
A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 104 – 115, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovering Web Services and JXTA Peer-to-Peer
Services in a Unified Manner

Michael Pantazoglou, Aphrodite Tsalgatidou, and George Athanasopoulos

Department of Informatics & Telecommunications,
National & Kapodistrian University of Athens, 15784, Greece
{michaelp, atsalga, gathanas}@di.uoa.gr

Abstract. Web services constitute the most prevailing instantiation of the
service-oriented computing paradigm. Recently however, representatives of
other computing technologies, such as peer-to-peer (p2p), have also adopted the
service-oriented approach and expose functionality as services. Thus the
service-oriented community could be greatly assisted, if these heterogeneous
services were integrated and composed. A key towards achieving this
integration is the establishment of a unified approach in service discovery. In
this paper, we describe some features of a unified service query language and
focus on its associated engine, which is used to discover web and p2p services
in a unified manner. We exemplify how our unified approach is applied in the
case of web and p2p service discovery in UDDI and JXTA, respectively.
Additionally, we demonstrate how our service search engine is able to process
heterogeneous service advertisements and thus to exploit the advertised
syntactic, semantic, and quality-of-service properties during matchmaking.

1 Introduction

The service-oriented computing (SOC) paradigm has been successfully instantiated
by the technology of web services. To date, most of the core aspects of web services
have been standardized and, specifically with regard to their discovery, the Universal
Description, Discovery and Integration (UDDI) [1] specification has been established
as the preferred model of choice. Recently however, other types of services have also
emerged such as peer-to-peer (p2p) services [2], fostering a new model for service
sharing, discovery and reuse. Among the most well known p2p technologies currently
supporting the notion of service is JXTA [3], an open peer-to-peer infrastructure
which enables any connected device on the network to act as a peer and interact with
other peers. Peers in a JXTA network are expected to interact through the services
they offer/consume. Peers are organized in peer groups, where each peer group
establishes its own policies and a set of services that all peer members should
implement. Usually, peer groups are used to organize peers offering services in a
specific application domain.

The established p2p infrastructure and core services of JXTA have been used in a
number of cases to deploy, publish and compose p2p services. In [4], a distributed and
decentralized market of p2p services was proposed, also facilitating their automatic

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 105

composition. In [5], an approach was proposed for the semantic annotation of p2p
services that could assist their automatic discovery and selection. Utilized from a
different point of view, the p2p architecture was also used as the underlying
infrastructure for grouping service registries into domain-specific federations [6].
Such organization provided a significant enhancement to the course of service
discovery.

Even though many well known p2p technologies (e.g. [19] [20]) have not yet
embraced the service-oriented architecture, the results of the aforementioned efforts
could provide a strong motivation for doing so in the near future. Hence, there is an
emerging need for the integration and interoperability of web and p2p services
technologies. A significant step towards achieving such integration involves the
establishment of a unified approach in service discovery. Currently, the existing web
or p2p services can be discovered only through the underlying discovery mechanisms
of the registry or the p2p network where they have been published. Thus, developers
are either confined to search in a specific type of registry / network, or they are forced
to employ separately the different approaches and mechanisms in order to locate
services which are appropriate for their application.

In this paper, we propose a solution for discovering web and p2p services in a
unified way. Our solution comprises a query language which supports the creation of
queries for discovering heterogeneous services in a unified manner and its associated
search engine, which tackles the heterogeneity among the existing web and p2p
service discovery mechanisms and description protocols. Among the key
contributions of the search engine, which is the main focus of this paper, are: (1) the
provision of a unified search interface, which alleviates requesters from the burden of
conducting separate service lookups in the various heterogeneous registries and p2p
networks; (2) the established level of abstraction, which hides the underlying
complexity and heterogeneity from the users; (3) the ability to support existing and
emerging standards in service description and discovery.

Briefly, the rest of the paper is structured as follows: in Section 2, we describe a
motivating scenario which underlines the need for integration of web and p2p services
and also highlights the heterogeneity that hinders their unified discovery; in Section 3,
we briefly describe the Unified Service Query Language (USQL), which is used by
our search engine for the formulation of the queries and their corresponding
responses; Section 4 describes the architecture and some of the main components of
the search engine; in Section 5, we demonstrate how the engine is used to discover
web and p2p services in UDDI registries and JXTA networks, respectively; Section 6
compares our approach to related work and, finally, we conclude in Section 7 with a
discussion on future work.

2 Motivating Scenario

In order to reveal the need for integration of web and p2p services, let us consider the
following scenario from the domain of Healthcare.

The IT department of a private clinic has decided to develop a service-oriented
application to enable direct interactions between doctors, patients, as well as other
partners. The clinic has already established partnerships with external doctors and the

106 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

IT departments of other hospitals. Specifically, a p2p network has been established to
support communication and exchange of data between the clinic and external doctors,
while the partner hospitals offer a number of specialized web services to the clinic.
Fig. 1 depicts an excerpt of this application, where a second opinion is requested for a
specific medical episode.

Retrieve Patient File Get Second Opinion
«Sub-process»
Process Data

Medical Episode

Second Opinion

Fig. 1. A service composition requiring the integration of web and p2p services

In the above example, the patient file retrieval functionality could be offered by a
web service, while doctors could communicate and exchange second opinions on
specific medical incidents with the use of specialized p2p services running on their
PDAs. Alternatively, partner hospitals could provide web services which offer
diagnoses for specific medical episodes.

In order to implement the above service composition, the developers of the clinic’s
IT department have to first discover the required services from the established
registries and the p2p network. Alas, the current state of the art produces a number of
implications: (1) the IT department has to use separate discovery tools, which increase
the development cost; (2) the developers need to acquire thorough knowledge on the
technical details of the underlying discovery mechanisms and protocols, and thus fail
to focus on the business part of the application.

The scenario reveals the need for integration of web and p2p services and,
moreover, shows that a unified approach towards the discovery of such services
would very much simplify and facilitate the work of developers. In the following
sections, we describe how our search engine addresses these issues. First, we provide
a very brief description of the language used by the search engine for the formulation
of the queries and their respective responses.

3 The Unified Service Query Language (USQL)

The Unified Service Query Language (USQL) is an XML-based language enabling
requesters to create meaningful queries for heterogeneous services in a unified
manner, while at the same time it keeps technical details transparent. The USQL
specification defines two types of messages, namely the USQLRequest and
USQLResponse. To better capture real-world requirements, the language blends the
flavors of syntactic, semantic and quality-of-service (QoS) search criteria. Moreover,
it defines a set of operators, which can be explicitly applied to the search criteria and
determine the matchmaking process. This departure is particularly useful when

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 107

applying service discovery at design time, where requirements should be expressed in
a more relaxed fashion.

The snippet below illustrates a USQL request in accordance to the motivating
scenario discussed in Section 2.

<USQL version="1.0" xmlns="urn:sodium:USQL">
 <USQLRequest>
 <ViewAdditionalProperties>
 <property>Availability</property>
 </ViewAdditionalProperties>
 <Where>
 <Service>
 <ServiceDescription valueIs="contain"> medical diagnosis</ServiceDescription>
 <ServiceDomain ontologyURI="http://onthealth#">Healthcare</ServiceDomain>
 <Operation>
 <Inputs><input>
 <type>http://www.w3.org/2001/XMLSchema#string</type>
 <semantics ontologyURI="http://onthealth#">MedicalEpisode</semantics>
 </input>
 </Inputs>
 <Outputs><output>
 <type>http://www.w3.org/2001/XMLSchema#string</type>
 <semantics ontologyURI="http://onthealth#">Diagnosis</semantics>
 </output>
 </Outputs>
 <QoS><Availability valueIs="equalOrGreater">0.9999</Availability></QoS>
 </Operation>
 </Service>
 </Where>
 <OrderBy direction="descending">Availability</OrderBy>
 </USQLRequest>
</USQL>

Fig. 2. A USQL request for "get second opinion" services

The query contains a number of syntactic, semantic and QoS requirements at
various levels. Specifically, the requester is looking for “medical diagnosis” services
in the domain of Healthcare. The desired operation should accept a string as input
(the medical episode) and return a string as output (the diagnosis). Due to its very
nature, the service should be at least 99.99% available. The requester has specified
that the availability property should be included in the matching services (with the use
of the <ViewAdditionalProperties> element), and moreover its value should be used
for sorting the results (via the <OrderBy> element).

A closer look to the USQL request example reveals that all requirements were
specified in a service type-agnostic manner. Indeed, the message contains no
indication or requirement regarding the type of the candidate service(s). Moreover,
requirements were expressed at a relatively high level, based on the intuitive
knowledge of what is required for the specific task. No technical details were required

108 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

or imposed by the USQL language in formulating the request, besides the need for a
basic knowledge of XML.

For the sake of brevity, we refer to [7] for a detailed description of the various
structures and elements of the USQL language. Nevertheless, the provided
information is considered adequate for the purposes of this paper, allowing us to
proceed with the description of our service search engine.

4 The Unified Service Search Engine

The Unified Service Search Engine is an extensible framework used for applying
service discovery in heterogeneous registries and networks. It is characterized by an
open architecture enabling the smooth accommodation of various registry and service
description standards, for the purposes of service discovery and matchmaking. More
specifically, plug-ins are used for supporting access to the various service registries
and networks, while appropriate document handlers are introduced to deal with the
various syntactic, semantic and QoS service advertisements. The engine was briefly
discussed in [8] and [10]; here, we will elaborate on the functionality of its various
components and provide technical details regarding its implementation.

Unified Service Search Engine

Registry/
Network
Selector

Plug-in A

Plug-in B

USQLRequest USQLResponse

Registries

P2P Networks

USQLRequest

USQLRequest

Search Criteria
Syntactic, semantic, QoS

service descriptions

matching services

matching services

Search Criteria Syntactic, semantic, QoS
service descriptions

USQL Handler

Validator

Request
Processor
Response
Processor

USQL Handler

Validator

Request
Processor
Response
Processor

Fig. 3. Basic components of the service search engine

Fig. 3 depicts the internal structure of the search engine. Upon receiving a USQL
request, the engine employs the USQL Handler to validate it against the USQL
schema. The USQL Handler is divided into three logical parts: the Validator,
responsible for the validation of USQL messages; the Request Processor, responsible
for processing the content of USQL request messages; and the Response Processor,
responsible for constructing and properly formatting the USQL response messages.

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 109

The USQL Handler component contributes significantly to the overall flexibility and
maintainability of the search engine; it abstracts the rest of the components from
language-specific details, thus making them resilient to potential changes in the
USQL specification.

After the USQL request has been found to be valid, the request processor is
activated to extract the specified service domain value from the message. The
specified domain is then used by the Registry Selector component in identifying the
target registries and/or networks for the query. As it was described in [10], the engine
makes use of an upper ontology –implemented with the use of OWL (see
http://www.w3.org/2004/OWL/)– which associates registries with application
domains. The ontology is instantiated by a forest of domains (there is a tree for each
addressed domain); also, there are registry and p2p network instances (both
instantiating the Registry class in the upper ontology), each one of which is associated
with one or more domains, and a set of related properties that are stored by the
engine. These properties include the id of the plug-in to be used, along with other
parameters necessary for successfully accessing the respective registry or network
(e.g. JXTA peer groups might require authentication for a peer to be able to join).
Note that, maintaining the ontology's instances and associating registries with
domains are human-triggered tasks and form part of the search engine’s configuration
process.

Having identified the target registries and/or networks, the search engine
configures and instantiates the respective Plug-ins which accept the USQL request as
input and run in separate threads, thus allowing for a form of parallelism during the
execution of the query. This multi-thread implementation inside the engine
contributes to the improvement of its overall performance. To better explain how each
registry plug-in works, we illustrate its internal structure in Fig. 4:

Registry Plug-in

Registry Handler

Syntactic Handler

Semantic Handler

QoS Handler

USQLRequest

External Service
Registries/Networks

M
at

ch
m

ak
er

matching
services

Fig. 4. Internal structure of the search engine’s registry plug-ins

The Registry Handler component is responsible for extracting the registry-
supported search criteria from the original USQL request and utilizes the specific
registry type-supported discovery mechanisms and APIs to find the requested
services. The process of querying the registry results in a set of service advertisements
which are processed by the appropriate Syntactic, Semantic, and QoS Handlers to

110 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

extract the values of the properties that were constrained in the USQL request. Thanks
to the decoupling of syntactic, semantic and QoS service description handling from
the rest of the plug-in, the latter can be seamlessly extended and use different
document handlers in many combinations. In this way, the search engine is capable of
dealing with the various heterogeneous service description protocols.

Next, the registry plug-in employs the USQL Matchmaker in order to apply
extended, semantically enhanced and QoS-based matchmaking to each service. The
matchmaker implements a sophisticated matchmaking algorithm [9] which however
goes beyond the scope of this paper. Briefly described, the algorithm calculates the
overall degree of match for a given service and its operations, based on the individual
degrees of match of each specified requirement. The degree of match value is a
normalized float number ranging between 0 and 1. Going back to Fig. 3, the outcome
of the matchmaking process, i.e. the matching services, is forwarded to the USQL
Handler component, which employs the response processor to consolidate the output
from all registry plug-ins into a single USQL response message.

5 Example: Unified Service Discovery in UDDI & JXTA

In accordance to the use case described in Section 2, in the following paragraphs we
will demonstrate how our service search engine applies service discovery in UDDI
and JXTA for “get second opinion” services, with the use of a single USQL request
(the one that was described in Section 3). In this example, we assume that the
established p2p network between the clinic and the external doctors is based on
JXTA, while the web services being offered by the clinic’s partners have been
published to a UDDI registry. Moreover, all web and p2p services have been
described with the use of WSDL-S (see http://www.w3.org/Submission/WSDL-S/)
and WS-QoS [18], whilst the UDDI registry and the JXTA network have been
associated with the Healthcare domain by the search engine’s administrator.

5.1 Web Service Discovery in UDDI

The UDDI specifications define a set of protocols and APIs for publishing
information regarding businesses and the services they offer, as well as for querying
such data. The default UDDI query mechanism supports primarily keywords-based
queries where only syntactic requirements can be processed. Furthermore, search
criteria can be applied only at the service level and thus operation and input/output
related requirements cannot be processed. The UDDI specifications partially cater for
these defects, by defining an extension point, the tModel structure, which can be used
to reference external information (e.g. WSDL or WSDL-S service descriptions). The
use of the tModel facility in service discovery with UDDI is described in [11]. Our
approach also exploits tModels, as we will see next.

The search engine gains access and queries the UDDI registry that has been
associated with the Healthcare domain, by employing the respective UDDI plug-in. If
the USQL request contains criteria which are supported by the primitive discovery
mechanism of UDDI, such as the service name/description or the service provider,

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 111

these are used accordingly to narrow the lookup range. The query yields a number of
tModels containing references to the WSDL-S descriptions of the published web
services, as shown in the example below:

<tModel ...>
 <overviewDoc>
 <overviewURL>WSDL-S document URL here</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="..." keyName="uddi-org:types" keyValue="wsdlSpec"/>
 </categoryBag>
</tModel>

Fig. 5. An example tModel structure with reference to an external WSDL-S document

These descriptions are retrieved and parsed with the use of the appropriate WSDL-
S document handler, employed by the UDDI plug-in of the search engine. In a similar
way, the WS-QoS document handler provided by the search engine is used to parse
the referenced WS-QoS offers included in the WSDL-S documents. The extracted
information is mapped to a unified, USQL-like service advertisement according to the
rules given in Table 1, which is then dispatched to the USQL matchmaker component
along with the USQL request for matchmaking.

Table 1. Rules for mapping WSDL-S & WS-QoS to USQL

WSDL, WSDL-S & WS-QoS USQL
wsdl:service
 @name

Service
 /ServiceName

wsdl:operation
 /wsdl:input
 /wsdl:output
 @name

Service/Operation
 /Inputs
 /Outputs
 /name

wsdl:message/wsdl:part

 @name
 @type
 @wssem:modelReference

Service/Operation/Inputs/input
Service/Operation/Outputs/output
 /name
 /type
 /semantics

wsqos:qosOffer
 /defaultQoSInfo/serverQoSMetrics/availability
 /defaultQoSInfo/serverQoSMetrics/reliability
 /defaultQoSInfo/serverQoSMetrics/processingTime

Service/Operation/QoS
 /Availability
 /Reliability
 /ProcessingTime

5.2 P2P Service Discovery in JXTA

Services in a JXTA network are advertised through a specific type of XML-based
advertisement, namely the ModuleSpecAdvertisement (MSA), which provides limited
information regarding the service, the service provider, etc. Nevertheless, as it has
already been proposed in [5], JXTA service advertisements can be extended to

112 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

support rich-content service descriptions, and thus substantially facilitate the task of
service discovery. Our approach takes advantage of this extensibility in order to
perform advanced service discovery in JXTA networks.

Upon its instantiation, the JXTA plug-in provided by our search engine – acting as
a minimal edge peer – joins the peer group specified by configuration and submits a
“getRemoteAdvertisements” query to the peer group’s rendezvous peer(s), by using
the peer group’s established discovery service. These special types of super peers
maintain indices of peers and advertisements in the peer group, which they use in
order to propagate the query to the appropriate peer(s). Like in the case of UDDI,
criteria such as service name / description or provider can be used to narrow the
lookup range. The rendezvous peers respond by sending to the plug-in the MSAs
which were found to meet the query. Similar to the tModels, the MSAs contain links
to WSDL-S documents, as the following snippet illustrates.

<jxta:MSA xmlns:jxta="http://jxta.org">
 <MSID>...</MSID>
 <Name>GetDiagnosisService</Name>
 <SURI>WSDL-S document URL here</SURI>
</jxta:MSA>

Fig. 6. An example JXTA ModuleSpecAdvertisement (MSA)

At this point, the JXTA plug-in needs not be part of the p2p network any more and
therefore disconnects. By accessing the referenced WSDL-S descriptions and
applying the mapping rules described in Table 1, a USQL-like advertisement is
generated for each service and is consequently checked against the USQL request by
the USQL matchmaker.

5.3 Shaping the Service Discovery Results

As it was described in Section 4, the response processor consolidated the results (i.e.
the matching services) from the UDDI and JXTA plug-ins and generated the USQL
response shown in Fig. 7. Apparently two services were found to meet the search
criteria: a JXTA p2p service and a web service. The service entries in the response
appear sorted in descending order according to the value of their availability. The web
service availability advertised in the respective WS-QoS offer was less than what was
originally requested, resulting in a smaller degree of match. Note that, both service
entities contain all the necessary information for their immediate invocation. The
referenced WSDL documents provide the details and bindings of the services’
operations. The binding information depends on the specific service type. For
instance, the WSDL document of the JXTA service includes information regarding
the JXTA pipes used for communicating with the service, while the WSDL document
of the web service provides the service endpoint address, encoding style,
communication protocol, etc.

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 113

<USQL version="1.0" xmlns="urn:sodium:USQL" xmlns:srv="urn:sodium:USQL:services">
 <USQLResponse>
 <srv:Services>
 <srv:Service type="P2PService" degreeOfMatch="1.0" networkType="JXTA">
 <srv:name>GetDiagnosis</srv:name>
 <srv:descriptionDocUrl>
 http://jemini.di.uoa.gr:8080/sodium/wsdl/SecondOpinion.wsdl
 </srv:descriptionDocUrl>
 <srv:interface name="GetDiagnosisInterface">
 <srv:Operation degreeOfMatch="1.0">
 <srv:name>getDiagnosis</srv:name>
 <Availability>0.9999</Availability>
 </srv:Operation>
 </srv:interface>
 </srv:Service>
 <srv:Service type="WebService" degreeOfMatch="0.9999">
 <srv:name>GetDiagnosisWS</srv:name>
 <srv:descriptionDocUrl>
 http://jemini.di.uoa.gr:8080/sodium/wsdl/GetDiagnosis.wsdl
 </srv:descriptionDocUrl>
 <srv:interface name="GetDiagnosisIF">
 <srv:Operation degreeOfMatch="0.9999">
 <srv:name>getMedicalDiagnosis</srv:name>
 <Availability>0.9998</Availability>
 </srv:Operation>
 </srv:interface>
 </srv:Service>
 </srv:Services>
 </USQLResponse>
</USQL>

Fig. 7. The USQL response containing alternative "get second opinion" services

This concludes our example.

6 Related Work

A lot of research has revolved around service discovery over the last years and a
number of service search engines and matchmakers have been proposed. In [12], a
novel search engine is described which enables searching for web service operations
that are similar to a given one. The underlying idea of this approach is the grouping of
inputs and outputs into semantically meaningful concepts. Thus, syntactic information
in service advertisements attains semantics and can be exploited in a more fruitful
manner. Yet, the approach does not consider existing semantic service descriptions
and thus, as opposed to our search engine, it does not exploit their rich content. In
[11], Paolucci et al. describe how the UDDI infrastructure can be extended to support
OWL-S based semantic annotations for services. The main drawback of this approach
lies in that a significant update to the UDDI specifications is required. Moreover,
discovery is confined to web services only. Another framework that makes use of
OWL-S for automating the matchmaking process during web service discovery is the

114 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

WSML middleware, as described in [13]. However, the proposed matchmaking
algorithm seems to be bound with that specific semantic description protocol and thus
is not able to apply semantic matchmaking to services described with other protocols,
e.g. WSDL-S. The same shortcoming also characterizes similar efforts in JXTA
service discovery, such as the Oden framework [5]. As opposed to those approaches,
our service search engine remains independent from the various service description
protocols. Thanks to its flexible design, it can leverage existing or emerging
standards, such as OWL-S and WSDL-S, and thus it can operate in a wide range of
service-oriented settings.

Integration of web services with p2p networks has been extensively examined in
the sense of using a p2p infrastructure to enhance the various web service activities.
In METEOR-S [6], a JXTA-based p2p network is utilized to organize web service
registries, in order to facilitate the tasks of service publication and discovery. Yet, to
the best of our knowledge, there is no approach other than the one presented in this
paper, which attempts to integrate the web service and p2p worlds in terms of unified
service discovery.

7 Concluding Summary

In this paper, we briefly described the Unified Service Query Language (USQL) and
some of the functional details of our service search engine supporting the unified
discovery of web and p2p services. The engine is characterized by its flexible and
extensible design, which renders it capable of accommodating different discovery
mechanisms and service description protocols. At the same time, the technical details
are kept transparent to the user, thus simplifying the task of service discovery.

Experience has revealed a number of challenges that need to be addressed by our
search engine prototype. The restriction imposed by the matchmaker as regards the
use of the same ontology to semantically annotate service queries and service
advertisements is planned to be overcome with the utilization of a semi-automatic
ontology mapping mechanism, like the one presented in [14]. Further, we are leaning
towards ultimately replacing our custom upper ontology with more standardized
efforts, such as the Suggested Upper Merged Ontology (SUMO) [15].

The matchmaker component of our search engine employs a set of distance
measure functions for the calculation of the degree of match. Similarity distance
measure is a very popular technique in matchmaking and has been successfully
applied to similar technological areas, such as data mining and web information
retrieval [16] [17]. In the future, we plan to utilize some of the already established
efforts in syntactic, semantic, and QoS matchmaking, in order to enhance the
precision of our search engine. Finally, to enhance the engine’s performance, we are
in the process of developing a caching mechanism, which will also allow us to
experiment on the engine’s recall.

Acknowledgement. This work is partially supported by the Special Account of
Research Funds of the National and Kapodistrian University of Athens under contract
70/4/5829 and by the European Commission under contract IST-FP6-004559 for the
SODIUM project (website: http://www.atc.gr/sodium).

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 115

References

1. Organization for the Advancement of Structured Information Standards (OASIS),
Universal Description, Discovery and Integration, UDDI. http://www.uddi.org/

2. Broekstra, J., Ehrig, M. et al. (2004) Bibster - A Semantics-Based Bibliographic Peer-to-
Peer System. WWW’04 Workshop on Semantics in Peer-to-Peer and Grid Computing

3. Traversat, B., Arora, A. et al. (2003) Project JXTA 2.0 Super-Peer Virtual Network, Sun
Microsystems, Inc., Palo Alta, California

4. Gerke, J., Reichl, P., Stiller, B. (2005) Strategies for Service Composition in P2P
Networks. In Proceedings of ICETE 2005, Reading, UK

5. Elenius, D., Ingmarsson, M. (2004) Ontology-based Service Discovery in P2P Networks.
International Workshop on Peer-to-Peer Knowledge Management, P2PKM 2004

6. Verma, K., Sivashanmugam, et al (2005) METEOR-S WSDI: A Scalable Infrastructure of
Registries for Semantic Publication and Discovery of Web Services. Journal of
Information Technology and Management, Vol. 6 (1), pp. 17-39

7. Tsalgatidou, A. et al. (2006) Specification of the Unified Service Query Language (USQL).
Technical Report, available online at http://cgi.di.uoa.gr/~michaelp/TR/usql-1.0-spec.pdf

8. Tsalgatidou, A. et al. (2005) Semantically Enhanced Unified Service Discovery. W3C
Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria

9. Pantazoglou, M., Tsalgatidou, A., Athanasopoulos, G. (2006) Quantified Matchmaking of
Heterogeneous Services. In Proceedings of the 7th International Conference on Web
Information Systems Engineering, WISE 2006

10. Tsalgatidou, A. et al. (2005) Semantically Enhanced Discovery of Heterogeneous Services.
1st International IFIP/WG12.5 Working Conference on Industrial Applications of Semantic
Web, IASW2005, Jyväskylä, Finland

11. Paolucci, M. et al. (2002) Importing the Semantic Web in UDDI. In Proceedings of Web
Services, E-business and Semantic Web Workshop

12. Dong, X., Halevy, A. et al. (2004) Similarity Search for Web Services. In Proc. of VLDB
13. Cibran, M. A. et al (2004) Automatic Service Discovery and Integration using Semantic

Descriptions in the Web Services Management Layer. Proc. of 3rd Nordic Conf. on Web
Services, Vaxjo, Sweden

14. Li, J. (2004) LOM: A Lexicon-based Ontology Mapping Tool. Performance Metrics for
Intelligent Systems Workshop, PerMIS 2004, Gaithersburg, MD

15. Niles, I., Pease, A. (2001) Towards a Standard Upper Ontology. In Proceedings of the
International Conference on Formal Ontology in Information Systems

16. Sahami, M. Mittal, V. et al. (2004) The Happy Searcher: Challenges in Web Information
Retrieval. Trends in Artificial Intelligence, 8th Pacific Rim International Conference on
Artificial Intelligence, PRICAI 2004

17. D. Lin (1998) An Information-Theoretic Definition of Similarity. In International
Conference on Machine Learning

18. Tian, M., Gramm, A. et al. (2004) Efficient Selection and Monitoring of QoS-Aware Web
Services with the WS-QoS Framework. IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2004

19. Ion Stoica, Robert Morris et al (2001) Chord: Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proceedings of ACM SIGCOMM, San Diego, CA

20. Ben Y. Zhao, Ling Huang et al. (2003) Tapestry: A resilient global-scale overlay for
service deployment. IEEE Journal on Selected Areas in Communications

	Introduction
	Motivating Scenario
	The Unified Service Query Language (USQL)
	The Unified Service Search Engine
	Example: Unified Service Discovery in UDDI & JXTA
	Web Service Discovery in UDDI
	P2P Service Discovery in JXTA
	Shaping the Service Discovery Results

	Related Work
	Concluding Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

