
1
TNSM-2022-05733.R2

Edge/Cloud Infinite-time Horizon Resource
Allocation for Distributed Machine Learning and

General Tasks
Ippokratis Sartzetakis, Polyzois Soumplis, Panagiotis Pantazopoulos, Konstantinos V. Katsaros, Vasilis Sourlas,

Emmanouel Varvarigos

Abstract—Edge computing has emerged as a computing
paradigm where the application and data processing takes place
close to the end devices. It decreases the distances over which data
transfers are made, offering reduced delay and fast speed of action
for general data processing and store/retrieve jobs. The benefits of
edge computing can also be reaped for distributed computation
algorithms, where the cloud also plays an assistive role. In this
context, an important challenge is to allocate the required
resources at both edge and cloud to carry out the processing of
data that are generated over a continuous (“infinite”) time
horizon. This is a complex problem due to the variety of
requirements (resource needs, accuracy, delay, etc.) that may be
posed by each computation algorithm, as well as the heterogeneous
resources’ features (e.g., processing, bandwidth). In this work, we
develop a solution for serving weakly coupled general distributed
algorithms, with emphasis on machine learning algorithms, at the
edge and/or the cloud. We present a dual-objective Integer Linear
Programming formulation that optimizes monetary cost and
computation accuracy. We also introduce efficient heuristics to
perform the resource allocation. We examine various distributed
ML allocation scenarios using realistic parameters from actual
vendors. We quantify trade-offs related to accuracy, performance
and cost of edge/cloud bandwidth and processing resources. Our
results indicate that among the many parameters of interest, the
processing costs seem to play the most important role for the
allocation decisions. Finally, we explore interesting interactions
between target accuracy, monetary cost and delay.

Index Terms—cloud and edge computing, distributed
computing, distributed machine learning, inference, training,
resource allocation.

I. INTRODUCTION

OBILE phones, intelligent vehicles, energy meters
and other Internet of Things (IoT) devices are
spreading into many areas of social activity,

empowering new digital services. The abundant edge devices
offer numerous applications requiring prompt processing. They
also generate enormous amounts of data through which useful

Manuscript submitted October 6 2022; revised April 21 and August 7 2023.
This work was supported in part by the Horizon 2020 5G-IANA project (grant
agreement: 101016427), and the Horizon 2020 SERRANO project (grant
agreement: 101017168).

and actionable analytics can be obtained. The application
processing and the transfer of these data all the way to the cloud
can be challenging, undesired and unnecessary, due to time and
bandwidth limitations. To tackle these developments, new
computing paradigms are developed, such as edge computing.
A combined edge-cloud processing infrastructure promises to
render inexpensive the distributed data processing, including
machine learning (ML) training and inference [1]-[5], thus
“commoditizing” the related services. The response time of the
observe (IoT, monitoring) - decide (algorithm) - act (actuators
or reconfiguration) control loop present in many applications
will also be accelerated. Edge computing is more appropriate
than cloud computing to process time-sensitive data, as it
avoids the time needed to relay the information to a centralized
datacenter. Thus, the decision-making process is accelerated.
The communication load is also reduced as the paths used have
fewer hops. Cloud computing is better for processing delay-
tolerant data, because of the economies of scale that central
datacenters achieve.
In this context, the challenge of resource allocation for

distributed computation algorithms over a continuous (infinite)
time horizon arises. The processing of a distributed algorithm
(the terms algorithm and algorithmic instance will be used
interchangeably) can be divided into a number of tasks that are
executed in parallel on different equipment. In distributed
computation performed over the edge and cloud, an important
challenge is to allocate the most appropriate resources to serve
the tasks comprising an algorithm with a certain objective (e.g.,
minimize the monetary cost). This is similar to computation
offloading [6], but presents additional complications due to the
requirements of distributed computation. First, a decision has to
be made on whether an algorithm will be served at the edge or
at the cloud. The decision mainly depends on the algorithmic
instance’s acceptable cost and delay requirements. It also
depends on the number of tasks each algorithm consists of, i.e.,
the degree of parallelization. The (processing, storage and
network) capacity parameters of the edge and cloud resources
influence the decision. Then, the suitable number and type of

Ippokratis Sartzetakis, Polyzois Soumplis and Emmanouel Varvarigos are
with the School of Electrical and Computer Engineering, National Technical
University of Athens, Zografou, Athens 15773, Greece. They are also with the
Institute of Communication and Computer Systems, Zografou, Athens 15773,
Greece (e-mail: isartz, soumplis, vmanos @mail.ntua.gr). Panagiotis
Pantazopoulos, Konstantinos V. Katsaros, Vasilis Sourlas are with the Institute
of Communication and Computer Systems (e-mail: ppantaz, k.katsaros,
v.sourlas @iccs.gr).

M

isense
Replace

isense
Replace

isense
Rectangle

isense
Rectangle

2
TNSM-2022-05733.R2

resources should be allocated according to the needs of the
algorithmic instance (e.g., amount or streaming rate of data
involved, required accuracy, type of algorithm). The problem
requires modeling of the various contributors to the (bandwidth,
storage and processing) cost of the algorithmic instance, that
could be different at the edge and at the cloud. Moreover, there
are different types of algorithmic architectures (e.g., different
parallelism paradigms, communication architectures, and
synchronization requirements). All these factors and parameters
have to be taken into account to formulate and solve the
resource allocation problem.
In this work Distributed Machine Learning (DML) training

or inference is considered explicitly. DML is a special case of
distributed computation, and it is expected to constitute a large
part of future computations on data. It fits perfectly the model
we consider: it involves the processing of data samples that are
generated continuously and require resources for prolonged
durations of time (equal to the lifetime of the ML application).
This model is opposed to the case where computation jobs are
generated once and have to be scheduled individually.
Distributed ML differs from federated learning, since in the
latter the training is typically performed on the user devices
themselves. The topic of resource allocation for federated
learning has been studied extensively. More specifically, a joint
learning, wireless resource allocation, and user selection
problem have been formulated specifically for federated
learning [7][8]. Moreover, the total energy consumption of the
system under a latency constraint can be served as the objective
for the resource allocation [8].
In the following we describe some use cases in IoT and in
Internet of Vehicles (IoV) that serve as motivation for our work.

A. Internet of Things

In the recent years, IoT has spread across numerous
applications and domains. Billions of devices are already
connected to the internet, gathering data from their sensors and
communicating with other devices. IoT applications range from
smartphones, smart homes and smart manufacturing to smart
agriculture and drones. IoT devices use a variety of sensors:
image (e.g., camera), voice (e.g., microphone), environmental
(e.g., temperature of moisture sensor), mechanical (e.g.,
vibration sensor). Depending on the type of sensor and the
application, the data could be generated either very
sporadically, or in high volume and streaming fashion. The total
IoT data volume of a large smart city that is fed to a given
application can be enormous and will tend to be rather smooth
due to its aggregated nature.
The data from IoT devices is used in a large range of

applications, the majority of which is expected to be ML-based:
image recognition (e.g., security related-face recognition,
farming related - grapes disease detection), event detection, and
other sectors, such as smart electricity grids and healthcare.
Also, in industrial IoT, data from a manufacturing environment
is used to predict and prevent mechanical failures or to
coordinate robot movement. In all these scenarios, processing
of the continuously generated data is important in order for the
model to be adaptable to the environment and to other changes.

Similarly, smartphone data may feed an ML based voice
recognition algorithm for digital assistants. Other examples of
ML algorithms may use data from accelerometers and gyro,
e.g., for activity recognition.

B. Internet of Vehicles

The automotive industry is on the eve of a major
transformation fueled by the developments in autonomous
driving and the involvement of IT companies. At the same time,
Intelligent Transportation Systems (ITS) continuously evolve
and apply novel communication protocols to provide safer and
more efficient transportation. IoV involves a network of
“smart” vehicles that exchange data not only to enhance traffic
safety and efficiency (e.g., mitigate traffic) but also to provide
commercial infotainment (e.g., in the form of video and game
streaming). IoV pose significant processing and
communication requirements, that should be supported by the
edge and cloud resources.
An autonomous vehicle is equipped with different sensors

and cameras, such as Light Detection and Ranging (LIDAR),
sonar and high-definition cameras. These sensors produce
enormous amounts of data: a vehicle can generate 4 TB of data
per day [9], which will put significant stress on the network
resources. The transfer of such amount of data to the cloud is
almost prohibited. Therefore, edge computing is expected to
play an important role in IoV.
The data of autonomous vehicles can be leveraged in many

distributed learning scenarios. In particular, distributed learning
vehicle routing algorithms can adjust vehicle routing in real
time and reduce traffic congestion [10]. Another example is
object detection and classification based on acquired charge-
coupled device (CCD) and LIDAR data [11]. There have been
several instances where an autonomous vehicle has
misinterpreted an object in the environment. Continuous
training is important for object detection, given the variety and
dynamicity of the environments autonomous vehicles will
navigate in when they become widely available. And fast
response times can in many cases be delivered only through
edge computing.
In this paper we investigate the resource allocation problem

for general distributed algorithms and ML applications that
process continuously generated data. We develop a general
framework, where the different ML and other algorithmic
instances that run on the infrastructure are modelled by a vector
of requirements that depend on the algorithm. More
specifically, we consider a scenario where various devices are
located close to the edge of the network. The devices produce
data continuously, over an infinite time horizon, that are
processed by an algorithm that runs in edge and/or cloud
resources. The goal is to assign the required resources
(processing, memory, storage, bandwidth) for each algorithm
while optimizing certain metrics. We consider different
scenarios related to edge/cloud costs, delay and accuracy. We
introduce an Integer Linear Programming (ILP) algorithm that
solves the resource allocation problem. We also investigate low
complexity heuristic resource allocation algorithms. Finally, we
compare the results, and extract interesting insights on the

isense
Rectangle

3
TNSM-2022-05733.R2

allocation decisions.
The main contributions of our work are:
1) We present a comprehensive solution that can serve

distributed algorithms processing continuously generated
data. The resulting infinite time horizon model represents
an IoT infrastructure (e.g., a smart city) continuously
generating data (sequence of samples), according to a
deterministic or random process of a certain average rate.
These data have to be allocated adequate processing/
storage/bandwidth resources so that the system is stable
and the delays are kept under control. This model is in
contrast to the one-time problem usually considered,
where there is a finite number of tasks that have to be
scheduled on certain resources, once and for all. We
appropriately design resource allocation schemes that
account for the different types (e.g., GPU models, RAMs)
of edge and cloud resources, their computational power,
their bandwidth, storage and processing monetary costs,
their communication delay and the achievable accuracy.
The joint consideration of these optimization parameters
provides a realistic modeling of the problem, while
allowing for interesting insights on the potential benefits
and trade-offs involved.

2) We present an ILP algorithm that solves the edge/cloud
joint resource allocation problem. The objectives are to
minimize the resources’ monetary cost (subject to delay
requirements) and to maximize the resulting accuracy of
the algorithmic instance. A weight parameter is used to
control the relative importance of the two objectives. The
formulation is versatile and can be used to allocate
resources for different variants of distributed applications,
including ML training (e.g., all-reduce or aggregation
servers) and inference. We also develop efficient heuristic
algorithms that can solve faster large instances of the
problem.

3) We perform realistic simulation-based experiments for a
distributed ML training scenario. We quantify the trade-
offs between edge and cloud resources for various
accuracy options, bandwidth and processing costs of the
edge vs cloud, and the corresponding delays. Finally, we
compare the results of the different algorithms and
allocation schemes.

Our model assumes the continuous (over an infinite time
horizon) generation of data (samples) that are processed by a
general distributed (namely ML) application. The application
characteristics are captured through a resource requirements
vector of parameters, so that the formulation is kept as general
as possible. We also use accuracy as a parameter that can be
traded off to save resources. This leads to the concept of
approximation as a resource, in the same way that Demand
Response is used as a resource in smart energy grids, when there
is a mismatch between demand and supply of energy [12].
The rest of the paper is organized as follows. In Section II we

present the related work. In Section III we describe the network
scenario considered and the related assumptions. We also
introduce the resource allocation problem with formal notation
and present an ILP algorithm to solve it. Afterwards, we present
the heuristic algorithms. In Section IVwe evaluate the proposed
framework, present the performance results obtained and

explore the various trade-offs. Finally, Section V summarizes
the paper and discusses future work.

II. RELATEDWORK

Our work mainly relates to two topics: distributed
computation (as in DML) of continuously generated data and
computation offloading. Distributed computation is not a recent
subject [13]. Over the last few years, it regained attention. It has
been applied in the context of machine learning [14][15],
communication networks [16], power systems [17] and primal-
dual algorithms [18], among others. In general, research on
distributed computation can refer to several topics, such as the
design of suitable algorithms, machines and programming
languages. Related issues include the partition of a workload to
smaller tasks, the communication of the tasks’ results, the
synchronization of the computations and the allocation of the
suitable resources to perform the computations. The specific
characteristics of each application have to be taken into account
in order to design a robust resource allocation framework that
can be applied to each case.
Distributed ML training is an active research topic and a

large number of associated methods have been investigated.
There are three main taxonomies of distributed ML training
[14][19] based on: i) the type of parallelism, ii) the
communication architecture, and iii) the computation timing.
As far as parallelism is concerned, there is model parallelism
and data parallelism. In model parallelism, the ML model is
divided into a certain number of segments (tasks) that are
executed in a respective number of workers. Each worker node
runs different code (in parallel computation this model is also
called MIMD – multiple instruction, multiple data). In data
parallelism, the model is common to all workers, but the
training data are different (in parallel computation this model is
called SIMD – single instruction, multiple data). Each worker
(task) computes locally its model weights (parameters) and
communicates its values to the rest of the workers that
aggregate the results and update the common model. Regarding
the communication architecture in distributed training, perhaps
the most prominent variant is the parameter (aggregation)
server [20]. In this case, the workers communicate their local
computations to one or more centralized server(s), the
parameter server. The server aggregates the weights of the
workers and returns the results to the workers to initiate the next
training round(s). A different communication architecture,
known as all-reduce, does not use any centralized server.
Instead, the workers communicate directly with each other, in a
peer-to-peer manner, to share the model weights.
Concerning computation timing, there are two main

approaches: synchronous and asynchronous training. In
synchronous training, the aggregation of the workers’ model
weights is performed synchronously: they proceed to the next
execution round only when the previous round and the
exchange of the new weights has been completed for all the
workers. This can incur certain inefficiencies, commonly
known as synchronization penalties, when some workers
(stragglers) are progressing slower than others. In asynchronous
training, the workers are allowed to perform at their own pace

isense
Rectangle

4
TNSM-2022-05733.R2

(so they may be at a different round), thus eliminating the
synchronization overhead. When a worker finishes a
computation round, the parameters are updated. The rest of the
workers will fetch the updated parameters asynchronously [13].
There are certain conditions under which synchronous
convergence also implies asynchronous convergence [13].
Finally, a pipelined architecture can be considered, to improve
the training throughput [21]. It allows the overlapping of the
communication with the computation time, while also reducing
the amount of communication required. On a separate issue,
distributed ML inference [3][4] typically has less processing
requirements than training. However, the workload can still be
significant for a user device. Also, the timing requirements are
often very stringent; e.g., an autonomous vehicle requesting an
image classification task. A large number of works have
researched the offloading of inference ML jobs using various
strategies.
Computation offloading initially referred to moving compute

intensive tasks at the cloud where powerful and relatively

abundant resources are available. As technology evolved, new
applications required low latency and high bandwidth, which
could not be satisfied by the cloud. As a result, Mobile Edge
Computing or Multi-access Edge Computing (MEC) emerged.
Even though the research on computation offloading is vast
[6][23], it cannot directly be applied to our ML case study. The
reason is the specific resource allocation requirements of
distributed computation algorithms that that are generated
continuously and can vary depending on the type of algorithm,
the accuracy, the time constraints, and the architecture.
A recent research topic is the intersection of distributed ML

and computation offloading, which is an important subcase of
this work as well. In federated learning over wireless networks,
a previously studied challenge is to allocate the resources by
considering the wireless channel characteristics and the
convergence rate of the federated learning algorithm [7][8]. In
our work, we consider distributed computations and distributed
ML and the modeling is agnostic to the physical layer
characteristics. We focus on the trade-offs related to accuracy,
delay and the processing/bandwidth costs. Regarding
distributed ML training at the edge, the network resources can
be efficiently utilized by analyzing the convergence rate of the
distributed gradient descent algorithm [24]. The ML training of
data from augmented reality edge devices has also been
considered [25]. Due to the limited computing power of these
devices, backend “helpers” at the edge or cloud can be
leveraged. Moreover, the training model can be incrementally
offloaded at the edge devices [26]. This strategy accelerates the
training since the edge servers are used in a timely manner. A
more specialized topic is the offloading of IoT deep learning
applications in an edge computing environment [29]. Regarding
the performance of training, there are certain differences of
federated learning compared to variants of edge and centralized
learning [27]. Also, there are certain approaches, such as the
joint data collection and resource allocation, to maximize the
distributed learning throughput [28]. The problem can be
formulated as a mixed-integer non-linear program and an
approximation algorithm can be used. Finally, another topic is
the job scheduling problem for distributed ML. For example, a
scheduling algorithm can be employed to decide the execution
time window and the number and type of workers and
parameter servers aiming to minimize the weighted average
completion time [30]. It is a problem similar to ours, but also
differs as it is mainly a one-time scheduling problem. In
contrast, we assume continuous generation of data.
To the best of our knowledge there is no previous work that

combines realistic modeling of the data collection and resource
allocation problems of distributed computation / distributedML
applied on continuously generated data, using both edge and
cloud resources and accounting for the different architectures.
Moreover, an analytic comparison of the various trade-offs
between accuracy, delay, bandwidth/processing costs of the
edge and cloud seems to be missing from related work. In this
paper, we attempt to tackle these important issues. We should
note that this paper is an extension of a previous work [31]. We
significantly expanded the work by: i) adding more details on
the background of the problem, ii) examining the allocation of

TABLE I
IMPORTANT NOTATIONS

Symbol Description

J Set of all algorithmic instances on infrastructure

, An ML training or inference algorithm

 Set of all tasks of algorithm j

 A task of algorithm j

Set of devices feeding data to the kth task of

algorithm jth

 The data (samples) generation rate of device y

N The set of nodes of the edge network

n A node of the edge network

 Period every which tasks are completed

Communication time required at end of period to

transfer the ML model weights
 Computation time within a period

Total samples that a task has to process within

period

Q The set of all the available GPU models

q A specific GPU model

Required number of training epochs for ML

algorithm j

 ,

 The cost for an ML job to use model q processing
edge or cloud resources

,

 The b/w cost of edge or cloud

,
The propagation delay of a job if served to the

edge or cloud

The maximum acceptable propagation delay of a

job
 The set of possible target accuracies of the jobs

 An accuracy of a job ranging from 0 to 1

 The minimum required accuracy of job j

 = [,,
,,]

Vector of required GPU, Memory, Storage, B/w
resources for each sample of job j

 = [

,

,
,

,

]

GPU, memory, storage, incoming b/w, aggregator
resources units in node n

,

Binary ILP variable equal to 1 if task uses
resource units and GPU model q with accuracy a
at edge node n, or it is served at the cloud

W
Weight to control the importance of cost
minimization vs accuracy maximization

isense
Rectangle

5
TNSM-2022-05733.R2

inference jobs in addition to training, iii) adding accuracy at the
objective and studying trade-offs between accuracy and
resource requirements, iv) adding low complexity heuristic
algorithms for the resource allocation problem, and v)
expanding the simulation experiments to include additional
scenarios.

III. PROBLEM STATEMENT

We consider various distributed processing and ML scenarios
involving IoT or IoV data generating devices (Fig. 1). Each
scenario may correspond to a different processing algorithm,
e.g., image recognition, anomaly or event detection, etc. There
is an edge network close to the devices, and a more distant
cloud. Computation jobs are completely offloaded to the
network’s resources, and are not processed at all on the devices.
In the future, we plan to extend the problem statement to include
the possibility of (partial) execution of a job on user devices.
We will now formally define the edge-cloud resource

allocation problem for the aforementioned distributed
processing scenarios. The formulation is generic in that it can
be used to model in a unified way any of the aforementioned
scenarios and many different distributed architectures. We
consider a number of user devices near the edge that
continuously produce data, over a prolonged (“infinite”) time
horizon. These data are fed for processing to the network’s edge
or cloud resources. Table I contains all the important notations
introduced in the following.
Each device y continuously produces data at an average rate

of samples/sec. Depending on the application, the sample
may be a number, a picture, a voice or video segment, etc. Each
algorithmic instance j (e.g., a specific ML application) receives
data (i.e., samples) generated at a set of devices that generate
a total data set that is denoted by Dj. An ML algorithm can be
further characterized as for training and for inference. The
set J contains all the algorithmic instances to be supported by a
given infrastructure. The processing of algorithm j is divided

into a set of distributed tasks = {, , … , } (or even one
task, in case of, e.g., lightweight inference) that are executed in
parallel at respective workers. Each task is responsible for
processing a subset of the entire dataset of algorithm j.
In particular, task processes the data samples in that are
generated by a subset of devices belonging to the set of
devices feeding algorithm j. Thus, a subset of devices and
their generated data form a (sub)task of an algorithm. In the case
of a training ML task , the loss function that the task aims to
minimize on its respective dataset is of the form:

() =
1

 ()

∈

(1)

where f is a per-sample loss function, | ∙ | denotes the size of a
set,w is the model parameter vector and l a training data sample.
The overall training of ML algorithm j takes into account all of
its tasks, and aims to optimize:

min

() =
∑ ()

(2)

over the entire data set Dj. The idea in Eq. (2) is that all the
parallel tasks tjk in which algorithmic instance j has been
decomposed contribute to its loss function proportionally to
their respective data sizes (i.e., with weight /).
We assume that the worker nodes running algorithm

exchange intermediate results (the weights, in the case of anML
algorithm) every seconds, where the symbol represents
classes of algorithms with different time scales. For example,
we could have three different classes (∈ {1,2,3}), one for
training requiring extensive time that is not time critical, one for
time-critical inference, and one for generic inference.
Therefore, the time axis can be viewed as divided in time
periods of duration (Fig. 2) during which a certain number
of samples are processed at the resource (worker) where they
are gathered. Note that, for stability, the average number of
samples that are processed at a resource during a period should

Fig. 1 The abstract architecture considered

isense
Rectangle

6
TNSM-2022-05733.R2

be equal to the average number of samples generated within a
(previous) interval of duration at the corresponding devices
that send their samples to that resource. The periods are
asynchronously defined for each resource, in the sense that their
start (and finish) times are not generally aligned. The devices
feed an algorithm either continuously (streaming) or in batches
(at the end of a period) by uploading their data to the appropriate
processing, storage, memory and network resources. During a
period, a resource unit performs computations by processing a
sample upon its arrival or a batch of data received at the
previous period (i.e., until the current period begins). At the end
of a period the worker sends the new values of its parameters
to an aggregation node or to the rest of the workers, depending
on the architecture. The parameters are updated by minimizing
the overall loss function, e.g., given by Eq. (2), and the new
values of the parameter vector are communicated to the
worker nodes. Note that in the case of synchronous training, the
aggregation server has to wait until it has received all the new
set of parameters, before starting a new period. In asynchronous
training, the weights of the parameters can be incorporated
asynchronously as they arrive. Therefore, in synchronous
training there is a notion of an iteration (period) that all worker
nodes operate in. In asynchronous training the worker nodes
may be at a different iteration, or use different period durations.
In the synchronous case, the worker nodes have to send updates
every fixed (or upper-bounded) amount of time. In the
asynchronous case they do so every some amount of time on
average. Also note that the number of a DMLmodel parameters
can be pruned [32], if desired, to reduce model size and the
related communication and computation requirements.

A. Communication and Computation phase
The total time to complete the processing of a batch is

 =

+

+

+

(3)

where
 is the time required for a worker to pull the

parameters that other workers have computed,
 the total

computation time required to finish the training,
 the time

required for a worker to push the parameters it has computed

and
 the time required to update the parameters to the

current values. In the case of asynchronous iterations, the terms

in Eq. (3) should be interpreted as mean values.
 is roughly

proportional to the size of parameters that have to be updated,
over the computational power of the resource that performs the
update (aggregation). It is generally of small importance
compared to the other variables and we will ignore it for the rest
of the paper. Depending on the architecture of each algorithm,
there could be different definitions and relationships between
the timings. We denote the aggregated roundtrip
communication time by

, with

 =

+

(4)

The data involved in both pulling and pushing are largely the
same in type and quantity. Therefore, the two timings are
considered equal, yielding

 = 2

+ (5)

where the size (in bits) of the model parameters, the
available bandwidth (in bits per second – bps) and the
propagation delay (in sec). The computation time is equal to:

=

(6)

where is the number of samples that have to be processed, H
is the number of times a sample is processed (number of epochs
in the case of DML), and p is the processing power in samples
processed per sec. In the evaluation section we will present a
more detailed version of the above equation.
Depending on the architecture of the distributed algorithm,

there could be different relationships between the durations

 and

. Assuming that the workers first complete a
computation round and then send the model weights for
aggregation/averaging (i.e., no overlapping of communication
and computation times), we have:

 =

+
 (7)

Thus,
 =

 , where ω=

.

The scalar ω represents the percentage communication
overhead. It depends on various parameters, including the
specific model, the communication architecture (e.g., all reduce
or aggregation server), and we expect ω <1 in most if not all
cases of interest. For example, in very large-scale distributed
ML, the communication time can take nearly half of the time of
training [22]. In the case of DML, if we assume pipelining the
communication overhead can be reduced up to 95%, and a
perfect overlap of computation and communication can be
achieved [21], where ≈

. In the case of inference, the
communication overhead is either zero (i.e., inference executed
in just one resource unit) or generally much lower than that for
the case of training (there is no communication of weights over
many epochs like in training). Moreover, the efficient layer
partitioning (model parallelism) of a Deep Neural Network
results in low communication overhead [3].
At each time period , device y produces and sends for

training = samples. Each ML task has to process a
total number of samples equal to

Fig. 2 An example of a distributed ML algorithm processing
samples at various worker nodes, who exchange model
parameters through an aggregator server. Device y sends either
continuously at rate λy or in batches of average size every
period data for processing at a worker node assigned to it.

isense
Rectangle

7
TNSM-2022-05733.R2

 = =

∈

 (8)

(where : = ∑)∈
within time for the system to be

stable, as we assume continuous arrivals over an infinite time
horizon. The computation power assigned to a worker node
should be enough to process the received samples (for a given
number of epochs Hj of an ML training algorithm) within time
. Otherwise, the work generated would be more than the work
that can be completed within a period and the system would be
unstable. The required number of epochsHj depends on the type
of the ML algorithm j (e.g., layers of a Neural Network), and
the desired convergence accuracy (as determined by prior
profiling-experimentation). In the simulation section we
provide more details about how the number of epochs affects
the processing requirements and its impact on the whole
monetary processing and bandwidth costs and trade-offs.
The communication resources allocated for transferring the

data from a device to the worker node assigned to it, should also
be sufficient. The communication resources needed between
the worker nodes and the aggregator are generally small. These
parameters are of small size (numbers) when compared to that
of the data samples (e.g., images). Therefore, the bandwidth
requirements for transferring the weights w of the model can be
ignored in the resource allocation problem and the main
communication parameter of interest is the propagation delay
(from the device to the edge or to the cloud).

B. The Vector of Resource Requirements

In order to perform the updates, each task needs certain
computation, memory, storage and network resources during
each time period. In particular, our assumption (valid in the
practical use cases mentioned in Section I) is that each task
running on a worker node has processing (CPU or GPU based),
memory, storage, ingress bandwidth requirements that are
roughly proportional to the number of samples it receives
and processes. If the communication architecture is a variant of
parameter server, the related resources include a number of
aggregators that also have to be allocated. Note also that this
proportionality assumption accounts for both model and data
parallelism. Moreover, the degree of parallelization of each
algorithm, is captured by the number of different tasks within
each algorithm. These are also notable differences of our work
compared to pre-existing offloading algorithms for generic
single tasks. The requirements are thus described by a vector of
resource requirement proportionality coefficients

 = [,,, ,]

where G,M, V, B, and Θ are parameters that reflect the amount
of processing (in e.g. Floating Point Operations – FLOP),
memory (, in bytes), storage (, in bytes), number of
bits () communicated to the nodes, and processing
(in FLOP) for weight aggregating purposes that each
sample requires for the specific ML task of algorithm , and
for a specific accuracy level . The rationale for introducing the
resource requirements vector is that each sample (e.g.,
jpeg image) in the task requires some specific processing in
order to be handled, some specific memory and storage, and it

has a given size to be communicated, for a given accuracy . It
is worth noting that we consider here accuracy as a kind of
resource that can be tapped to reduce processing and bandwidth
requirements (“approximation as a resource”), with higher
accuracy typically requiring more resources. So, depending on
the availability or not of the physical resources, the accuracy
can be adjusted accordingly. The accuracy of an ML algorithm
depends on many factors, some of which can controlled/
adjusted, such as the number of epochs H used, weight
regularization, depth of the Neural Network, and mini-batch
size. For example, accuracy can be improved for small mini-
batch sizes. However, this increases the training time as more
frequent calls for expensive multiplications are required [33].
The entries of vector depend on accuracy α in different
ways: e.g., if accuracy in a Neural Network algorithm j is
controlled through the number of epochs Hj used (i.e., the
number of times each sample is used in computations), then
 will depend linearly on Hj, while the other parameters of
 will be mostly independent of Hj. If accuracy is controlled
through the number of precision bits used in encoding a sample,
then the dependence of on it is linear, while the impact on
the other vector parameters will be different. We assume that
the dependence of the requirements vector on the desired
accuracy level α is a known function of α. In practice, the
dependence is complicated and not fully known. Therefore, we
consider a finite and coarse granularity of accuracy levels. For
example, we could have a finite set of options A={αgood, αmedium,
αlow}, in which case we assume we know for α ∈A. The
exact resource requirements for each task and accuracy level
α can be determined by profiling or through ML benchmarks,
such as MLPERF [34]. Certain strategies can be employed to
determine the requirements for a specific set of parameters such
as the number of epochs or batch sizes (that affect the accuracy)
for a certain application and execution environment [35]. The
process involves modified two inputs of the algorithm, and
monitoring their impact on accuracy. For example, for a given
set of parameters (e.g., three different batch sizes or number of
epochs) we can increase the number of GPUs for a given task
and keep all the other parameters the same. Then we monitor
the resulting accuracy as a function of the processing power for
the different model parameters. Additionally, we can scale the
batch sizes without significantly reducing the accuracy.
Depending on the number of data samples, we can use different
functions of scaling (e.g., linear, cubic) based on the number of
GPUs and monitor the resulting accuracy. A small resource
overprovisioning can be used to ensure that the allocated
resources will always be adequate for a given accuracy.
In our modeling, it was natural to assume that the amount of

the different type of required resources proportionally depends
on the number (or rate) of the samples. The proportionality
constants that convert samples to requirements are given by the
entries in . Of course, the values depend on the type
of algorithm (e.g., parameters G, M, V, B will be different for
DML image or voice recognition), on the compression
techniques used to encode an image or voice sample, etc. More
specifically, a task has processing workload

isense
Rectangle

8
TNSM-2022-05733.R2

(measured, e.g., in number of FLOP) that has to be executed
within a time period . Assuming perfect pipelining of
computation and communication, the task requires processing
rate ⁄ = ∑ ∈

in, e.g., FLOP per sec, or

samples processed per sec. If pipelining is not used, the required
processing rate should be increased by 1+ω, to account for the
communication overhead (the same work has to be completed
within time P0/(1+ω)). Similarly, a task requires memory
, storage

 (as the samples have to be stored for

the entire duration) and aggregation processing
. The

required ingress bandwidth constant of proportionality

can be set equal to the number of bits needed to represent a
sample (representing a measurement, an image, a sentence,
etc.). The total ingress data required for the worker node
running task will then be , and the ingress rate

/. When assigning tasks to resources, we will use this
total ingress bandwidth requirement as an allocation criterion
(ignoring the number of links on the path connecting the worker
with the specific devices that feed data to it).

C. Edge-Cloud Resource Infrastructure Model

The infrastructure on which the tasks will be executed,
consists of an edge and a cloud network. The edge network
includes a set of nodes that can be used by the tasks. More

specifically, each edge node has finite
 processing (GPU

or CPU) model capacity (e.g., in FLOP per sec or
samples/sec),

 memory,
 storage,

 incoming b/w to
receive the data from the devices and

 aggregator processing
capacity. Obviously, the sum of the required resources of all the
tasks that are assigned to a node should not exceed the node’s
capacity. The cloud network, on the other hand, is assumed to
have infinite resources. One difference between the edge and
the cloud are the respective monetary processing and bandwidth
costs. The cost to use a model q processing unit is defined as

 at the edge and

 at the cloud. The cost of ingress b/w is
defined as

 at the edge and
 at the cloud. Finally,

another differentiator between the edge and the cloud is
propagation delay. Since the edge network is much closer to the
devices, the propagation delay to the edge, denoted by , is
expected to be significantly lower than the respective delay to
the cloud, denoted by . Certain algorithms j (e.g., ML

inference jobs) may have stringent constraints on the maximum
acceptable propagation delay, denoted by (= ∞ for delay
insensitive jobs). This should be accounted for by the resource
allocation algorithm. The propagation delay is less important
for DML training scenarios, where computation requirements
and processing times are generally larger. Nevertheless, a
similar constraint can be introduced in the formulation in a
straightforward way for the training scenarios as well. Typical
values for the delay and the monetary costs of the edge and the
cloud [36][37][38][39] are given in Fig. 3. More details for
these values are provided in Section IV.
The goal of the resource allocation algorithm is to reserve the

appropriate number of resources for the tasks (including the
specific edge node where each task will be processed), while
minimizing certain objectives and satisfying all the constraints.

IV. RESOURCE ALLOCATION ALGORITHMS

A. ILP Algorithm

In this subsection we present an ILP algorithm for assigning
edge and cloud resources to the tasks. The algorithm receives
certain inputs, and using some related constraints aims to
allocate the network’s resources (the variables of the
algorithm), while satisfying the objective. The formulation
assumes one aggregation (parameter) server for each ML
training job, but can be modified in a straightforward way to
account for other algorithmic instances, e.g., DML with
multiple aggregation servers or for all-reduce architectures. The
algorithm provides a solution that remains valid for as long as
the input parameters are valid.Whenever the parameters change
significantly (e.g., the generation rates in samples/sec for
device y) in a way that renders current resources inadequate to
finish the tasks on time, the algorithm is re-executed to yield a
new solution. During this re-execution of the algorithm (either
of the ILP or of the heuristic to be given in this or following
subsection, respectively), one may opt to treat the variables
indicating the allocation of the other tasks as fixed, so that the
other tasks are unaffected. Another possibility is to penalize the
difference between the current and the new solution so that
these differences are minimized.
The objective of the resource allocation problem is to

minimize the total cost to serve the jobs and to maximize their
accuracy, subject to delay constraints and also constraints on
the available edge resources. Note that the two individual
objectives are contradictory. To maximize accuracy, additional
resources are required to finish the computations within the
training period

, also increasing the cost. We employ a
weight to control the importance of each individual objective
(cost, accuracy) in the objective function of the ILP algorithm.

Inputs:

,
 ,

,
 ,

,
 , , , ,

,
,

,
, , , ,

, ,
Variables:

,

Fig. 3 Indicative values of edge and cloud delay,
processing and bandwidth costs

isense
Rectangle

9
TNSM-2022-05733.R2

The symbolism in binary variable
 means that there is a

different variable for every different node , for every
different algorithmic job , for every different task , for every
different GPU model , and for every different accuracy .
Objective:
The objective is to minimize the total cost for serving the

jobs and to maximize the accuracy. The relative importance of
each individual objective is controlled by a weight W. The cost
of each job depends on the amount of b/w, the model of GPU
and whether it is served at the edge or the cloud:

⎝

⎜
⎜
⎜
⎜
⎛(1 −)

 +

+

 +

−

+

 ⎠

⎟
⎟
⎟
⎟
⎞

(9)

Subject to the following constraints:
 Each task of a job should be served once with one accuracy

option, at the edge or at the cloud and each task should use
only one model of GPU:

∀,∀:

∈

+

= 1 (10)

 Each edge node should have enough (#GPUs, memory,
storage, bandwidth, aggregator) capacity to serve the
assigned tasks. So, for all nodes we sum all the resources

that a job uses (determined by variables
), and this

sum should be less than the capacity of that node:

∀ ∈ :

≤

∀ ∈ :

≤

∀ ∈ :

≤
 (11)

∀ ∈ :

≤

∀ ∈ :

≤

 In order for a delay sensitive (e.g., inference) job to be
served to the cloud, its maximum acceptable delay should
be respected:

∀ ,∀ ∶

 ≤ (12)

 The minimum required accuracy of the related jobs should
be respected:

∀,∀:

∈

+

≥
 (13)

In Eq. (9), the objective is to obtain a low total cost of serving

all the jobs (first part) with high accuracy (second part). The
first part of the right-hand side of the equation refers to the cost
of a job if it is served at an edge node n, while the second part
corresponds to the cost of a job served at the cloud. The edge
(or cloud) cost consists of the b/w jk required by each task,

times the per unit cost of b/w at the edge
 (or at the cloud

), plus the model q processing units of each task,
times the cost of each processing unit

 at the edge (or
 at

the cloud respectively). In the second part of Eq. (9) we subtract
(thus maximize) the (weighted) accuracy of the tasks that are
served at the edge and at the cloud. Equation (10) ensures that
all tasks of all jobs will be served at the edge or at the cloud.
The set of equations in (11) constrains the sum of resources
(processing, memory, storage, b/w and aggregators in case of
training jobs) used by the tasks at an edge node, to be less or
equal than the respective capacity of that edge node. In the case
of all-reduce or other architecture, the last equation is removed.
Equation (12) guarantees that if a delay-sensitive job is served
at the cloud, then the maximum acceptable delay of the job is
less than the delay of the cloud. Finally, Eq. (13) ensures that if
a job has a minimum required accuracy, this will be respected.
The solution of the algorithm consists of the binary values of

all
,

 variables. So, if for = 1, = 1, = 1, =

1, = 1, the related
 is equal to 1, this means that at the

first node of the edge the first task of the first job is served,
using the first option of the available GPU models, and the first
option of the available accuracy options. To infer related
statistics such as the percentage use of a node’s resources or the
mean accuracy of the tasks, we can sum over the set of decision
variables in the following way. For a specific node we sum
all variables for all the jobs, tasks, etc., each multiplied by the
related resources that the specific task requires. The result is the
resources of node that are occupied by tasks assigned to it. To

calculate the mean accuracy of the tasks, we sum all
 and

, again for all possible combinations of the parameters,
with the values being weighted by the % accuracy that
accuracy options correspond to, and dividing by the number
of tasks, to obtain the mean accuracy achieved by the tasks.
Finally, to calculate the total monetary cost of all the tasks, we
again sum over all possible values, and we employ the first
part of Eq. (9) that corresponds to the monetary cost.
The ILP algorithm can provide an optimal solution for the

resource allocation problem. However, in certain instances the
complexity of the problem may result in unacceptable running
times. For example, in the case where we have a large number
of edge nodes, jobs, tasks, GPU models and accuracy options,
the number of binary variables will be large. This will result in
a substantial amount of time to create the constraint equations,
prepare the ILP solver and find a solution. In these cases, an
efficient heuristic algorithm can provide faster a solution that,
under certain circumstances, can also be near-optimal.

B. Heuristic algorithms

We considered two kinds of heuristic algorithms: a greedy
one, and one based on simulated annealing [40]. The greedy
algorithm is described in the respective listing. Its input is

isense
Rectangle

10
TNSM-2022-05733.R2

similar to the ILP algorithm. The difference is that the greedy
version receives as input the order in which the tasks will be
allocated. The algorithm first pre-calculates the minimum
amount of resources required by a task; this will be used at later
steps of the algorithm. Then the objective cost to allocate each
task at either the edge or the cloud is pre-calculated. Afterwards,
for the given ordering of the jobs, the algorithm tries
sequentially to assign each task to the appropriate location. If
the location with the least cost is the cloud, then it simply
assigns it there, since the cloud has infinite resources. If the
location with the least cost is the edge, then it starts searching
the edge nodes iteratively, until it finds a node with adequate
resources. If such a node is found, the task is allocated, and the
node’s available resources are decreased by the number of
resources the task requires. If the node does not have enough
resources to serve any other task, the node is removed from the
respective list. In the case that there are no available edge
resources to serve the task, then it is served by the cloud.
The order in which the heuristic algorithm (sequentially)

considers the tasks, affects the solution obtained. A simulated
annealing algorithm can be used to search for better solutions
(different serving orders) according to the total objective cost.
Simulated annealing iteratively searches for solutions to
approximate the global optimum of a function. At each step the
algorithm considers some neighboring states/solutions
according to a parameter called “temperature”. At the beginning
of the iterations the temperature is set to a high value. The

algorithm randomly considers a new state at some distance from
the current solution. The higher the temperature, the higher the
distance of the new candidate state. As the iterations increase,
the temperature decreases, and the algorithm converges to the
final solution. There are additional nuances in the application
of the algorithm [40]. In our case, for a given number of
iterations, the algorithm randomly changes the serving order of
a certain number of tasks. The higher the temperature, the larger
number of tasks change order. The candidate solution is then
considered to be served according to the aforementioned greedy
algorithm. When the iterations end, the algorithm returns the
best objective cost it has found, and the specific allocation of
the tasks at the edge and at the cloud.

C. Optimality and complexity of the algorithms

The resource allocation problem at hand is a combinatorial
optimization problem. We are given a set of tasks. We must
figure if, where, how many, and under what options can the
tasks be allocated at the edge (or at the cloud). A simpler
allocation problem would be bin packing. In this case, items of
different sizes (in our case tasks with only one resource
requirement) must be packed into a finite number of bins, each
of a fixed given capacity (in our case one type of edge node
resource). This is a known NP-complete problem, implying that
our problem is also NP-complete, since even its simplified
version is NP-complete.
The ILP formulation given in Section IV.A provides the

optimal solution, when tractable and solved with an exact
method (e.g., branch and bound, cutting planes). However, the
required time may be non-polynomial in general.
The complexity of the greedy algorithm mainly depends on

the total number of tasks that have to be allocated. The
algorithm first computes the cost of serving each task at the
edge or the cloud for all possible CPU/GPU models and
accuracies . If a task has to be served at the edge, a total of
nodes have to be searched in the worst case. When a node does
not have enough resources to serve any task, it is removed from
the list. Also, the algorithm selects the first node that has
enough resources to serve the task. In any case, the complexity
of the greedy algorithm is (·|Q|·|| + ·||). The
simulated annealing, tries a number of different orderings , so
its complexity is ·|Q|·|| + ·||·. Regarding the
optimality, if the edge resources are enough to serve all the tasks
that have to be served at the edge according to the objective
cost, a simple greedy algorithm provides a near-optimal
solution. Otherwise, the solution is (highly) likely to be
suboptimal, depending on the deficit of the edge resources.
Note that in many cases, the simulated annealing cannot find
the optimal solution, regardless of the number of iterations. The
reason is that in each step, the algorithm decides to allocate a
task by minimizing the individual objective cost of the task.
This cost depends on the chosen accuracy and location (edge or
cloud). However, the overall optimal policy may sometimes
involve making an individually suboptimal allocation decision
for certain tasks. For, example, a task may have to be served at
the edge, and with the best possible accuracy (meaning a large
number of GPUs) in order to minimize its individual objective

Greedy resource allocation algorithm
Inputs: ,,,,

 ,

,

 ,
 ,

 ,

Output: The allocation of all jobs at the edge/cloud, respective
metrics such as cost, usage statistics etc.
Procedure:
1: Allocate tasks with strict constraints (accuracy, delay)
2: Find min task resource requirements () among all tasks
3: for task
4: success=0
5: for a_gpu_model ∈

6: for an_accuracy ∈
7: Calcul cost (cost+acc) to serve at cloud or edge
8: Select least expensive option (location, gpu, accuracy)
9: end for
10: end for
11: if location==edge
12: for node n∈ N
13: if

 <

14: Allocate to n
15: Update the current resources of node n
16: success = 1
17: break
18: end if
19: if

 <
20: Remove n from N
21: end if
22: end for
23: end if
24: if success == 0
25: Allocate to cloud
26: end if
27: end for

isense
Rectangle

11
TNSM-2022-05733.R2

cost. However, the overall optimal allocation may actually be
to serve it at the edge with a little worse accuracy, thus less
required GPUs, so that certain edge resources are left for other
tasks to also be served at the edge. Note that if a task has to be
definitely served with a specific targeted accuracy, this is taken
into account by the algorithm. These scenarios are difficult and
computationally expensive to be considered by a heuristic
algorithm.

D. Implementation of the algorithms

To implement the resource allocation algorithms, the
following inputs must be calculated: the vector of resource
requirements of each task and the vector of available
resources of each node. In Section III.B.1 we mentioned the
use of profiling to determine the vector of resource
requirements. As far as vector is concerned, we assume that
before each resource assignment takes place, all edge nodes will
communicate their current resource availability, so that the
allocation algorithm will employ an updated figure.

E. Convergence of the algorithms

Regarding the ML convergence properties, they depend on
the type of algorithm used, the specific architecture, its
parameters, etc. [33]. We don’t look into the convergence
properties in any detail, as it is outside the scope of our paper.
Convergence properties are, however, modeled and accounted
for in our work through the resource requirement coefficient
vectors. These vectors characterize the ML task at hand, as they
define the resource usage (number of resources, time used,
epochs, etc.) required to achieve a specific accuracy.
Regarding the ILP convergence, note that it is not guaranteed

to find the optimal solution in polynomial time. However, in
our experiments we noticed that the ILP solver was able to find
optimal solutions (as demonstrated by the optimality gap of the
solution given by the ILP solver) in a few seconds or minutes
(depending on the scenario) as describe in the evaluation
section. Whether or not this time is acceptable, depends on the
specific use case. If it is not acceptable, the optimality
requirement can be relaxed.
The aforementioned algorithms allocate resources at the edge

or the cloud with the objective to minimize the total cost and
maximize the accuracy, while satisfying the constraints and the
delay requirements of the jobs. Since there is a large number of
optimization parameters, the solution to the problem is not
trivial. In the following section we examine various scenarios
and evaluate the trade-offs in each case.

V. EVALUATION RESULTS

To evaluate our resource allocation framework and quantify
the edge-cloud cost relationships, we performed a number of
simulation experiments. We used Python and the Pyomo [41]
optimization software to code the ILP, and IBM CPLEX [42]
to solve the problem on a desktop computer with a quad-core
CPU at 4 GHz with 16 GB RAM.

A. Simulation parameters

To demonstrate the running times of the algorithms in

resource demanding circumstances, we initially assumed a
large, 60-node edge network with finite resources. Each edge
node has 5 racks, 1 rack has 10 servers, and 1 server has 4 low
cost and 2 higher cost GPUs, for a total of 200 low cost and 100
higher cost GPUs per node. Each edge node is also considered
to have the following resources available exclusively for
distributed computation purposes: 25 GB RAM, 10 TB of
storage, 10 Tbps incoming bandwidth and 6000 CPU physical
cores (that could correspond to approximately 100 CPUs). We
also assumed a cloud network with infinite resources.
We considered a scenario consisting of a total of 100 training

image recognition ML jobs. The size Bj of each sample (image)
of a job j is chosen uniformly from the following set of values:
[0.4, 0.8, 1.2, 1.6, 2, 2.4] MBs / sample. The available GPU
models q were NVIDIA DGX-1 with 1 (low cost) or 8 (higher
cost) GPU V100 16G. The respective cost of these GPUs at the
cloud is $2.08/hour and $16.7/hour [36]. The b/w cost to
transfer data to the cloud is $0.01/GB [36]. More specifically,
the respective processing instance name in Amazon is
p3.2xlarge or p3.16xlarge, and the pricing corresponds to
reserved instances. The required b/w of each task is derived
by multiplying the generation rate of samples/sec by the size
Bj in MBs/sample and by the duration of period in seconds.
This figure equals to the amount of data that have to be
transferred within one period. The calculation of the required
storage and memory is relatively trivial and does not play a
significant (monetary) role in the resource allocation problem,
so it will be ignored in the performance results.
We assume that the jobs do not have a minimum required

accuracy. This allows for clear evaluation of the allocation
trade-offs between resource costs and accuracy. We examined
a set of different parameters to evaluate the trade-offs between
processing and b/w cost at the edge and at the cloud. More
specifically, we assumed different: i) edge vs cloud bandwidth
costs, ii) edge vs cloud processing costs, iii) number of epochs.
According to [37] the edge’s b/w costs can be approximately
0.1 times the cloud’s. We therefore assumed that the edge b/w
cost could be ⋲[0.5, 0.1] times the cost to transfer
the data to the cloud, that is, =

. Moreover, according
to [38], the edge processing costs

 can be approximately
=1.5 times the cloud processing costs

, that is,
=

.
We therefore assumed that the processing costs at the edge
could be ⋲[1.5, 2] times more than that of the cloud.
Each of the 100 training jobs consists of either 3, 4,…, 7 ML

image recognition tasks, uniformly distributed. The sum of the

TABLE II
IMPORTANT SIMULATION PARAMETERS

Symbol Value Symbol Value
N 60 nodes 30 sec
J 100 jobs || 3, 4,…,7 tasks

λ
15

samples/sec

166, 566
samples/sec

 300 GPUs

 10 Tbps

 $0.01/GB

 $2.08, $16.7/hour

isense
Rectangle

12
TNSM-2022-05733.R2

sample production rates of the devices providing data to task
tjk is = ∑ ∈

=15 samples/sec. We consider that the

duration of the training period is = 30 seconds, yielding
 = 150 samples processed in each period. The exact number
of the ML tasks per job, the and the do not play an
important role to the simulation and the resulting trade-offs.
They mainly affect the magnitude of the problem (i.e., how
many processing, b/w, etc., resources each task requires, and
not the decision for the allocation of the jobs at the edge or
cloud). We also assume that each ML task could be served with
two different accuracies = { ,}. Next, we will use
realistic GPU performance figures to determine the number of
aforementioned NVIDIA GPU units required per task
and per period, based on the number of samples of each task
tjk processed per period and the accuracy αj. To do this, we have
to take into account the total samples that have to be processed
during each period , which is equal to the number of samples
 multiplied by the number of epochs (i.e., iterations over
the same number of samples). This figure has to be processed
by the GPU units (with the performance measured in
samples/sec[44]), within seconds. The computational
performance

 (of model and accuracy) of 1 GPU V100
16G unit for image recognition training according to [44] is

 = 166 or 566 samples/sec for single-precision floating-
point math – FP32 or mixed precision accuracy respectively.
We assume that the training is fully pipelined, i.e., the
computation and communication times fully overlap. The
training performance of a resource q consisting of 8 GPU V100
units is

 = 1210 or 4160 samples/sec respectively. If a
sample has to be processed times (epochs), the total number
of GPU units required for the ML task is:

 =

 =

 (14)

(rounded above so that it is integer).
The number of epochsH required for certain ML benchmarks

to reach the required accuracy varies from 5 to approximately
50 epochs [34]. In other cases, a larger number of epochs (e.g.,
2000) may be required. Since we assume continuous learning
with many training datasets, a low number of epochs can be

employed. On a long enough timeline, the accuracy of each ML
model will converge to the required. We assume that the
number of epochs H can be [1, 100, 200, 300, 400, 500, 600].
The total running time of the ILP algorithm for these realistic
parameters was 11 seconds. In Section V.B.3 we provide more
details about the running time of the ILP and the heuristics for
an even larger problem.
Finally, we do not assume any inference jobs for the

evaluation due to space limitations, although we conducted
related simulations. The results are similar to the training case.
The main difference is that the GPU performance in the case of
inference depends on the batch size. The bigger the batch size
(e.g., number of consecutive images that we want to perform
image recognition), the better is the performance of the GPU.
Thus, the less important are the processing costs for the
allocation of inference jobs.

B. Simulation Results

1) Edge vs Cloud allocation decisions
First, we examined how the different values of some assumed

parameters affect the allocation of a training task at the edge or
at the cloud. In Fig. 4 we show the number of training tasks (496
in total) allocated at the cloud as a function of the number of
epochs and for different edge/cloud processing and b/w costs.
For simplicity reasons, we do not depict the allocation of the
remaining tasks at the edge. In Fig. 4a, the processing cost ratio
of edge to cloud is =1.5. When the number of epochs is small
(thus, relatively little processing is required), all (or most) tasks
are served at the edge, since the b/w costs are lower than the
processing costs. As the number of epochs increases, some
tasks are served at the cloud, depending on the b/w cost ratio.
The increased number of epochs means that the total processing
cost of a task play a more important role than the b/w cost to the
allocation of the tasks. For the b/w edge/cloud cost ratio of
=0.1, the allocation does not change between 200 and 400
epochs. This is due to the greater importance the b/w costs have
compared to the processing, under these circumstances. Also,
even though the difference of edge and cloud processing costs
is small, for large number of epochs the processing costs are so
much greater than the bandwidth costs, that many tasks are
served at the cloud. Note that as we will see in Fig. 5, the cloud

Fig. 4b Number of tasks allocated at the cloud for ratio
of edge to cloud processing costs ρq=2

0

100

200

300

400

500

600

1 100 200 300 400 500 600

N
um
be
r
of
ta
sk
s

Number of epochs

0.5

0.1

Ratioof edge
to cloudb/w
cost ρbw

Fig. 4a Number of tasks allocated at the cloud for ratio
of edge to cloud processing costs ρq=1.5

0

50

100

150

200

250

300

350

400

450

1 100 200 300 400 500 600

N
um
be
r
of
ta
sk
s

Number of epochs

0.5

0.1

Ratioof edge
to cloudb/w
cost ρbw

isense
Rectangle

13
TNSM-2022-05733.R2

serves smaller (in terms of Mbytes) tasks. In Fig. 4b the edge
processing costs are even more expensive than the cloud’s
(=2). We notice that the allocation of tasks tips towards the
cloud more quickly. The different b/w costs still seem to play a
relatively significant role for the allocation of the tasks. Despite
the edge processing costs being twice the cloud’s, the edge is
still more preferable until at least 200 epochs. Overall, from Fig.
4 we can conclude that the edge is more preferable to serve tasks
with relatively low processing requirements. The different b/w
cost ratios in some cases can play a sizeable difference in the
allocation of the tasks. In Fig. 4b for example, the cloud can
serve in some cases more than two times more tasks when the
ratio is is 0.5 as opposed to 0.1.
Fig. 5 depicts the mean size in GBs for 500 epochs of a job’s

task that is served at either the edge or the cloud when the
edge’s processing costs are =1.5 times the cloud’s. Similar
results can be drawn for different epochs and processing costs
(as long as some tasks are served at the edge and others at the
cloud). The size of a task depends on the generation rate in
samples/sec of its related devices, the duration of , and the
size of each task’s sample. The first two variables are the same
for all the jobs we considered. Thus, the differentiating factor is
the size of a task’s sample. Note also that we have assumed a

random number of tasks per job, implying that the definite size
of a job depends also on the exact number of the tasks.
However, this does not significantly affect the decision on the
allocated location of a job. The increased number of tasks not
only means more data to transfer (hence increased b/w costs),
but also more samples to calculate (hence analogous increase
on the processing requirements). Since we have assumed that
the performance of a GPU in samples/sec is constant regardless
of the size of a sample, the differentiating factor in whether a
task will be served at the edge or at the cloud is the size of its
samples. We notice that the edge tends to serve tasks with large
size. It seems that in order for a task to be served at the cloud,
it has to be significantly smaller than the tasks that are typically
served at the edge. The trends are similar for different edge
processing costs. Also, when the number of epochs increases,
the contribution of the processing costs also increases.
Therefore, a task has to be larger to be served at the edge. Note
also, that we considered an image recognition training scenario,
where samples are relatively large. In different applications the
size of the samples can be smaller, leading to less required b/w,
and different job distribution at the edge and cloud. For
example, we also evaluated Automated Speech Recognition
training. In this scenario, the performance of the low-cost GPU
is around 600 sequences/sec, while the size of a sample (word)
is very small, and the b/w costs are insignificant. In this
scenario, all jobs were served at the cloud when the edge
processing costs were greater than the cloud’s, regardless of any
other parameter.

2) Monetary cost evaluation
In this subsection we investigate the effect the different

parameters have on the monetary cost of the jobs served at the
edge and at the cloud. Fig. 6 presents the total cost to serve all
jobs for one training round, decomposed to edge and cloud b/w
and processing costs and for different number of epochs. In Fig.
6a we assumed edge to cloud b/w cost ratio =0.1, and edge
to cloud processing costs of =1.5. The main cost contributor
is the processing. As the number of epochs increases, the edge
(and later cloud) processing costs play more important role in
the total cost of the jobs. The (inexpensive) edge b/w costs are
actually a sizeable part of the total edge costs for 1 and 100

Fig. 6a Total decomposed cost of jobs for edge/cloud
cost b/w ratio ρbw=0.1 and processing ratio ρq=1.5

0

1

2

3

4

5

6

1 100 200 300 400 500 600

C
os
ti
n
$

Number of epochs

edge b/w

edge proc.

cloud b/w

cloud proc.

Fig. 6b Total decomposed cost of jobs for ρbw=0.5,
ρq=1.5

0

1

2

3

4

5

6

7

1 100 200 300 400 500 600

C
os
ti
n
$

Number of epochs

edge b/w

edge proc.

cloud b/w

cloud proc.

Fig. 5Mean size of a job allocated in edge or cloud for
500 epochs and for different b/w cost ρbw ratios of edge

to cloud and processing ratio ρq=1.5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.1 0.5

si
ze
in
G
B
s

Ratio of cost of edge to cloud bw

edge

cloud

isense
Rectangle

14
TNSM-2022-05733.R2

epochs (38.5% and 17.2%, respectively). For 600 epochs, the
cloud processing costs are a considerable fraction (76.8%) of
the overall cloud costs. So, in lower number of epochs the edge
is more preferable. When the edge to cloud b/w cost ratio is 0.5
(Fig. 6b), the edge b/w costs play an even more important role.
For the case of 1 and 100 epochs, the b/w costs are 75.88% and
54.2%, respectively, of the total edge costs. As the number of
epochs increases, so does the contribution of processing costs
(both edge and cloud). For 600 epochs, the cloud processing
costs are approximately 62.5% of the overall cloud costs.

3) Algorithm Comparisons
In this subsection we will first compare the optimality of the

heuristic algorithms to the ILP algorithm.We will then compare
the performance of each algorithm in terms of monetary cost to
achieve a certain accuracy. As we mentioned in the previous
section, when the edge has enough resources to serve all the
appropriate tasks, then a simple greedy algorithm provides the
optimal solution. So, in this subsection we limit the amount of
edge resources (assumed only one edge node), to clearly
compare the optimality of the algorithms.
In Fig. 7 we can see the gap of the greedy and the simulated

annealing algorithm from the optimal solution that the ILP
algorithm provides. For zero iterations, the simulated annealing

is a greedy algorithm. In this case, the gap to the optimal
solution is 14.7%. For 100 iterations, the gap quickly reduces
to 12.4%. After that, the reduction is much slower. For 2000
iterations the gap is 11.8%. The gap does not reduce very much
with the increased iterations for the reasons we had mentioned
in the previous section (about the optimality of the heuristics).
In Fig. 8 we compare the performance of the ILP algorithm

to the simulated annealing and the greedy algorithm. In this
scenario, we assumed a fixed edge to cloud GPU and b/w cost
ratio of 1.5 and 0.1 respectively, and a range of different values
for W: [0.2, … , 0.4]. For this range of values, we plot the
relationship between the mean accuracy of all the served ML
tasks and their total monetary cost at the edge and cloud. Again,
the edge resources are not enough to serve all the tasks. There
is no standard way to predict the exact trade-off between
accuracy and monetary cost for different values of . For
example, for larger amount of training jobs the total monetary
cost is larger. Therefore, a smaller value of may be required
to achieve the same accuracy. From this graph, one can also see
the monetary costs of ML apps with different accuracy
requirements. For example, certain security related ML apps
typically have high accuracy requirements. The effect and the
trade-off between accuracy and monetary cost of different ML
apps can be quantified using such a graph.
As far as the comparison of the three algorithms, the ILP

algorithm can achieve the best accuracy with the lowest
monetary cost. For the baseline 80% accuracy, the related costs
are $2, $2.44 and $2.55 for the ILP, simulated annealing and
greedy respectively. So, the ILP algorithm can serve the tasks
with the same accuracy, but at 18% and 21.5% lower cost
respectively. Moreover, for roughly the same cost ($2.7) the
ILP algorithm can achieve 87% percent mean accuracy,
compared to the 80% of both heuristics. To achieve the best
accuracy all the algorithms have as expected similar monetary
cost, since this case is the most expensive option and the
margins for economic decisions are very low. Using this case,
we can also compare the monetary cost of an algorithm that
optimizes only the accuracy, versus the alternatives that also
take into account the monetary cost at the objective. For
example, to achieve 90% accuracy, the monetary cost is $3.15.

Fig. 7 Effect of the number of simulated annealing
iterations to the gap from the optimal solution

8

9

10

11

12

13

14

15

16

0 100 400 800 1400 2000

%
G
ap
F
ro
m
O
pt
im
al
S
ol
ut
io
n

Simulated Annealing Iterations

Fig. 8Monetary cost and Accuracy performance
comparison

W≤0.2

W=0.25

W=0.3

W≥0.4

W=0.25

75

80

85

90

95

100

1 2 3 4 5

M
ea
n
A
cc
ur
ac
y
of
al
lt
as
ks

Cost in $

ILP

Annealing

Greedy

Fig. 9 Running time comparison

0,17
0

20

40

60

80

100

120

140

100 400 800 1400 2000

ILP Greedy Simulated Annealing

R
un
ni
ng
tim
e
in
se
c

isense
Rectangle

15
TNSM-2022-05733.R2

The algorithm that achieves the best accuracy requires
significant additional costs ($4.38).
In Fig. 9 we compare the running times of the ILP, the greedy

and the simulated annealing algorithms. To demonstrate the
suitability of the algorithms in larger problem instances, we
assumed a total of 1000 jobs while keeping all other simulation
parameters the same as defined in section V.A. The running
time of the ILP algorithm includes the time to prepare all the
necessary equations and constraints, the time to prepare the
solver, and the time to actually solve the problem (which is the
time reported by the solver). The latter is actually a (small)
fraction of the total required time described above. As we can
see in the figure, the ILP requires the largest amount of time to
find a solution. The greedy algorithm can provide very quickly
a suboptimal solution. As the iterations of the simulated
annealing increase, a proportionally larger amount of time is
required to provide a solution. After a certain point, the
additional iterations and increased running time do not offer
significant benefits in terms of the objective cost (Fig. 7). In
conclusion, the ILP algorithm can provide a solution in a rather
short amount of time even for large problem instances.
However, in cases of time-critical jobs, even this time could be
unacceptable. In even larger instances with increased number
of jobs, large pool of available GPU models, accuracy options,
etc., the ILP running time may be prohibitively large. In these
cases, a greedy algorithm can be used to provide a faster
solution that is usually near-optimal. If the optimality gap is
significant, a simulated annealing algorithm can be used to
reduce it, while keeping the total running time relatively low.
Generally, for each given problem, its dimensionality and its
timing constraints, a suitable solution algorithm should be
chosen.

4) Accuracy vs delay trade-offs
In this subsection we focus on the trade-off between accuracy

and delay requirements. More specifically, we assume an
increasing number of tasks with strict delay requirements.
These tasks have to definitely be served at the edge, thus
occupying the limited edge resources, leaving less resources
available for the rest of the tasks that could benefit (in terms of
monetary cost) from the edge. We assume that a ratio =

[0.1, 0.2, … , 0.8] of the jobs are inference jobs requiring 1
processing unit and having strict delay requirements. We also
limited the number of edge nodes to one, so that the edge
resources are not enough to accommodate all tasks that would
otherwise have been served at the edge. In Fig. 10 we see that
as the number of delay-critical tasks increases, the mean
accuracy of the tasks decreases. The allocation algorithm
decides to lower the accuracy of certain tasks (if their
constraints allow it), to decrease their resource requirements so
that the edge can serve more tasks. Overall, we can see that
there are significant trade-offs between accuracy, edge/cloud
monetary costs, and delay requirements that play significant
role in the allocation of the tasks.

VI. CONCLUSIONS

In this paper we examined the problem of resource allocation
for distributed computation applications. We proposed a
framework to allocate resources for jobs at the edge–cloud
continuum. The objective was to optimize the required
monetary cost and accuracy to serve the jobs, while respecting
possible stringent timing constraints. We examined various
optimization parameters pertained to processing/bandwidth
costs, accuracy and delay in both edge and cloud resources. We
proposed an ILP algorithm and also examined certain heuristics
to solve the resource allocation problem. We evaluated the
framework using realistic simulation parameters for a DML
scenario. The results indicate that the processing costs play an
important role in the allocation of a job at the edge or at the
cloud. The cloud bandwidth costs and the delay constraints can
also be significant in certain scenarios. The heuristic algorithms
can provide a quick solution that is close to that of the ILP
(indicative gap to optimal solution ~12%). Nevertheless, the
allocation optimality of the ILP can provide significant
monetary and accuracy benefits. Future work includes the
possibility that a job can be served (partially) at the edge
devices. Also, future work includes the modeling of energy
consumption as well as prediction of the future workload to
better manage the available network resources.

REFERENCES
[1] R. Shokri, V. Shmatikov, “Privacy-Preserving Deep Learning,” ACM

SIGSAC Confe. Computer and Communications Security (CCS), 2015.

[2] J. Konečný, B. McMahan, D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575 (2015).

[3] T. Mohammed, C. Joe-Wong, R. Babbar, M. D. Francesco, “Distributed
Inference Acceleration with Adaptive DNN Partitioning and Offloading,”
IEEE INFOCOM 2020.

[4] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, G. Min, “Energy-Efficient
Offloading for DNN-Based Smart IoT Systems in Cloud-Edge
Environments,” IEEE Transactions on Parallel and Distributed Systems,
33(3), pp. 683-697, March 2022.

[5] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M.’A. Ranzato, A. Senior, P. Tucker, K. Yang, A. Y. Ng, “Large
scale distributed deep networks,” NIPS, pp. 1223–1231, 2012.

[6] P. Mach, Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Communications Surveys &
Tutorials, 19(3), 1628-1656, 2017.

[7] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, S. Cui, “A joint learning
and communications framework for federated learning over wireless

Fig. 10 Delay vs accuracy trade-offs

85

86

87

88

89

90

91

92

93

94

95

20 27 34 40 47 51 52 56

M
ea
n
A
cc
ua
rc
y
of
al
l
ta
sk
s
(%
)

Number of tasks with strict delay requirements

isense
Rectangle

16
TNSM-2022-05733.R2

networks,” IEEE Transactions on Wireless Communications, 20(1), pp.
269-283, 2020.

[8] Z. Yang, M. Chen, W. Saad, C. S. Hong, M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, 20(3), pp. 1935-1949,
2020.

[9] J. Zhang, L. Khaled, “Mobile edge intelligence and computing for the
internet of vehicles,” Proceedings of the IEEE 108.2, 2019.

[10] K. Lin, C. Li, Y. Li, C. Savaglio, G. Fortino, “Distributed Learning for
Vehicle Routing Decision in Software Defined Internet of Vehicles,”
IEEE Transactions on intelligent transportation systems, 22(6), 2021.

[11] X. Zhao, P. Sun, Z. Xu, H.Min, H. Yu, “Fusion of 3D LIDAR and Camera
Data for Object Detection in Autonomous Vehicle Applications,” IEEE
Sensors Journal, 20(9), pp. 4901-4913, 2020.

[12] F. Rahimi, A. Ipakchi, “Demand response as a m arket resource under the
smart grid paradigm,” IEEE Transactions on smart grid, 1(1), pp. 82-88,
2010.

[13] D. Bertsekas, J. Tsitsiklis, “Parallel and distributed computation:
numerical methods,” Athena Scientific, 2015.

[14] M. Langer, Z. He, W. Rahayu, Y. Xue, “Distributed Training of Deep
Learning Models: A Taxonomic Perspective,” IEEE Transactions on
Parallel and Distributed Systems, 31(12), pp. 2802-2818, Dec. 2020.

[15] A. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends inMachine Learning, 7 (4–5), pp. 311-801, 2014.

[16] A. Nedić, A. Olshevsky, M.G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proceedings of the IEEE, 106(5), pp. 953-976, 2018.

[17] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z.
Lin, K. H. Johansson, “A survey of distributed optimization,” Annual
Reviews in Control, 47, pp. 278-305, 2019.

[18] C. Ma, J. Konečný, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik, M.
Takáč, “Distributed optimization with arbitrary local solvers,”
Optimization Methods and Software, 32(4), pp. 813-848, 2017.

[19] T. Ben-Nun, T. Hoefler, “Demystifying Parallel and Distributed Deep
Learning: An In-depth Concurrency Analysis,” ACM Comput. Surv. 52,
4, Article 65, 2019.

[20] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, B.-Y. Su, “Scaling Distributed Machine Learning
with the Parameter Server,” 11th USENIX Symposium on Operating
Systems Design and Implementation, pp. 583-598, 2014.

[21] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, “PipeDream: Fast and Efficient Pipeline
Parallel DNN Training,” arXiv:1806.03377v1, 2018.

[22] I. Thangakrishnan, D. Cavdar, C. Karakus, P. Ghai, Y. Selivonchyk, C.
Pruce, “Herring: Rethinking the parameter server at scale for the cloud,”
SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov. 2022.

[23] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos,
A. Leivadeas, N. Athanasopoulos, N. Mitton, S. Papavassiliou, “Task
offloading in Edge and Cloud Computing: A survey on mathematical,
artificial intelligence and control theory solutions,” Computer Networks,
195, 2021.

[24] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, K. Chan,
“When edge meets learning: Adaptive control for resource-constrained
distributed machine learning,” IEEE INFOCOM, 2018.

[25] X. Ran, H. Chen, X. Zhu, Z. Liu, J. Chen, “DeepDecision: A mobile deep
learning framework for edge video analytics,” IEEE INFOCOM, 2018.

[26] H.-J. Jeong, H.-J. Lee, C. H. Shin, S.-M. Moon, “IONN: Incremental
offloading of neural network computations from mobile devices to edge
servers,” ACM Symp. Cloud Comput. (SoCC), 2018, pp. 401–411.

[27] G. Drainakis, P. Pantazopoulos, K. V. Katsaros, V. Sourlas, A. Amditis,
“On the Distribution of ML Workloads to the Network Edge and
Beyond”, IEEE INFOCOM 2021.

[28] M. Chen, H. Wang, Z. Meng, H. Xu, Y. Xu, J. Liu, H. Huang, “Joint Data
Collection and Resource Allocation for Distributed Machine Learning at
the Edge,” IEEE Transactions on Mobile Computing 2020.

[29] H. Li, K. Ota, M. Dong, “Learning IoT in Edge: Deep Learning for the
Internet of Things with Edge Computing,” IEEE network 32.1, 2018.

[30] R. Zhou, J. Pang, Q. Zhang, C. Wu, L. Jiao, Y. Zhong, Z. Li, “Online
Scheduling Algorithm for Heterogeneous Distributed Machine Learning

Jobs,” IEEE Transactions on Cloud Computing, doi:
10.1109/TCC.2022.3143153.

[31] I. Sartzetakis, P. Soumplis, P. Pantazopoulos, K. V. Katsaros, V. Sourlas,
E. Varvarigos, “Resource Allocation for Distributed Machine Learning at
the Edge-Cloud Continuum,” ICC, 2022.

[32] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W. H. Lee, K. K. Leung, L.
Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE Transactions on Neural Networks and Learning Systems,
early access, DOI: 10.1109/TNNLS.2022.3166101, 2022.

[33] S. Gupta, W. Zhang, F. Wang, “Model accuracy and runtime tradeoff in
distributed deep learning: A systematic study,” IEEE ICDM, 2016.

[34] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D.
Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, A. Ike, B. Jia, D.
Kang, D. Kanter, N. Kumar, J. Liao, G. Ma, D. Narayanan, T. Oguntebi,
G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S. John, T. Tabaru,
C.-J. Wu, L. Xu, M. Yamazaki, C. Young, M. Zaharia, “MLPerf Training
Benchmark,” ArXiv abs/1910.01500 (2020).

[35] X. Wu, V. Taylor, J.M. Wozniak, R. Stevens, T. Brettin, F. Xia,
“Performance, energy, and scalability analysis and improvement of
parallel cancer deep learning candle benchmarks,” 48th Intl. Confe. on
Parallel Processing, Aug. 2019.

[36] “Amazon ec2 pricing,” available online:
https://aws.amazon.com/ec2/instance-types/p3/

[37] “Edge computing and transmission costs,” available online:
https://www.datacenterdynamics.com/en/opinions/edge-computing-and-
transmission-costs/

[38] “The economics of edge computing,” available online:
https://edgecomputing-news.com/2020/10/29/analysis-economics-of-
edge-computing

[39] O. Ascigil, T. K. Phan, A. G. Tasiopoulos, V. Sourlas, I. Psaras, G.
Pavlou, “On uncoordinated service placement in edge-clouds,” IEEE Intl.
Confe. on Cloud Computing Technology and Science (CloudCom), 2017.

[40] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, “Optimization by simulated
annealing,” science 220, no. 4598, pp. 671-680, 1983.

[41] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil,
B. L. Nicholson, J. D. Siirola, “Pyomo–Optimization Modeling in
Python,” Mathematical Programming Computation, 3, 219-260, Springer,
2017.

[42] “IBM CPLEX optimization studio,” available online:
https://www.ibm.com/products/ilog-cplex-optimization-studio

[43] “Mapping out edge computing: How dense is it?,” available online:
https://www.lightreading.com/the-edge/mapping-out-edge-computing-
how-dense-is-it/d/d-id/771128.

[44] “Nvidia resnext performance,” available online:
https://ngc.nvidia.com/catalog/resources/nvidia:resnext_for_tensorflow/
performance

isense
Rectangle

