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Abstract. Boolean grammars [A. Okhotin, Information and Computa-
tion 194 (2004) 19-48] are a promising extension of context-free gram-
mars that supports conjunction and negation. In this paper we give a
novel semantics for boolean grammars which applies to all such gram-
mars, independently of their syntax. The key idea of our proposal comes
from the area of negation in logic programming, and in particular from
the so-called well-founded semantics which is widely accepted in this area
to be the “correct” approach to negation. We show that for every boolean
grammar there exists a distinguished (three-valued) language which is a
model of the grammar and at the same time the least fixed point of an
operator associated with the grammar. Every boolean grammar can be
transformed into an equivalent (under the new semantics) grammar in
normal form. Based on this normal form, we propose an O(n3) algo-
rithm for parsing that applies to any such normalized boolean grammar.
In summary, the main contribution of this paper is to provide a semantics
which applies to all boolean grammars while at the same time retaining
the complexity of parsing associated with this type of grammars.

1 Introduction

Boolean grammars constitute a new and promising formalism, proposed by A.
Okhotin in [Okh04], which extends the class of conjunctive grammars introduced
by the same author in [Okh01]. The basic idea behind this new formalism is to
allow intersection and negation in the right-hand side of (context-free) rules.
It is immediately obvious that the class of languages that can be produced by
boolean grammars is a proper superset of the class of context-free languages.

Despite their syntactical simplicity, boolean grammars appear to be non-
trivial from a semantic point of view. As we are going to see in the next section,
the existing approaches for assigning meaning to boolean grammars suffer from
certain shortcomings (one of which is that they do not give a meaning to all such
grammars).
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In this paper we propose a new semantics (the well-founded semantics) which
applies to all boolean grammars. More specifically, we demonstrate that for every
boolean grammar there exists a distinguished (three-valued, see below) language
that can be taken as the meaning of this grammar; this language is the unique
least fixed point of an appropriate operator associated with the grammar (and
therefore it is easy to see that it satisfies all the rules of the grammar).

Our ideas originate from an important area of research in the theory of logic
programming, that has been very active for more than two decades (references
such as [AB94, PP90] provide nice surveys). In this area, there is nowadays an
almost unanimous agreement that if one seeks a unique model of a logic program
with negation, then one has to search for a three-valued one. In other words,
classical two-valued logic is not sufficient in order to assign a proper meaning to
logic programs with negation. Actually, it can be demonstrated that every logic
program with negation has a distinguished three-valued model, which is usually
termed the well-founded model [vGRS91].

We follow the same ideas here: we consider three-valued languages, namely
languages in which the membership of strings may be characterized as true, false,
or unknown. As we will see, this simple extension solves the semantic problems
associated with negation in boolean grammars. Moreover, we demonstrate that
under this new semantics, every boolean grammar has an equivalent grammar
in normal form (similar to that of [Okh04]). Finally, we show that for every
such normalized grammar, there is an O(n3) parsing algorithm under our new
semantics. Our results indicate that there may be other fruitful connections
between formal language theory and the theory of logic programming.

2 Why an Alternative Semantics for Boolean grammars?

In [Okh04] A. Okhotin proposed the class of boolean grammars. Formally:

Definition 1 ([Okh04]). A Boolean grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively, P is a finite set of rules, each of the form

A → α1& · · ·&αm&¬β1& · · ·&¬βn (m + n ≥ 1, αi, βi ∈ (Σ ∪ N)∗),

and S ∈ N is the start symbol of the grammar. We will call the αi’s positive
literals and the ¬βi’s negative.

To illustrate the use of Boolean grammars, consider a slightly modified example
from [Okh04]:
Example 1. Let Σ = {a, b}. We define:

S → ¬(AB) & ¬(BA) & ¬A & ¬B
A → a
A → CAC
B → b
B → CBC
C → a
C → b
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It can be shown that the above grammar defines the language {ww | w ∈ {a, b}∗}
(see [Okh04] for details). It is well-known that this language is not context-free.

Okhotin proposed two semantics intended to capture the meaning of boolean
grammars. In this section we demonstrate some deficiencies of these two ap-
proaches, which led us to the definition of the well-founded semantics. Both
semantics proposed in [Okh04] are defined using a system of equations, which is
obtained from the given grammar.

In the first approach, the semantics is defined only in the case that the system
of equations has a unique solution. This is a restrictive choice: actually most in-
teresting grammars do not correspond to systems of equations having a unique
solution. For example, even the simplest context-free grammars generating infi-
nite languages, give systems of equations which have infinitely many solutions.
For such grammars, it seems that the desired property is a form of minimality
rather than uniqueness of the solution.

Apart from its limited applicability, the unique solution semantics also demon-
strates a kind of instability. For example, let Σ = {0, 1} and consider the boolean
grammar consisting of the two rules A → ¬A&¬B and B → 0&1. The corre-
sponding system of equations has no solution and therefore the unique solution
semantics for this grammar is not defined. Suppose that we augment the above
grammar with the rule B → B. Seen from a constructive point of view, the
new rule does not offer to the grammar any additional information. It is rea-
sonable to expect that such a rule would not change the semantics of the gram-
mar. However, the augmented grammar has unique solution semantics, namely
(A, B) = (∅, Σ∗). On the other hand, suppose that we augment the initial gram-
mar with the rule A → A. Then, the unique solution semantics is also defined,
but now the solution is (A, B) = (Σ∗, ∅). Consequently by adding to an ini-
tially meaningless grammar two different information-free rules, we obtained
two grammars defining complementary languages. To put it another way, three
grammars that look equivalent, have completely different semantics.

Let’s now turn to the second approach proposed in [Okh04], namely the natu-
rally feasible solution semantics. Contrary to the unique solution semantics, the
feasible solution semantics generalizes the semantics of context-free and conjunc-
tive languages (see [Okh04][Theorem 3]). However, when negation appears, there
are cases that this approach does not behave in an expected manner. Consider
for example the boolean grammar with rules:

A → ¬B, B → C&¬D, C → D, D → A

This grammar has the naturally feasible solution (A, B, C, D) = (Σ∗, ∅, Σ∗, Σ∗).
It is reasonable to expect that composing two rules would not affect the semantics
of the grammar. For example in context-free grammars such a composition is
a natural transformation rule that simply allows to perform two steps of the
production in a single step. However, if we add C → A to the above set of rules,
then the naturally feasible solution semantics of the resulting grammar is not
defined. On the other hand, the technique we will define shortly, does not suffer
from this shortcoming.
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Furthermore, there exist grammars for which the naturally feasible solution
semantics is undefined, although they may have a clear intuitive meaning. For
example, let Σ = {a} and consider the following set of eight rules:

A → ¬B, A → D, B → ¬C, B → D,

C → ¬A, C → D, D → aD, D → ε

The semantics of this grammar should clearly be (A, B, C, D)=(Σ∗, Σ∗, Σ∗, Σ∗),
and actually this is what the well-founded semantics will produce. On the other
hand the naturally feasible solution semantics is undefined.

The problem of giving semantics to recursive formalisms in the presence of
negation has been extensively studied in the context of logic programming. Ac-
tually, the unique solution semantics can be paralleled with one of the early
attempts to give semantics to logic programs with negation, namely what is now
called the Clark’s completion semantics (which actually presents similar short-
comings with the unique solution approach). On the other hand, the naturally
feasible solution can be thought of as a first approximation to the procedure of
constructing the intended minimal model of a logic program with negation (see
also Theorem 3 that will follow). Since the most broadly accepted semantic ap-
proach for logic programs with negation is the well-founded semantics, we adopt
this approach in this paper.

At this point we should also mention a recent work on the stratified semantics
of Boolean grammars [Wro05], an idea that also originates from logic program-
ming. However, the stratified semantics is less general than the well-founded one
(since the former does not cover the whole class of Boolean grammars).

3 Interpretations and Models for Boolean Grammars

In this section we formally define the notion of model for boolean grammars. In
context-free grammars, an interpretation is a function that assigns to each non-
terminal symbol of the grammar a set of strings over the set of terminal symbols
of the grammar. An interpretation of a context-free grammar is a model of the
grammar if it satisfies all the rules of the grammar. The usual semantics of
context-free grammars dictate that every such grammar has a minimum model,
which is taken to be as its intended meaning.

When one considers boolean grammars, the situation becomes much more
complicated. For example, a grammar with the unique rule S → ¬S appears
to be meaningless. More generally, in many cases where negation is used in a
circular way, the corresponding grammar looks problematic. However, these diffi-
culties arise because we are trying to find classical models of boolean grammars,
which are based on classical two-valued logic. If however we shift to three-valued
models, every boolean grammar has a well-defined meaning. We need of course
to redefine many notions, starting even from the notion of a language:

Definition 2. Let Σ be a finite non-empty set of symbols. Then, a (three-valued)
language over Σ is a function from Σ∗ to the set

{
0, 1

2 , 1
}
.
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Intuitively, given a three-valued language L and a string w over the alphabet of
L, there are three-cases: either w ∈ L (ie., L(w) = 1), or w �∈ L (ie., L(w) = 0), or
finally, the membership of w in L is unclear (ie., L(w) = 1

2 ). Given this extended
notion of language, it is now possible to interpret the grammar S → ¬S: its
meaning is the language which assigns to every string the value 1

2 .
The following definition, which generalizes the familiar notion of concatena-

tion of languages, will be used in the following:

Definition 3. Let Σ be a finite set of symbols and let L1, . . . , Ln be (three-
valued) languages over Σ. We define the three-valued concatenation of the lan-
guages L1, . . . , Ln to be the language L such that:

L(w) = max
(w1,...,wn):
w=w1···wn

(
min

1≤i≤n
Li(wi)

)

The concatenation of L1, . . . , Ln will be denoted by L1 ◦ · · · ◦ Ln.

We can now define the notion of interpretation of a given boolean grammar:

Definition 4. An interpretation I of a boolean grammar G = (Σ, N, P, S) is a
function I : N →

(
Σ∗ →

{
0, 1

2 , 1
})

.

An interpretation I can be recursively extended to apply to expressions that
appear as the right-hand sides of boolean grammar rules:

Definition 5. Let G = (Σ, N, P, S) be a boolean grammar and I be an interpre-
tation of G. Then I can be extended to become a truth valuation Î as follows:

– For the empty sequence ε and for all w ∈ Σ∗, it is Î(ε)(w) = 1 if w = ε and
0 otherwise.

– Let a ∈ Σ be a terminal symbol. Then, for every w ∈ Σ∗, Î(a)(w) = 1 if
w = a and 0 otherwise.

– Let α = α1 · · ·αn, n ≥ 1, be a sequence in (Σ∪N)∗. Then, for every w ∈ Σ∗,
it is Î(α)(w) = (Î(α1) ◦ · · · ◦ Î(αn))(w).

– Let α ∈ (Σ ∪ N)∗. Then, for every w ∈ Σ∗, Î(¬α)(w) = 1 − Î(α)(w).
– Let l1, . . . , ln be literals. Then, for every string w ∈ Σ∗, Î(l1& · · ·&ln)(w) =

min{Î(l1)(w), . . . , Î(ln)(w)}.

We are now in a position to define the notion of a model of a boolean grammar:

Definition 6. Let G = (Σ, N, P, S) be a boolean grammar and I an interpreta-
tion of G. Then, I is a model of G if for every rule A → l1& · · ·&ln in P and
for every w ∈ Σ∗, it is Î(A)(w) ≥ Î(l1& · · ·&ln)(w).

In the definition of the well-founded model, two orderings on interpretations play
a crucial role (see [PP90]). Given two interpretations, the first ordering (usually
called the standard ordering) compares their degree of truth:

Definition 7. Let G = (Σ, N, P, S) be a boolean grammar and I, J be two in-
terpretations of G. Then, we say that I 	 J if for all A ∈ N and for all w ∈ Σ∗,
I(A)(w) ≤ J(A)(w).



208 V. Kountouriotis, C. Nomikos, and P. Rondogiannis

Among the interpretations of a given boolean grammar, there is one which is
the least with respect to the 	 ordering, namely the interpretation ⊥ which for
all A and all w, ⊥(A)(w) = 0.

The second ordering (usually called the Fitting ordering) compares the degree
of information of two interpretations:

Definition 8. Let G = (Σ, N, P, S) be a boolean grammar and I, J be two inter-
pretations of G. Then, we say that I 	F J if for all A ∈ N and for all w ∈ Σ∗,
if I(A)(w) = 0 then J(A)(w) = 0 and if I(A)(w) = 1 then J(A)(w) = 1.

Among the interpretations of a given boolean grammar, there is one which is
the least with respect to the 	F ordering, namely the interpretation ⊥F which
for all A and all w, ⊥F (A)(w) = 1

2 .
Given a set U of interpretations, we will write lub�U (respectively lub�F U)

for the least upper bound of the members of U under the standard ordering
(respectively, the Fitting ordering).

4 Well-Founded Semantics for Boolean Grammars

In this section we will define the well-founded semantics of boolean grammars.
The basic idea behind the well-founded semantics is that the intended model
of the grammar is constructed in stages, ie., there is a stratification process
involved that is related to the levels of negation used by the grammar. For every
nonterminal symbol, at each step of this process, the values of certain strings
are computed and fixed (as either true or false); at each new level, the values
of more and more strings become fixed (and this is a monotonic procedure in
the sense that values of strings that have been fixed for a given nonterminal in
a previous stage, cannot be be altered by the next stages). At the end of all the
stages, certain strings for certain nonterminals may have not managed to get the
status of either true or false (this will be due to circularities through negation
in the grammar). Such strings are classified as unknown (ie., 1

2 ).
Consider the boolean grammar G. Then, for any interpretation J of G we

define the operator ΘJ : I → I on the set I of all 3-valued interpretations of
G. This operator is analogous to the one used in the logic programming domain
(see for example [PP90]).

Definition 9. Let G = (Σ, N, P, S) be a boolean grammar, let I be the set of
all three-valued interpretations of G and let J ∈ I. The operator ΘJ : I → I is
defined as follows. For every I ∈ I, for all A ∈ N and for all w ∈ Σ∗:

1. ΘJ (I)(A)(w) = 1 if there is a rule A → l1& · · ·&ln in P such that, for all
i ≤ n, either Ĵ(li)(w) = 1 or li is positive and Î(li)(w) = 1;

2. ΘJ (I)(A)(w) = 0 if for every rule A → l1& · · ·&ln in P , there is an i ≤ n
such that either Ĵ(li)(w) = 0 or li is positive and Î(li)(w) = 0;

3. ΘJ (I)(A)(w) = 1
2 , otherwise.

An important fact regarding the operator ΘJ is that it is monotonic with respect
to the 	 ordering of interpretations:
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Theorem 1. Let G be a boolean grammar and let J be an interpretation of G.
Then, the operator ΘJ is monotonic with respect to the 	 ordering of interpreta-
tions. Moreover, ΘJ has a unique least (with respect to 	) fixed point Θ↑ω

J which
is defined as follows:

Θ↑0
J = ⊥

Θ↑n+1
J = ΘJ (Θ↑n

J )
Θ↑ω

J = lub�{Θ↑n
J | n < ω}

Proof. The proof essentially follows the same lines of thought as that of the logic
programming case (see [Prz89]). �

We will denote by Ω(J) the least fixed point of ΘJ . Given a grammar G, we can
use the Ω operator to construct a sequence of interpretations whose ω-limit MG

will prove to be a distinguished model of G:

M0 = ⊥F

Mn+1 = Ω(Mn)
MG = lub�F {Mn | n < ω}

Notice that here we have an essential difference with respect to the well-founded
semantics of logic programming: there, the construction of the well-founded
model may require a transfinite number of iterations which is greater than ω.
In other words, the well-founded semantics of logic programs is not computable
in the general case. However, in the case of Boolean grammars, the model is
constructed in at most ω iterations:

Theorem 2. Let G be a boolean grammar. Then, MG is a model of G (which
will be called the well-founded model of G). Moreover, MG is the least (with
respect to the 	F ordering) fixed point of the operator Ω.

Proof. Technically, the proof is very similar to that of the logic programming
case (see [Prz89]). �

Actually, it can be shown (following a similar reasoning as in [RW05]) that the
model MG is the least model of G according to a syntax-independent relation.

The construction of the well-founded model is illustrated by the following
example:

Example 2. Let G be the grammar given in Example 1. Then, it is easy to see
that MG = M2, ie., that in order to converge to the well-founded model of
G we need exactly two iterations of Ω. More specifically, in M1 = Ω(M0) the
denotations of the non-terminals A, B and C stabilize (notice that the definitions
of these nonterminals are standard context-free rules). However, in order for the
denotation of S to stabilize, an additional iteration of Ω is required. Notice that
the language produced by this grammar is two-valued.

We can now state the relationship between the well-founded semantics and the
naturally feasible semantics of boolean grammars:
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Theorem 3. Suppose that a boolean grammar G has a two-valued (ie., with
values 0 and 1) well-founded semantics. Then the naturally feasible solution for
this grammar either coincides with the well-founded semantics or is undefined.

It is easy to see that if a boolean grammar has a naturally feasible solution se-
mantics, then it is possible that this semantics differs from the well-founded one.
For example, in the four-rule grammar of Section 2, the well-founded semantics
assigns the ⊥F interpretation to all the nonterminal symbols of the grammar.
Notice that although the naturally feasible semantics for this grammar is defined,
it appears to be counterintuitive.

5 Normal Form

In this section we demonstrate that every boolean grammar can be converted
into an equivalent one that belongs to the following normal form:

Definition 10. A Boolean grammar G = (Σ, N, P, S) is said to be in binary
normal form if P contains the rules U → ¬U and T → ¬ε, where U and T are
two special symbols in N − {S}, and every other rule in P is of the form:

A → B1C1& · · ·&BmCm&¬(D1E1)& · · · &¬(DnEn)&TT [&U ] (m, n ≥ 0)
A → a[&U ]
S → ε[&U ] (only if S does not appear in right-hand sides of rules)

where A, Bi, Ci, Dj , Ej ∈ N −{U, T }, a ∈ Σ, and the brackets denote an optional
part.

The basic theorem of this section states that for every boolean grammar G there
exists a boolean grammar in binary normal form that defines the same language
as G. More formally:

Theorem 4. Let G = (Σ, N, P, S) be a boolean grammar. Then there exists a
grammar G′ = (Σ, N ′, P ′, S) in binary normal form such that MG(S) = MG′(S).

The proof of Theorem 4 is based on several transformations, justified by some
lemmata given below. We give here an outline of how the binary normal form is
constructed.

Consider a boolean grammar G = (Σ, N, P, S). Without loss of generality we
may assume that S does not appear in the right-hand side of any rule (other-
wise we can replace S with S′ in every rule, and add a rule S → S′). Initially,
we bring the grammar into a form, which we call pre-normal form (see Defini-
tion 11). This is performed using Lemmas 1,2 and 3. More specifically, Lemma 1
is used to eliminate terminal symbols from rules containing boolean connectives
or concatenation; Lemma 2 separates boolean connectives from concatenation;
and, Lemma 3 is used to eliminate “long” concatenations. Based on the pre-
normal form, we then construct an ε-free version of the grammar (Definition
12). The ε-free version is then brought into binary-normal form (see Definition
10 above) using the technique described in Definition 15. Detailed proofs of lem-
mas comprising this procedure are lengthy, and are omitted in the current form
of the paper.
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Lemma 1. Let G = (Σ, N, P, S) be a boolean grammar, and let G′ be the gram-
mar (Σ, N ∪ {Aa | a ∈ Σ}, P ′ ∪ {Aa → a | a ∈ Σ}, S) where:

– {Aa | a ∈ Σ} ∩ N = ∅.
– P ′ is obtained from P by replacing each occurrence of the terminal symbol a

with Aa, in every rule that contains concatenation or boolean connectives.

Then, for every C ∈ N , MG(C) = MG′(C).

Lemma 2. Let G = (Σ, N, P, S) be a boolean grammar, and let β ∈ Nk, k ≥ 2,
be a sequence of non-terminal symbols. Let G′ = (Σ, N ∪{B}, P ′ ∪ {B → β}, S)
where:

– B /∈ N is a new non-terminal symbol.
– For every rule A → α1& · · ·&αm&¬αm+1& · · ·&¬αn in P , P ′ contains the

rule A → α′
1& · · ·&α′

m&¬α′
m+1& · · ·&¬α′

n, where α′
i = B if αi = β, other-

wise α′
i = αi.

Then, for every C ∈ N , MG(C) = MG′(C).

Lemma 3. Let G = (Σ, N, P, S) be a boolean grammar, let A → B1B2B3 . . . Bk,
A, Bi ∈ N , k ≥ 3, be a rule of P and let G′ = (Σ, N ∪ {D}, P ′, S) where:

– D /∈ N is a new non-terminal symbol.
– P ′ = (P − {A → B1B2B3 . . . Bk}) ∪ {A → DB3 . . . Bk, D → B1B2}.

Then, for every C ∈ N , MG(C) = MG′(C).

Using the above lemmas it is straightforward to bring the initial grammar into
the following form:

Definition 11. A Boolean grammar G = (Σ, N, P, S) is said to be in pre-
normal form if every rule in P is of the form:

A → B1& · · ·&Bm&¬C1& · · ·&¬Cn (m + n ≥ 1, Bi, Cj ∈ N ∪ {ε})
A → BC (B, C ∈ N)
A → a (a ∈ Σ)

Based on the pre-normal form of the grammar, we can now define its ε-free
version:

Definition 12. Let G = (Σ, N, P, S) be a boolean grammar in pre-normal form.
The ε-free version of G, denoted by Gε, is the boolean grammar (Σ, N∪{U}, P ′, S)
where P ′ is obtained as follows:

– P ′ contains a rule U → ¬U , where U /∈ N is a special non-terminal symbol,
which represents the set in which all strings have the value 1

2 .
– For every rule of the form A → B1& · · ·&Bm&¬C1& · · ·&¬Cn, (m + n ≥

1, Bi, Cj ∈ N ∪ {ε}) in P
• If Bi = ε for some i, then the rule is ignored in the construction of P ′.
• Otherwise, if Ci = ε for some i, then the rule is included in P ′ as it is.
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• Otherwise, P ′ contains the rule A → B1& · · ·&Bm&¬C1& · · ·&¬Cn&¬ε
– For every rule of the form A → BC in P

• P ′ contains the rule A → BC&¬ε
• If MG(B)(ε) = 1 (respectively MG(C)(ε) = 1), then P ′ contains the rule

A → C&¬ε (respectively the rule A → B&¬ε).
• If MG(B)(ε) = 1

2 (respectively MG(C)(ε) = 1
2), then P ′ contains the rule

A → C&U&¬ε (respectively the rule A → B&U&¬ε).
– For every a ∈ Σ and A ∈ N , if MG(A)(a) = 1 then P ′ contains the rule

A → a and if MG(A)(a) = 1
2 then P ′ contains the rule A → a&U

Lemma 4. Let G = (Σ, N, P, S) be a boolean grammar in pre-normal form, and
let Gε be its ε-free version. Then, for every C ∈ N and for every w ∈ Σ∗, w �= ε
implies MG(C)(w) = MGε(C)(w).

In order to obtain a grammar in binary normal form, we need to eliminate rules
of the form A → B1& · · ·&Bm&¬C1& · · ·&¬Cn&¬ε. Membership in MG(A)
depends only on membership in each of M̂G(BC), for all BC that appear in the
right-hand sides of rules. We can express this dependency directly by a set of
rules. In order to do this we treat each BC that appears in the right-hand side
of a rule as a boolean variable (see also [Okh04]).

Definition 13. Let X be a set of variables and let V, W be functions from X
to

{
0, 1

2 , 1
}
. We denote by Vi the set {x ∈ X | V (x) = i}. We write V � W if

V0 ⊆ W0 and V1 ⊆ W1

Definition 14. Let G be a grammar in pre-normal form and let Gε=(Σ, N, P, S)
be the ε-free version of G. Let X = {BC | A → BC ∈ P} and let V be a func-
tion from X to

{
0, 1

2 , 1
}
. Then, the extension of V to non-terminal symbols

in N , denoted by V̂ , is defined as follows: V̂ (A) is the value MGε(A)(w) when
MGε(BC)(w) = V (BC), for all BC ∈ X and for arbitrary w.

Notice that V̂ is well-defined and can be computed in finitely many steps from V .

Definition 15. Let G be a grammar in pre-normal form, let Gε = (Σ, N, P, S)
be the ε-free version of G. Let X = {BC | A → BC ∈ P} and let V be the set of
all functions from X to

{
0, 1

2 , 1
}
. The normal form Gn = (Σ, N ∪{T }, P ′, S) of

G is the grammar obtained from Gε as follows:

– P ′ contains all the rules in P of the form A → a and A → a&U , where
a ∈ Σ, the rule U → ¬U in P and the rule T → ¬ε, where T /∈ N is a
special symbol which represents the set in which all non-empty strings have
value 1.

– For every A ∈ N let TA = {V ∈ V | V̂ (A) = 1}. For every minimal (with
respect to �) element V of TA, P ′ contains the rule:

A → xi1& . . . &xim&¬yj1& . . .&¬yjn&TT

where {xi1 , . . . , xim} = V1 and {yj1 , . . . , yjn} = V0.
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– For every A ∈ N let UA = {V ∈ V | V̂ (A) = 1
2}. For every maximal (with

respect to �) element V of UA, P ′ contains the rule:

A → xi1&¬xi1& . . .&xim&¬xim&TT&U

where {xi1 , . . . , xim} = V 1
2
.

Notice that in the former case we consider only minimal elements, because if
V ′ � V and V̂ ′(A) = 1 then V̂ (A) = 1. Similarly in the latter case we consider
only maximal elements, because if V ′ � V and V̂ (A) = 1

2 then V̂ ′(A) = 1
2 . The

above properties follow from the monotonicity of the Ω operator, with respect
to the 	F (Fitting) ordering.

Lemma 5. Let G = (Σ, N, P, S) be a boolean grammar in pre-normal form, and
let Gn be its binary normal form. Then, for every A ∈ N and for every w ∈ Σ∗,
w �= ε implies MG(A)(w) = MGn(A)(w).

Given the above lemmas, a simple step remains in order to reach the statement of
Theorem 4: if in the original grammar G it is MG(S)(ε) �= 0, then an appropriate
rule of the form S → ε or S → ε&U is added to the grammar that has resulted
after the processing implied by all the above lemmas. The resulting grammar is
then in binary normal form and defines the same language as the initial one.

6 Parsing Under the Well-Founded Semantics

We next present an algorithm that computes the truth value of the membership
of an input string w �= ε in a language defined by a grammar G, which is assumed
to be in binary normal form. The algorithm computes the value of MG(A)(u)
for every non-terminal symbol A and every substring u of w in a bottom up
manner. By convention min0

i=1vi = 1.

Algorithm for parsing an input string w = a1 · · · an:

for i := 1 to n do begin
for every A ∈ N do

if there exist a rule A → ai then MG(A)(ai) := 1
else if there exist a rule A → ai&U then MG(A)(ai) := 1

2
else MG(A)(ai) := 0

end

for d := 2 to n do
for i := 1 to n − d + 1 do begin

j := i + d − 1
for every B, C ∈ N such that BC appears in the right-hand side of a rule do

M̂G(BC)(ai . . . aj) := maxj−1
k=i min{MG(B)(ai . . . ak), MG(C)(ak+1 . . . aj)}

for every A ∈ N do MG(A)(ai . . . aj):=0
for every rule A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DrEr&TT&U do begin

v := min{ 1
2 , minm

p=1 M̂G(BpCp)(ai . . . aj), minr
q=1(1 − M̂G(DqEq)(ai . . . aj))}
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if v > MG(A)(ai . . . aj) then MG(A)(ai . . . aj) := v
end
for every rule A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DrEr&TT do begin

v := min{minm
p=1 M̂G(BpCp)(ai . . . aj), minr

q=1(1 − M̂G(DqEq)(ai . . . aj))}
if v > MG(A)(ai . . . aj) then MG(A)(ai . . . aj) := v

end
end

return MG(S)(a1 · · · an)

For a fixed grammar the above algorithm runs in time O(n3): the value
MG(A)(u) is computed for O(n2) substrings u of w; each computation requires
to break u in two parts in all possible ways, and there are O(n) appropriate
breakpoints.

7 Conclusions

We have presented a novel semantics for boolean grammars, based on techniques
that have been developed in the logic programming domain. Under this new
semantics every boolean grammar has a distinguished language that satisfies
its rules. Moreover, we have demonstrated that every boolean grammar can be
transformed into an equivalent one in a binary normal form. For grammars in
binary normal form, we have derived an O(n3) parsing algorithm.

We believe that a further investigation of the connections between formal
language theory and the theory of logic programming will prove to be very
rewarding.
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