
0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 3 5

he IEEE Computer Society and the Association for Computing
Machinery are working on a joint project to develop a guide to the
Software Engineering Body of Knowledge (SWEBOK). Articulating a
body of knowledge is an essential step toward developing a profes-

sion because it represents a broad consensus regarding the contents of the disci-
pline. Without such a consensus, there is no way to validate a licensing examina-
tion, set a curriculum to prepare individuals for the examination, or formulate criteria
for accrediting the curriculum.

The SWEBOK project (http://www.swebok.org) is now nearing the end of the
second of its three phases. Here we summarize the results to date and provide an
overview of the project and its status.

Pierre Bourque, Robert Dupuis, and Alain Abran,

University of Quebec at Montreal

James W. Moore, The MITRE Corporation

Leonard Tripp, The Boeing Company

The Guide to the
Software Engineering
Body of Knowledge

Repor t ing on the SWEBOK projec t, the authors—who represent the
projec t ’s editoria l team—discuss the three-phase plan to charac terize
a body of knowledge, a v ital step toward developing sof t ware
engineering as a profession.

T

3 6 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

OBJECTIVES AND AUDIENCE

The SWEBOK project team established the proj-
ect with five objectives:

1. Characterize the contents of the software en-
gineering discipline.

2. Provide topical access to the software engi-
neering body of knowledge.

3. Promote a consistent view of software engi-
neering worldwide.

4. Clarify the place—and set the boundary—of
software engineering with respect to other disci-
plines such as computer science, project manage-
ment, computer engineering, and mathematics.

5. Provide a foundation for curriculum develop-
ment and individual certification material.
The product of the SWEBOK project will not be the
body of knowledge itself, but rather a guide to it.
The knowledge already exists; our goal is to gain
consensus on the core subset of knowledge char-
acterizing the software engineering discipline.

To achieve these goals, we oriented the project
toward a variety of audiences. It aims to serve pub-
lic and private organizations in need of a consistent
view of software engineering for defining educa-
tion and training requirements, classifying jobs, and
developing performance evaluation policies. It also
addresses practicing software engineers and the of-
ficials responsible for making public policy regard-
ing licensing and professional guidelines. In addi-

tion, professional societies and educators defining
the certification rules, accreditation policies for uni-
versity curricula, and guidelines for professional
practice, as well as students learning the software
engineering profession, will benefit from SWEBOK.

THE GUIDE

The project comprises three phases: Strawman,
Stoneman, and Ironman. The Strawman guide, com-
pleted within nine months of project initiation, served
as a model for organizing the SWEBOK guide.1 Spring
2000 will see the completion of the Stoneman ver-
sion, after which we’ll commence the Ironman phase,
which will continue for two or three years. Following
the principles of the Stoneman phase, Ironman will
benefit from more in-depth analyses, a broader review
process, and the experience gained from trial usage.

The SWEBOK Guide will organize the body of
knowledge into several Knowledge Areas. In its cur-
rent draft, the Stoneman version of the Guide identifies
10 KAs—Table 1 lists the KA specialists responsible for
preparing each DA description. In addition, we’re con-
sidering seven related disciplines (see Table 2).

The distinction between KAs and related disci-
plines is important to the Guide’s purpose. The pro-
ject will specify KAs—and topics within these KAs—
that are regarded as core knowledge for software
engineers. Software engineers should also know
material from the related disciplines, but the SWE-
BOK project will not attempt to specify that mater-
ial. Instead, we’re leaving that to other efforts such
as those being coordinated by the Joint IEEE
Computer Society and ACM Software Engineering
Coordinating Committee, or the Working Group on
Software Engineering Education.2

As Figure 1 shows (and as the following sec-
tions explain), each KA description—which should
be around 10 pages—contains several important
components.

Table 1. The SWEBOK knowledge areas and their corresponding specialists.

Knowledge Area Specialists

Software configuration management John A. Scott and David Nisse, Lawrence Livermore Laboratory, US

Software construction Terry Bollinger, The Mitre Corporation, US

Software design Guy Tremblay, Université du Québec à Montréal, Canada

Software engineering infrastructure David Carrington, The University of Queensland, Australia

Software engineering management Stephen G. MacDonell and Andrew R. Gray, University of Otago, New Zealand

Software engineering process Khaled El Emam, National Research Council, Canada

Software evolution and maintenance Thomas M. Pigoski, Techsoft, US

Software quality analysis Dolores Wallace and Larry Reeker, National Institute of Standards and Technology, US

Software requirements analysis Pete Sawyer and Gerald Kotonya, Lancaster University, UK

Software testing Antonia Bertolino, National Research Council, Italy

Table 2. Related Disciplines.

Cognitive sciences and human factors

Computer engineering

Computer science

Management and management science

Mathematics

Project management

Systems engineering

Hierarchical organization
The SWEBOK Guide will use a hierarchical orga-

nization to decompose each KA into a set of topics
with recognizable labels. A two- or three-level break-
down will provide a reasonable way for readers to
find topics of interest. The Guide will treat the se-
lected topics in a manner compatible with major
schools of thought and with breakdowns generally
found in industry and in software engineering lit-
erature and standards. The breakdown of topics will
not presume particular application domains, busi-
ness uses, management philosophies, development
methods, and so forth. The extent of each topic’s
description will be only that needed for the reader
to successfully find reference material. After all, the
Body of Knowledge is found in the reference mate-
rials, not in the Guide itself.

From the outset, the question arose as to the
depth of treatment the Guide should provide. After
substantial discussion, we adopted a concept of
generally accepted knowledge,3 which we had to dis-
tinguish from advanced and research knowledge
(on the grounds of maturity) and from specialized
knowledge (on the grounds of generality of appli-
cation). The generally accepted knowledge applies
to most projects most of the time, and widespread
consensus validates its value and effectiveness.

However, generally accepted knowledge does
not imply that we should apply the designated
knowledge uniformly to all software engineering en-
deavors—each project’s needs determine that—but
it does imply that competent, capable software en-
gineers should be equipped with this knowledge for
potential application. More precisely, generally ac-
cepted knowledge should be included in the study
material for a software engineering licensing exam-
ination that graduates would take after gaining four
years of work experience. Although this criterion is
specific to the US style of education and does not
necessarily apply to other countries, we deem it use-
ful. However, both definitions of generally accepted
knowledge should be seen as complementary.

Additionally, the proposed breakdown must be
somewhat forward-looking—we’re considering not
only what is generally accepted today but also what
will be generally accepted in three to five years.

Reference materials and a matrix
The Guide will identify reference materials for

each KA. They might be book chapters, refereed pa-
pers, or any other well-recognized source of au-
thoritative information—but the reference should

be written in English and generally available. We
prefer material to which the IEEE Computer Society
or the ACM already has publication rights because
we want to make the references available on the
Internet without charge.

The Guide will also include a matrix that relates the
reference materials to the listed topics. Of course, a par-
ticular reference might apply to more than one topic.

Classification
To provide an alternative manner for viewing the

topics and connecting to other engineering disci-
plines, the Guide will classify the topics according
to the taxonomy of engineering design knowledge
that Walter Vincenti proposed in his 1990 history of
aeronautical engineering.4 The six categories of en-
gineering design knowledge are fundamental de-
sign concepts, criteria and specifications, theoreti-
cal tools, quantitative data, practical considerations,
and approaches to problem solving.

Ratings
As an aid, notably to curriculum developers, the

Guide will also rate each topic with a set of peda-
gogical categories commonly attributed to Benjamin
Bloom. The concept is that educational objectives
can be classified into six categories representing in-
creasing depth: knowledge, comprehension, appli-
cation, analysis, synthesis, and evaluation (for Bloom’s
taxonomy, visit http://www.valdosta.peachnet.edu/
~whuitt/psy702/cogsys/bloom.html).

KAs from related disciplines
Each SWEBOK KA description will also identify

relevant KAs from related disciplines. Although these
KAs will be merely identified without additional de-
scription or references, they should aid curriculum
developers.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 3 7

Hierarchical
breakdown of

topics

Matrix of topics
and reference

materials

Reference
materials

Topic
descriptions

Ratings
by Bloom's
taxonomy

Classification
by Vincenti's
taxonomy

References to
related

disciplines

Figure 1. The organization of a Knowledge

Area description.

THE KNOWLEDGE AREAS

The selection, titling, and descriptions of each
KA remain the subject of comment, review, and
amendment. Furthermore, some themes—such as
measurement, tools, and standards—cut across the
KAs and are currently treated separately in each.
These decisions will all be reviewed in subsequent
versions of the Guide. Here, in alphabetical order, we
describe the KAs as currently drafted. Figure 2 maps
out the 10 KAs and the important topics incorpo-
rated within them.

Software configuration management
We can define a system as a collection of compo-

nents organized to accomplish a specific function or
set of functions. A system’s configuration is the func-
tion or physical characteristics of hardware, firmware,
software, or a combination thereof as set forth in
technical documentation and achieved in a product.
Configuration management, then, is the discipline
of identifying the configuration at discrete points in

time to systematically control its changes and to
maintain its integrity and traceability throughout the
system life cycle.

The concepts of configuration management
apply to all items requiring control, though there
are differences in implementation between hard-
ware configuration management and software con-
figuration management. The primary activities of
software configuration management are used as
the framework for organizing and describing the
topics of this KA. These primary activities are the
management of the software configuration man-
agement process; software configuration identifi-
cation, control, status accounting, and auditing; and
software release management and delivery (see
Figure 2a).

Software construction
Software construction is a fundamental act of

software engineering; programmers must construct
working, meaningful software through coding, self-
validation, and self-testing (unit testing). Far from

3 8 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Software engineering
infrastructure

Software release
management and delivery

Heuristic methods
Formal methods

Prototyping methods

Component definition
Reference models

Reuse

Software configuration
management

Software
design

Software engineering
management

Management of the SCM
process

(a) (b) (c) (d) (e)

Basic concepts and
principles

Linguistic construction
methods

Development methods

Software tools

Management
process

Software configuration
identification

Software configuration
control

Software configuration
status accounting

Software configuration
auditing

Design notations

Software architecture

Design quality and metrics
Mathematical
construction methods

Development and
maintenance tools

Supporting activities tools
Management tools

Workbenches: Integrated
 CASE tools and software
 engineering environments
Tool assessment techniques

Reduction of
complexity

Anticipation of diversity
Structuring for validation

Use of
external standards

Coordination
Initiation and

scope definition
Planning

Execution
Review and

evaluation
Closure

Component integration

Design strategies and
methods

Visual construction
methods

Measurement

Software
construction

Guide to the Software Engineering Body of Knowledge

Figure 2. A mapping of the Guide to the Software Engineering Body of Knowledge.

being a simple mechanistic translation of good de-
sign in working software, software construction bur-
rows deeply into some of the most difficult issues
of software engineering.

The breakdown of topics for this KA adopts two
complementary views of software construction. The
first view comprises three major styles of software
construction interfaces: linguistic, mathematical,
and visual (see Figure 2b). For each style, topics are
listed according to four basic principles of organi-
zation that strongly affect the way software con-
struction is performed: reducing complexity, antic-
ipating diversity, structuring for validation, and
using external standards.

For example, the topics listed under anticipation
of diversity for linguistic software construction meth-
ods are information hiding, embedded documenta-
tion, complete and sufficient method sets, object-ori-
ented class inheritance, creation of “glue” languages
for linking legacy components, table-driven software,
configuration files, and self-describing software and
hardware.

Software design
Design transforms requirements—typically stated

in terms relevant to the problem domain—into a de-
scription explaining how to solve the problem. It de-
scribes how the system is decomposed and orga-
nized into components, and it describes the interfaces
between these components. Design also refines the
description of these components into a level of de-
tail suitable for initiating their construction.

Basic concepts and principles of software design
constitute the first subarea of this KA (see Figure 2c).
Design quality and metrics constitutes the second
subarea and is divided into quality attributes, quality
assurance, and metrics. Software architecture is the
next subarea and includes topics on structures and
viewpoints, architectural descriptions, patterns, and
object-oriented frameworks. It also includes a section
on architectural styles—an important notion in the
field of software architecture—which presents some
of the major styles various authors have identified.

The design notations subarea discusses nota-
tions for documenting a specific high-level design

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 3 9

Process definition
Types of process definitions

Life cycle models
Life cycle process models

Notations for process
definitions

Process definition methods

ISO 9126 quality
characteristics
Dependability

Quality facets related to
process and special

situations

Definition of quality analysis
Process plans

Activities and techniques
for quality analysis

Measurement in
software quality analysis

Themes
Terminology

Software engineering
process

Software evolution
and maintenance

Software quality
analysis

Software requirements
analysis

Software
testing

(f) (g) (h) (i) (j)

Basic concepts and definitions Maintenance concepts Defining quality product Requirements engineering
process

Basic concepts
and definitions

Test levels

Test techniquesMaintenance process
Software quality analysis

Requirements analysis

Test-related measures

Problems of software
maintenance

Maintenance activities
and roles

Organization aspect of
maintenance

Maintenance cost and
maintenance cost estimation

Maintenance measurements

Tools and techniques
for maintenance

Process evaluation Requirements management

Requirements elicitation

Requirements validation

Organizing and
controlling
the test process

Automated testing

Automation

Methodology in process
measurement

Analytic paradigm
Benchmarking paradigm

Process implementation
and change

Paradigms for process
implementation and change

Infrastructure
Guidelines for process

implementation and change
Evaluating process

implementation and change

or for producing a detailed system design. Design
strategies and methods constitute the last subarea,
and it contains four main topics: general strategies,
data-structure-centered design, function-oriented
design, and object-oriented design.

Software engineering infrastructure
This KA covers three subareas that cut across the

other KAs: development methods, software tools,
and component integration (see Figure 2d).

Development methods impose structure on soft-
ware development and maintenance activity with
the goal of making the activity systematic and ulti-
mately more successful. Methods usually provide a

notation and vocabulary, procedures for performing
identifiable tasks, and guidelines for checking both
the process and product. Development methods vary
widely in scope, from a single life-cycle phase to the
complete life cycle. The SWEBOK Guide will divide
this subarea into three nondisjointed main topics:
heuristic methods dealing with informal approaches,
formal methods dealing with mathematically based
approaches, and prototyping methods dealing with
approaches based on various forms of prototyping.

Software tools are the computer-based tools in-
tended to assist the software engineering process.
Tools are often designed to support particular meth-
ods, reducing the administrative load associated
with applying the method manually. Like methods,
they are intended to make development more sys-
tematic, and they vary in scope from supporting in-
dividual tasks to encompassing the complete life
cycle. The top-level partitioning of the software tools
subarea distinguishes between development and
maintenance, supporting activities, and manage-
ment tools. The remaining categories cover inte-
grated tool sets (also known as software engineer-
ing environments) and tool assessment techniques.

The emergence of software components as a vi-
able approach to software development represents
a maturing of the discipline to overcome the not-
invented-here syndrome. The component integra-
tion subarea is partitioned into topics dealing with
individual components, reference models that de-
scribe how components can be combined, and the
more general topic of reuse.

Software engineering management
The software engineering management KA con-

sists of both the management process and mea-
surement subareas (see Figure 2e). While these two
areas are often regarded (and generally taught) as
being separate, and indeed they do possess many
mutually unique aspects, their close relationship mo-
tivates the combined treatment the Guide adopts.
In essence, management without measurement—
qualitative or quantitative—suggests a lack of rigor,
and measurement without management suggests
a lack of purpose or context.

The management process subarea considers the
notion of management “in the large”under the coor-

dination topic, addressing issues such as
project selection, standards development
and implementation, project staffing, and
team development. It organizes the re-
maining topics according to stages in the
project development life cycle: initiation

and scope definition, planning (including schedule
and cost estimation and risk assessment), execution,
review and evaluation, and closure.

The measurement subarea addresses four top-
ics: measurement program goals, measurement se-
lection, data collection, and model development.
The first three topics are primarily concerned with
the theory and purpose behind measurement, and
they address issues such as measurement scales and
measure selection. Another issue included is the col-
lection of measures, which involves both technical
issues (automated extraction) and human issues
(questionnaire design and responses to measure-
ments being taken). The fourth topic (model devel-
opment) is concerned with using both data and
knowledge to build models.

Software engineering process
This KA covers the definition, implementation,

measurement, management, change, and improve-
ment of software processes. The first subarea—basic
concepts and definitions—establishes the KA themes
and terminology (see Figure 2f).

The purpose and methods for defining software
processes, as well as existing software process def-
initions and automated support, are described in
the process definition subarea. The topics of this
subarea are types of process definitions, life-cycle
models, life-cycle process models, notations for
process definitions, process definition methods, and
automation.

The process evaluation subarea describes the

4 0 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

The emergence of software components as a
viable approach to software development

represents a maturing of the discipline.

approaches for the qualitative and quantitative
analysis of software processes. Measurement plays
an important role in process evaluation; therefore,
methodology in process measurement is this sub-
area’s first topic. Two general paradigms, analytic
and benchmarking, distinguish between types of
evaluations. The analytic paradigm relies on quan-
titative evidence to determine where improvements
are needed and whether an improvement initiative
has been successful. Under this paradigm falls qual-
itative evaluation, root-cause analysis, process sim-
ulation, orthogonal defect classification, experi-
mental and observational studies, and personal
software process. The benchmarking paradigm de-
pends on identifying an excellent organization in a
field and documenting its practices and tools.
Process assessment models and methods are the
two main topics listed under this paradigm.

The process implementation and change sub-
area describes the paradigms, infrastructure, and
critical success factors necessary for successful
process implementation and change. The topics of
this subarea are paradigms for process implemen-
tation and change, infrastructure, guidelines for
process implementation and change, and evaluat-
ing process implementation and change.

Software evolution and maintenance
Software maintenance is defined by IEEE Standard

1219-1998, IEEE Standard for Software Maintenance as
modifying a software product after delivery to correct
faults or improve performance or other
attributes, or to adapt the product to a
modified environment. However, soft-
ware systems are rarely completed and
constantly evolve over time. Therefore,
this KA also includes topics relevant to
software evolution.

The maintenance concepts subarea defines main-
tenance, its basic concepts, and how the concept of
system evolution fits into software engineering (see
Figure 2g). It also explains the duties that maintain-
ers perform. The maintenance activities and roles
subarea addresses the formal types of maintenance
and common activities. As with software develop-
ment, the process is critical to the success and un-
derstanding of software evolution and maintenance.
The next subarea discusses standard maintenance
processes. Organizing maintenance might differ from
development; the subarea on organizational aspects
discusses the differences.

Software evolution and maintenance present

unique and different technical and managerial prob-
lems for software engineering, as addressed in the
problems of software maintenance subarea. Cost is
always a critical topic when discussing software evo-
lution and maintenance. The subarea on mainte-
nance cost and maintenance cost estimation con-
cerns life-cycle costs as well as costs for individual
evolution and maintenance tasks. The maintenance
measurements subarea addresses the topics of qual-
ity and metrics. The final subarea, tools and tech-
niques for maintenance, aggregates many subtopics
that the KA description otherwise fails to address.

Software quality analysis
Production of quality products is the key to cus-

tomer satisfaction. Software without the requisite
features and degree of quality is an indicator of
failed (or at least flawed) software engineering.
However, even with the best software engineering
processes, requirement specifications can miss cus-
tomer needs, code can fail to fulfill requirements,
and subtle errors can lie undetected until they cause
minor or major problems—even catastrophic fail-
ures. This KA therefore discusses the knowledge re-
lated to software quality assurance and software
verification and validation activities.

The goal of software engineering is a quality
product, but quality itself can mean different things.
Despite different terminology, there is some con-
sensus about the attributes that define software
quality and dependability over a range of products.

These definitions provide the base knowledge from
which individual quality products are planned, built,
analyzed, measured, and improved. The defining
quality products subarea discusses these definitions
(see Figure 2h).

Software quality assurance is a process designed
to assure a quality product; it is a planned and sys-
tematic pattern of all actions necessary to provide
adequate confidence that the product conforms to
specified technical requirements. Software verifica-
tion and validation is a process that provides an
objective assessment of software products and
processes throughout the software life cycle; that is,
the verification and validation process lets man-
agement see into the product’s quality.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 4 1

Even with the best software engineering
processes, requirement specifications can
miss customer needs.

These two processes form the backbone of the soft-
ware quality analysis subarea,which is divided into four
main topics:definition of quality analysis,process plans,
activities and techniques for quality analysis, and mea-
surement in software quality analysis.

Software requirements analysis
The software requirements analysis KA is broken

down into five subareas that correspond approxi-
mately to process tasks that are often enacted con-
currently and iteratively rather than sequentially
(see Figure 2i).

The requirements engineering process subarea
introduces the requirements engineering process,
orients the remaining four subareas, and shows how
requirements engineering dovetails with the over-
all software life cycle. This section also deals with
contractual and project organization issues.

The requirements elicitation subarea covers what
is sometimes termed requirements capture, discov-
ery, or acquisition. It is concerned with where re-
quirements come from and how they can be col-
lected by the software engineer. Requirements
elicitation is the first stage in building an under-
standing of the problem the software must solve. It
is fundamentally a human activity, and it identifies
the stakeholders and establishes relationships be-
tween the development team and customer.

The requirements analysis subarea is concerned
with the process of analyzing requirements to de-
tect and resolve conflicts between them, to discover
the boundaries of the system and how it must in-
teract with its environment, and to elaborate user
requirements to software requirements.

The requirements validation subarea checks for
omissions, conflicts, and ambiguities and ensures
that the requirements follow prescribed quality
standards. The requirements should be necessary,
sufficient, and described in a way that leaves as lit-
tle room as possible for misinterpretation.

The requirements management subarea spans
the whole software life cycle. It is fundamentally
about change management and maintaining the
requirements in a state that accurately mirrors the
software that will—or that has been—built.

Software testing
Software testing consists of dynamically verifying

a program’s behavior on a finite set of test cases—
suitably selected from the usually infinite domain of
executions—against the specified expected behav-
ior. These and other basic concepts and definitions

constitute this KA’s first subarea (see Figure 2j).
This KA divides the test levels subarea into two

orthogonal breakdowns, the first of which is orga-
nized according to the traditional phases for testing
large software systems . The second breakdown con-
cerns testing for specific conditions or properties.

The next subarea describes the knowledge rele-
vant to several generally accepted test techniques.
It classifies these techniques as being either specifi-
cation-based, code-based, fault-based, usage-based,
or specialized. The KA deals with test-related mea-
sures in their own subarea. The next subarea expands
on issues relative to organizing and controlling the
test process, including management concerns and
test activities. The automated testing subarea ad-
dresses existing tools and concepts related to au-
tomating the test process.

THE PROJECT

Since 1993, the IEEE Computer Society and the
ACM have cooperated in promoting the profession-
alization of software engineering through their joint
Software Engineering Coordinating Committee
(SWECC) (visit http://www.computer.org/tab/swecc).

The SWEBOK project’s scope, the variety of
communities involved, and the need for broad par-
ticipation require full-time rather than volunteer
management. For this purpose, the SWECC con-
tracted the Software Engineering Management
Research Laboratory at the University of Quebec
at Montreal to manage the effort. It operates
under SWECC supervision.

The project team developed two important prin-
ciples for guiding the project: transparency and con-
sensus. By transparency, we mean that the devel-
opment process is itself documented, published,
and publicized so that important decisions and sta-
tus are visible to all concerned parties. By consen-
sus, we mean that the only practical method for le-
gitimizing a statement of this kind is through broad
participation and agreement by all significant sec-
tors of the relevant community. By the time we com-
plete the Stoneman version of the Guide, literally
hundreds of contributors and reviewers will have
touched the product in some manner.

Project contributors
Like any software project, the SWEBOK project has

many stakeholders—some of which are formally rep-
resented. An Industrial Advisory Board, composed of

4 2 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

representatives from industry (Boeing, the National
Institute of Standards and Technology, the National
Research Council of Canada, Raytheon, and SAP Labs-
Canada) and professional societies (the IEEE Computer
Society and ACM), provides financial support for the
project. The IAB’s generous support permits us to
make the products of the SWEBOK project publicly
available without any charge (visit http://www.swe-
bok.org). IAB membership is supplemented with re-
lated standards bodies (IEEE Software Engineering
Standards Committee and ISO/IEC JTC1/SC7) and re-
lated projects (the Computing Curricula 2001 initia-
tive). The IAB reviews and approves the project plans,
oversees consensus building and review processes,
promotes the project, and lends credibility to the ef-
fort. In general, it ensures the relevance of the effort
to real-world needs.

We realize, however, that an implicit body of
knowledge already exists in textbooks on software
engineering. Thus, to ensure we correctly character-
ize the discipline, Steve McConnell, Roger Pressman,
and Ian Sommerville—the authors of three best-
selling textbooks on software engineering—have
agreed to serve on a Panel of Experts, acting as a
voice of experience. In addition, the extensive review
process (described later) involves feedback from rel-
evant communities. In all cases, we seek international
participation.

Normative literature
The project differs from previous efforts in its re-

lationship to normative literature. Most of the soft-
ware engineering literature provides information
useful to software engineers, but a relatively small
portion is normative. A normative document pre-
scribes what an engineer should do rather than de-
scribing the variety of things that the engineer
might or can do. The normative literature is validated
by consensus formed among practitioners and is
concentrated in standards and related documents.

From the beginning, the SWEBOK project was

conceived as having a strong relationship to the nor-
mative literature of software engineering. The two
major standards bodies for software engineering are
represented in the project. In fact, a preliminary out-
line of KAs was based directly on the 17 processes
described in ISO/IEC 12207, Software Life Cycle
Processes. Ultimately, we hope that software engi-
neering practice standards will contain principles
traceable to the SWEBOK Guide.

Reviews
We organized the development of the Stoneman

version into three public review cycles. The first review
cycle focused on the soundness and reasonableness of
the proposed breakdown of topics within each KA.
Thirty-four domain experts completed this review
cycle in April 1999. The reviewer comments, as well as
the identities of the reviewers, are available on the pro-
ject’s Web site.

The second review cycle was organized around
the guidelines we originally gave to the KA spe-
cialists. A considerably larger group of profession-
als, organized into review viewpoints, answered a
detailed questionnaire for each KA description. The
viewpoints (for example, individual practitioners,
educators, and makers of public policy) were for-
mulated to ensure relevance to the Guide’s various
intended audiences. The reviewer feedback col-
lected in this review cycle, completed in October
1999, is also available on the project’s Web site. KA
specialists will document how reviewer feedback
was resolved in the KA descriptions.

The focus of the third review cycle will be on the
correctness and utility of the Guide. This review
cycle, currently scheduled to start in January 2000,
will be completed by individuals and organizations
representing a cross section of potential interest
groups (see the “How to contribute to the project”
sidebar). We’ve already recruited hundreds of pro-
fessionals to review the entire Guide, and we’re so-
liciting more to fulfill our coverage objectives.

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 4 3

H O W T O C O N T R I B U T E T O T H E P R O J E C T

Those interested in participating in the third review cycle to be conducted on the entire Guide to the Software

Engineering Body of Knowledge can volunteer by signing up at the project’s Web site, http://www.swebok.org. The

transition from Stoneman to Ironman will be based primarily on feedback received from trial applications of the

Stoneman guide. Those interested in performing trial applications (contact Pierre Bourque at bourque.pierre@uqam.ca).

Throughout the project, the SWEBOK team has
ensured that there is always material available

to tangibly capture the project’s progress. Most of
this material is available publicly on the project’s
Web site. (Out of courtesy to the KA specialists, draft
material is withheld until completed.) The project
team is currently updating the KA descriptions
based on the results of the second review cycle. Early
in 2000, we’ll invite major professional societies and
the software engineering community to participate
in the third review cycle and comment on the entire
Guide. The completed Stoneman guide will then be
made available on the Web in Spring 2000, and, to
the extent possible, the cited reference materials will
also be made freely available.

Prior to developing the Ironman version of the
Guide, we’ll use the Stoneman guide in experimen-
tal application to provide feedback on its usability.
Although the extent of coverage is intended to be
identical, developing Ironman will involve a broader,
more exhaustive review process, based on feedback
from trial usage of the Guide. ❖

ACKNOWLEDGMENTS
The SWEBOK project team gratefully acknowledges the

support provided by the members of the Industrial Advisory
Board. Funding for this project is provided by the Association
for Computing Machinery, Boeing, the IEEE Computer
Society, the National Institute of Standards and Technology,
the National Research Council of Canada, Raytheon, and SAP
Labs (Canada). The team also appreciates the important
work performed by the KA specialists named in the article.
Finally, the team acknowledges the indispensable contri-
bution of the reviewers who have participated so far.

REFERENCES

1. P. Bourque et al., Guide to the Software Engineering Body of
Knowledge: A Strawman Version, University of Quebec at
Montreal, 1998; http://www.swebok.org (current Oct. 1999).

2. D.J. Bagert et al., Guidelines for Software Engineering Education,
Version 1.0, Software Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, Nov. 1999; http://www.sei.cmu.edu/collaborating/
ed/workgroup-ed.html (current Oct. 1999).

3. Project Management Institute, A Guide to the Project
Management Body of Knowledge, Upper Darby, Pa., 1996;
http://www.pmi.org/publictn/pmboktoc.htm (current Oct.
1999).

4. W. Vincenti, What Engineers Know and How They Know It:
Analytical Studies from Aeronautical History, The Johns Hopkins
Univ. Press, Baltimore, 1990.

4 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Pierre Bourque is the director of applied
research at the Software Engineering
Management Research Laboratory at the
University of Quebec at Montreal. He is
also a coeditor of the SWEBOK project. He
has published and spoken internationally
on software measurement, functional

size measurement, project duration modeling, fundamental
principles of software engineering, software reengineering, IT
governance, and software engineering standards. He received
his MSc in mathematics (computer science) from the Université
de Sherbrooke. Contact him at bourque.pierre@uqam.ca.

James W. Moore’s biography appears in his article on page 57.

About the Authors

Robert Dupuis is a professor and the di-
rector of four graduate programs, includ-
ing the MSc program in software engi-
neering at the University of Quebec at
Montreal. He is also a coeditor of the SWE-
BOK project. His teaching activities have
included software engineering, tech-
nology assessment, research method-

ology, computer ethics, and the diffusion of technology. His
main research interests include software engineering, the diffu-
sion of end-user computing, and the diffusion and evaluation of
legal expert systems. He received his PhD in management sci-
ences from the Université de Montpellier II, France. Contact him
at dupuis.robert@uqam.ca.

Alain Abran is a professor and the di-
rector of the Software Engineering
Management Research Laboratory at
the University of Quebec at Montreal. He
is also the coexecutive editor of the
SWEBOK project. His research interests
include functional size measurement,
software productivity and estimation

models, risk management, and software quality. He holds an
MS in management sciences and an MS in electrical engineer-
ing, both from the University of Ottawa, and a PhD in software
engineering from the École Polytechnique de Montréal. He is
actively involved in international software engineering stan-
dards and cochairs the Common Software Measurement
International Consortium. Contact him at abran.alain@uqam.ca.

Leonard Tripp’s biography appears in the Guest Editors’
Introduction on page 18.

Readers can contact the authors in care of James W. Moore at
The MITRE Corp., 1820 Dolley Madison Blvd., W534, McLean,
VA 22102; james.w.moore@ieee.org.

