: 1) Normalized communication cost i.e., total
data exchanged between the server and the clients normalized
to the ML model size, and 2) Clients and Cloud energy cost
i.e., the total energy consumed at each side for processing and
transmission (see Sec. IV).

Throughout the experiments, round duration is set to q=1200
secs i.e., a total of R=60 rounds for each scenario. Drift occurs
at half-time (R=30) and lasts throughout the experiment. The
total number of clients is set to 25, with K=5 trainers and
M=20 testers per round, based on [33]. Trainers’ data is split
at a typical 80%-20% ratio [18]. Training is performed using
an Long short-term memory (LSTM) model [2], consisting of:
11 input features (equal to the total features of each dataset)
and 8 output features i.e., a (throughput) prediction horizon of
8 sec (other automotive ML-based predictions show acceptable
accuracy up to a 5 sec horizon [34]). Note that throughout Sec.
V we show the results for a horizon of 6 sec for clarity, though
the same principles apply to all other horizons up to 8 sec.
For the LSTM we set: sliding window w=75, hidden size=50,
Min-Max normalization, decay=10−5, Rectified Linear Unit
activation and Mean Square Error loss function, based on
test-runs and related works on LSTM models [18]. Hyper-
parameter tuning on our LSTM model via grid-search resulted
in the following values: batch size=64, learning rate=10−5,
epochs=500. Leveraging on our test statistics during ”warm-
up” we set DareFL’s parameters: β1=0, β4=5 rounds and
default values β2=2 and β3=3. For fairness, AdaptFL’s pa-
rameters are also tuned via grid search: β1=β2=β3=0.7.

Evaluation results: DareFL’s accuracy comparison against
existing FL algorithms for Sc1 is shown in Fig. 2. Vanilla FL
suffers from a sudden increase (51%) of the prediction error
(RMSE) at the 31th round, as a result of the inflicted drift.
In Vanilla FL, the ML model is trained until convergence is

reached, thus it cannot adapt to future drifts; as a result, the
model’s performance is degraded. ConFL on the other hand
addresses drifts by constantly training (updating) the model,
thus achieving maximum accuracy at all times. Compared to
Vanilla, ConFL exhibits an average of 7% higher accuracy
(in terms of RMSE) before and 40% after drift. Constant
training however, results in the linear increase of the network
bandwidth (see Fig. 3), energy costs for the clients (see Fig.
4) and the server (see Fig. 5). Compared to Vanilla FL,
ConFL consumes 720% more bandwidth and 470%, 580%
more energy in the clients and server-side at the end of
the simulation, respectively. Unlike these solutions, DareFL
leverages on its drift detection mechanism to ensure high
accuracy, comparable to ConFL. Prior to drift, ConFL outper-
forms DareFL by an average of 8%. Upon drift occurrence,
DareFL adapts in a handful of rounds (an average of 5.3
rounds across all experiments) and sustains similar accuracy
to that of ConFL until the end of the experiment (see Fig.
2). Specifically, ConFL outperforms DareFL by an average of
11% after drift. Meanwhile, DareFL’s energy and bandwidth
footprint is kept relatively low (comparable to Vanilla FL),
grace to its convergence detection mechanism that facilitates
idle training rounds i.e., saving on resources. As a result,
DareFL achieves 76% lower communication costs (see Fig. 3)
and 68% lower energy costs in the clients (see Fig. 4) and
74% on the server (see Fig. 5), compared to ConFL at the end
of the simulation.

AdaptFL, which serves as a SotA drift management FL
algorithm has similar behavior to ConFL, since it assumes
constant training (see Fig. 2). Compared to DareFL, AdaptFL
achieves a maximum accuracy enhancement of 9% throughout
the experiment. However, it exhibits the highest resource
consumption compared to all other algorithms. Specifically,
its communication costs are equal to that of ConFL (see
Fig. 3). Interestingly, AdaptFL consumes 200% more energy
compared to DareFL and 100% more than ConFL in the clients
and in the server side by the end of the simulation. This
behavior occurs due to AdaptFL’s drift management mech-
anism; at the server side it requires additional calculations for
its detection process, similar to FedAvg’s aggregation process
(see Sec. II). The gradual adaptation of the learning rate also
leads to ”slower” learning in the clients-side i.e., additional
epochs, which increases the client energy footprint. These
excessive energy costs however, have no effect on the increase
of accuracy.

The findings of Sc1 are also validated in Sc2. Vanilla FL
experiences a 43% accuracy drop at the 31th round, which
marks the effect of Sc2’s drift on the model’s performance.
ConFL exhibits the best performance across time, due to
constant training. ConFL outperforms Vanilla by 6% and 43%
before and after drift, respectively. DareFL exhibits similar
performance to that of Vanilla FL prior to drift however, it
adapts after the the 31th round, due to its drift detection
mechanism. As such, it converges in similar accuracy levels
as ConFL, within a margin of 5%. Compared to DareFL,
AdaptFL achieves a 5% accuracy improvement before drift



Fig. 3: Communication costs Fig. 4: Client energy costs Fig. 5: Cloud energy costs

and 1% after drift. Similarly to Sc1, both AdaptFL and ConFL
consume multiple times more energy and bandwidth to achieve
these (minor) improvements over DareFL. The induced cost
values for Sc2 are omitted, since the behavior is identical to
that of Sc1 (see Fig. 3, 4 and 5).

VI. CONCLUSIONS

Drawing on the dynamicity of automotive environments that
are subject to diverse drift causes, we have introduced DareFL,
a novel concept drift management algorithm for predictive
QoS, fully aligned to the FL principles e.g., data privacy that
operates at a significantly reduced resource consumption cost,
compared to SotA. Using our developed (open-source) FL
and network simulator we have evaluated DareFL under two
complementary (infrastructure-/user- related) QoS drift sce-
narios. Our results suggest that DareFL achieves comparable
prediction accuracy to existing solutions, whilst exhibiting an
up to 70% energy and bandwidth efficiency. Interesting further
research directions include the evaluation of the suggested
framework in network testbeds or tuning our algorithm’s
parameters via ML techniques, such as reinforcement learning.

ACKNOWLEDGMENT

This paper is part of the 5G-IANA project, co-funded by
the EU under the H2020 Research and Innovation Programme
(grant agreement No 101016427).

REFERENCES

[1] “Making 5G proactive and predictive for the automotive industry,”
Industry White Paper, 5GAA Automotive Association, 2020.

[2] H. Na et al., “LSTM-based throughput prediction for lte networks,” ICT
Express, 2021.

[3] F. Casado et al., “Concept drift detection and adaptation for federated
and continual learning,” Multimedia Tools & Applications, pp. 1–23,
2022.

[4] X. Yin et al., “A comprehensive survey of privacy-preserving federated
learning: A taxonomy, review, and future directions,” ACM Computing
Surveys (CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[5] F. Bayram et al., “From concept drift to model degradation: An overview
on performance-aware drift detectors,” Knowledge-Based Systems, p.
108632, 2022.

[6] J. Lu et al., “Learning under concept drift: A review,” IEEE Transactions
on Knowledge and Data Engineering, vol. 31, pp. 2346–2363, 2018.

[7] D. M. Manias et al., “Concept drift detection in federated networked
systems,” in IEEE Global Communications Conference, 2021, pp. 1–6.

[8] G. Canonaco et al., “Adaptive federated learning in presence of concept
drift,” in 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2021, pp. 1–7.

[9] A. Palaios et al., “Machine learning for QoS prediction in vehicular
communication: Challenges and solution approaches,” IEEE Access,
2023.

[10] E. Jothimurugesan et al., “Federated learning under distributed concept
drift,” in International Conference on Artificial Intelligence and Statis-
tics. PMLR, 2023, pp. 5834–5853.

[11] N. Harth et al., “Local & federated learning at the network edge for
efficient predictive analytics,” Future Generation Computer Systems, vol.
134, pp. 107–122, 2022.

[12] C. B. Mawuli et al., “Semi-supervised federated learning on evolving
data streams,” Information Sciences, p. 119235, 2023.

[13] L. Gondara and K. Wang, “Pubsub-ml: A model streaming alternative
to federated learning,” Proceedings on Privacy Enhancing Technologies,
vol. 2, pp. 464–479, 2023.

[14] F. E. Casado et al., “Ensemble and continual federated learning for
classification tasks,” Machine Learning, pp. 1–41, 2023.

[15] Y. Chen et al., “Asynchronous federated learning for sensor data with
concept drift,” in 2021 IEEE Intl. Conf. on Big Data, pp. 4822–4831.

[16] B. Ganguly and V. Aggarwal, “Online federated learning via non-
stationary detection and adaptation amidst concept drift,” IEEE/ACM
Transactions on Networking, 2023.

[17] Z. Charles et al., “On large-cohort training for federated learning,”
Advances in neural information processing systems, vol. 34, pp. 20 461–
20 475, 2021.

[18] J. Brownlee, Deep learning for time series forecasting: predict the future
with MLPs, CNNs and LSTMs in Python. ML Mastery, 2018.

[19] G. Nardini et al., “Simu5G–an OMNet++ library for end-to-end perfor-
mance evaluation of 5g networks,” IEEE Access, vol. 8, 2020.

[20] M. Series, “Guidelines for evaluation of radio interface technologies for
imt-2020,” Report ITU, vol. 2512, p. 0, 2017.

[21] “Cellmapper,” www.cellmapper.net, accessed: 2023-01-28.
[22] “Openstreetmap,” www.openstreetmap.org, accessed: 2023-01-23.
[23] “Worldstats,” www.nationsencyclopedia.com/WorldStats/WDI-

transport-vehicles.html, accessed: 2023-01-28.
[24] M. Behrisch et al., “SUMO–simulation of urban mobility: an overview,”

in Procs of the Third Interl. Conf. on Advances in System Simulation
(SIMUL). ThinkMind, 2011.

[25] N. Yu et al., “Minimizing energy cost by dynamic switching on/off
base stations in cellular networks,” IEEE Transactions on Wireless
Communications, vol. 15, no. 11, pp. 7457–7469, 2016.

[26] “Mobility report 2022,” www.ericsson.com/4ae28d/assets/local/reports-
papers/mobility-report/documents/2022/ericsson-mobility-report-
november-2022.pdf, accessed: 2023-01-28.

[27] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems,
vol. 32, 2019.

[28] C. S. Evangeline et al., “Safety and driver assistance in VANETs: an
experimental approach for V2V,” in Int’l Conf. on Communication and
Electronics Systems, 2019, pp. 397–402.

[29] A. Narayanan et al., “A variegated look at 5G in the wild: performance,
power, and QoE implications,” in ACM SIGCOMM’21, pp. 610–625.

[30] Y. Wang et al., “Benchmarking the performance and energy efficiency
of ai accelerators for ai training,” in 20th IEEE/ACM Int’l Symposium
on Cluster, Cloud and Internet Computing, 2020, pp. 744–751.

[31] “CPU benchmarking,” www.cpubenchmark.net/cpu.php?cpu=
Intel+Xeon+Platinum+8168+%40+2.70GHz&id=3111, accessed:
2023-01-28.

[32] K. Fatahalian et al., “Understanding the efficiency of GPU algorithms
for matrix-matrix multiplication,” in ACM conf. on Graphics hardware,
2004, pp. 133–137.

[33] A. Reisizadeh et al., “Fedpaq: A communication-efficient federated
learning method with periodic averaging and quantization,” in Int’l Conf.
on Artificial Intelligence and Statistics, 2020, pp. 2021–2031.

[34] S. Mozaffari et al., “Deep learning-based vehicle behavior prediction
for autonomous driving applications: A review,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 1, pp. 33–47, 2020.

www.cellmapper.net
www.openstreetmap.org
www.nationsencyclopedia.com/WorldStats/WDI-transport-vehicles.html
www.nationsencyclopedia.com/WorldStats/WDI-transport-vehicles.html
www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+Platinum+8168+%40+2.70GHz&id=3111
www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+Platinum+8168+%40+2.70GHz&id=3111

	Introduction
	Related Work
	QoS Prediction Scheme
	Vanilla Federated Learning framework for pQoS
	Concept drift management for distributed pQoS

	Simulation Environment
	Experimental Evaluation
	Conclusions
	References

