
K. Aberer et al. (Eds.): WISE 2006, LNCS 4255, pp. 144 – 155, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Quantified Matchmaking of Heterogeneous Services

Michael Pantazoglou, Aphrodite Tsalgatidou, and George Athanasopoulos

Department of Informatics & Telecommunications,
National & Kapodistrian University of Athens, 15784, Greece
{michaelp, atsalga, gathanas}@di.uoa.gr

Abstract. As the service-oriented computing paradigm and its related
technologies mature, it is expected that electronic services will continue to grow
in numbers. In such a setting, the course of service discovery could yield many
alternative yet heterogeneous services which, by all means, may be of different
type and moreover distinguished by their quality characteristics. To come
through such situations and ease the task of service selection, service search
engines need to be powered by an efficient matchmaking mechanism, which
will abstract requesters from service heterogeneity and provide them with the
means for choosing the service that best fits their requirements, among a wide
set of services with similar functionally. In this paper, we present an efficient
service matchmaking algorithm, which facilitates the task of heterogeneous
service selection, whilst combining and exploiting the syntactic, semantic, and
Quality-of-Service (QoS) properties contained in service advertisements.

Keywords: service discovery, service matchmaking, service ranking,
heterogeneous services.

1 Introduction

Service discovery plays a fundamental role in service-oriented development, allowing
developers to find and re-use existing units of software for rapidly building
distributed applications. According to advocates of the Service-Oriented Architecture
(SOA), electronic services will continue to grow in numbers as the related
technologies mature. Accordingly, a query for a specific type of functionality could
yield many alternative services, which may be of different type (e.g. web or peer-to-
peer services) and moreover distinguished by different Quality-of-Service (QoS)
characteristics. This case is better illustrated through the description of the following
real-world scenario.

The IT department of a private clinic has decided to develop a service-oriented
application, which will enable direct interactions between doctors, patients, as well as
other partners (e.g. insurance companies, pharmacy companies, external doctors, etc).
Fig. 1 depicts an excerpt of this application, where the doctor asks for a second
opinion, based on anonymous medical information retrieved from the clinic’s internal
database. The clinic has already established partnerships with a number of external
doctors as well as with other clinics and hospitals, which offer the appropriate
services for the establishment of this type of communication. These services are
potentially of different type, they may have been described with the use of different

 Quantified Matchmaking of Heterogeneous Services 145

description protocols, and they may also have different quality-of-service
characteristics. For example, hospitals may have exposed this type of functionality
through a web service interface, while the external doctors may be contacted and
asked for a second opinion through a specialized p2p service running on their PDAs
or mobile phones. Consequently, the developer faces the problem of having to select
among all these similar services the one that is most suitable for the specific task.

Retrieve
Patient File

Get Second
Opinion Process Data

<<Sub-process>>

Patient File

Second Opinion

Fig. 1. A sample healthcare application requiring the use of a “get second opinion” service

To overcome such an arduous task, the course of service discovery needs to be
leveraged by an efficient matchmaking mechanism, which will abstract requesters
from the technical complexity and heterogeneity of the various service advertisements
and provide them with a means for making the right selection. Naturally, the result of
such a mechanism will be a list of appropriately ranked, similar services.

In this paper, we present a matchmaking algorithm, which aims at facilitating the
task of service selection among a set of alternative services, by quantifying their
similarity. Among the strong points of the proposed matchmaker are: 1) its ability to
deal with the underlying heterogeneity of existing services, both in terms of their type
and their description protocols, 2) the fact that it produces results by combining
syntactic, semantic, and QoS service characteristics. The matchmaking algorithm has
been fully implemented by the specification of the Unified Service Query Language,
namely USQL, which is described in [1]. The detailed description of the language
goes beyond the scope of this paper; however, USQL will be used as a means to
express requirements, in order to validate the proposed algorithm.

Briefly, the rest of the paper is structured as follows: Section 2 introduces the basic
concepts that form the basis for the definition of the matchmaking algorithm, which is
described in Section 3. In Section 4, a preliminary experiment is conducted, with the
use of USQL, so as to give some early results regarding the precision of the
algorithm. Section 5 compares our work with related efforts and emphasizes its main
contributions. Finally, Section 6 concludes with a small discussion on future work.

2 Basic Concepts

In this paragraph, we briefly present the conceptual model that has driven the
definition of the matchmaking algorithm. Described by the W3C Body, the Service-
Oriented Model (SOM) [3] defines that a service groups the message interactions it
can be engaged in through an interface. Moving along this high-level assumption, we
established in previous work a Generic Service Model (GeSMO) [2]. GeSMO moves

146 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

one step further by defining message interactions as operations, while also declaring
that a service may expose multiple interfaces, which in turn offer one or more such
operations. The following conceptual model (Fig. 2) depicts our perception on the
notion of service and its fundamental parts.

Service Interface

1..n1 1..n1

expose

MessageOperation

1..n1..n

0..21 0..21

exchange

Fig. 2. High-level conceptual model for services

All concepts in the above model are given by default a syntactic description, but it
is also possible that semantics and/or QoS properties are assigned to some of them. In
our approach, we assume that services, service operations as well as their exchanged
messages can be semantically described. In addition, service operations can be given
QoS properties, such as availability, reliability, processing time, etc (Fig. 3).
Consequently, when querying for a specific type of functionality in a service-oriented
setting, it becomes natural that requirements can be expressed at the service level, the
operation level, as well as the message level. Moreover, a service query may consist
of syntactic, semantic, and QoS requirements.

Service MessageSemantics
has has

Operation

has

QoS

applyTo

Fig. 3. Semantics and QoS as they are supported by our conceptual model

Having described our conceptual view on services, we proceed in the following
with the definition of our matchmaking algorithm.

3 The Matchmaking Algorithm

The process of service matchmaking can be basically described as follows: Given a
service request comprising a set of requirements, check against a set of service
advertisements and calculate the degree of match for each corresponding service.
The degree of match quantifies the suitability of each service with respect to the
original request and it usually takes the form of a percentage amount.

 Quantified Matchmaking of Heterogeneous Services 147

A service request contains a series of requirements, which can be either simple
(e.g. the name of the service provider, the type of input/output parameters, the
processing time of a service operation, etc.), or complex. As the term implies,
complex requirements consist of other requirements, which in turn may be either
simple or complex. For example, a series of operation-level requirements, such as the
operation name and semantics, the operation inputs and outputs, operation QoS, etc.
are grouped as one complex requirement regarding the whole operation. In the next
paragraphs, we define a set of formulas which are used to calculate the degree of
match for simple and complex requirements.

3.1 Matching Simple Requirements

According to the conceptual study that was described in the previous section, the
requester may express syntactic, semantic, and/or QoS requirements upon formulation
of a service discovery request. To process such requests, a matchmaking algorithm
should be primarily equipped with the appropriate mechanisms for the calculation of
the degree of match of simple syntactic, semantic, and QoS requirements.

Similarity distance measure has been established as one of the most popular
matchmaking techniques and is being used extensively in the areas of data mining and
web information retrieval [16], [15]. The relative theory is basically evolved around
the notion of distance functions, a definition of which can be found in [4]. Our
proposed matchmaking algorithm utilizes this technique in order to calculate the
degree of match of such requirements in a service discovery request.

Definition 1. Given a simple requirement q and the value a of the corresponding
property in a service advertisement, their degree of match d is defined as follows:

),(1 aqdistd −= . (1)

As we can see, the calculation of the degree of match employs dist, a normalized
similarity distance measure function. More specifically, dist will return 1 in cases
where q and a do not match at all, 0 in cases where q and a perfectly match, and an
appropriate value between 0 and 1, if where there is a partial match between q and a.
In other words, the more a matches q, the more dist leans towards 0 and, reversely,
the less a matches q, the more dist leans towards 1. Consequently, according to
equation (1), the degree of match d equals to 1, if the advertised property exactly
matches the requested one, while it takes the value of 0, if there is no match.

3.1.1 Syntactic Requirements
The expression of a syntactic requirement implicitly states a set of accepted values for
the corresponding advertised property. Consider an example, where the requester is
looking for services being offered by Microsoft. The implied set of accepted values
for the service provider property comprises any phrase or word containing the
keyword ‘Microsoft’. The example reveals that, the result of applying syntactic
matchmaking has a binary nature, that is, either the advertised property’s value
belongs to the set of accepted values implied by the syntactic requirement, or it does
not. The following definition captures this assumption:

148 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

Definition 2. Given a simple syntactic requirement qsyn, its implied set of accepted
values Sq, and the value asyn of the corresponding syntactic property in a service
advertisement, their similarity distance measure function is defined as:

⎩
⎨
⎧

∉
∈

=
qsyn

qsyn
synsynsyn

Sa

Sa
aqdist

,1

,0
),(. (2)

Going back to the above example, distsyn(qsyn, ‘Microsoft Corporation’) = 0, while
distsyn(qsyn, ‘IBM’) = 1. Respectively, the degree of match in the first case would be
equal to 1 (i.e. the simple syntactic requirement was fully met) while in the second
case it would be equal to 0 (i.e. the simple syntactic requirement wasn’t met).

3.1.2 Semantic Requirements
In measuring the distance measure between two semantic concepts we take into
consideration their hierarchical relation in the ontology graph. Particularly, the
semantic relations exact, plug-in, subsume, and fail, between two semantic concepts,
which have been described in [5], can be quantified with the definition of the
following semantic distance measure function:

Definition 3. Given a simple semantic requirement qsem and the value asem of the
corresponding semantic property in a service advertisement, their distance is
measured as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

)(relation immediatean havet don' and if,1

 if,3/2

 of a is if,3/1

match and if,0

),(

failaq

asubsumesq

aplug-inq

exactlyaq

aqdist

semsem

semsem

semsem

semsem

semsemsem

(3)

The values assigned to each of the identified semantic relations reflect their
semantic order, as it has been explained in [5].

3.1.3 QoS Requirements
As in the case of syntactic search criteria, a QoS requirement defines a set of accepted
values for a given QoS property, from the requester’s point of view. For example, if
the requester requires that the operation must be at least 99.9% available, given the
fact that the operation availability cannot be validated more than 100%, the implied
set of accepted values for this specific QoS property will be [0.999, 1], where
percentages have been expressed as real numbers between 0 and 1.

Due to the fact that most QoS properties are numerical, we can refine the definition
of the similarity distance measure function so that it provides us with more realistic
results. Such definition is given as follows:

Definition 4. Given a simple QoS requirement qqos, its implied set of accepted values
Sq, and the value aqos of the corresponding QoS property in a service advertisement,
their distance measure, distqos, is defined as:

 Quantified Matchmaking of Heterogeneous Services 149

⎪⎩

⎪
⎨
⎧

∉
−

∈
=

qqos
qosqos

qosqos

qqos

qosqosqos
Sa

aq

aq
Sa

aqdist
,

),max(

,0
),((4)

Note that, the above function is applicable only to QoS properties which take the
form of positive numbers. Such properties include the operation availability,
reliability, processing time etc. Another appropriate similarity distance measure
function should be defined for non-numerical QoS properties (e.g. security).

3.2 Matching Complex Requirements

While the matchmaking process of simple requirements is straightforward and depends
primarily on their type (i.e. whether these refer to syntactic, semantic, or QoS properties
of the service), matching complex requirements requires an advanced formula which
must be able to also satisfy a number of conditions imposed by intuition and practice.

Upon formulation of a service request, some requirements are often given higher
priority than others. Prioritized requirements are particularly useful when the task of
service discovery is performed at design-time, where the ultimate selection of a service
is human-driven. In such cases, requesters may assign different priorities to their needs,
so as to distinguish the real important requirements from the less important or optional
ones. For instance, during the development of a service-oriented application, the
satisfaction of the requested capability of an operation (i.e. semantics of the operation)
would be considered more important than matching its actual signature, since the
developer has the ability to adapt his/her application accordingly, for the operation to fit
in. It is therefore imperative for a matchmaking algorithm to take into consideration the
likely different priorities of requirements in a service request. Intuitively, the existence
of requirements with different priority levels should have an impact on the calculation
of the degree of match: the higher the priority level of a requirement is, the more the
requirement’s degree of match should affect the calculation of the total degree of match.
Moreover, it makes sense to claim that, if the most important requirements in a query
are not satisfied, the resulting degree of match should be leaning towards zero.

In the definitions that follow, we capture the essence of the aforementioned
conditions in order to render the matchmaker of complex requirements intuitive.

Definition 5. Let P = {p1, p2, ..., pk} be an ordered set of k priority levels pi, 1 ≤ i ≤ k,
where kppp ≺≺≺ ...21 and Q = {q1, q2, ..., qn} be an unordered set of n

requirements, which have been assigned different priority levels, k ≤ n. Then, Q can
be expressed as

kQQQQ ∪∪∪= ...21 . (5)

In equation (5), Qi, i = 1..k are the un-ordered sets of ni requirements with pi

priority level, where jikjiQQ ji ≠∈∀=∩],[1,,,Ø , ni > 0 and

nn
k

i

i =∑
=1

.

150 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

It should be noted that, the actual type and values of the priority levels do not
affect the matchmaker definition. In our approach, we are only interested in the
defined order between the different priority levels, which we use to group
requirements according to equation (5). In this way, the matchmaking algorithm is
rendered independent from the actual matchmaker implementation. For instance, in
the USQL language we have specified two values for the priority level of the
requirements, namely ‘low’ and ‘high’ [1].

In what follows, we define the formula for the calculation of the degree of match
for complex requirements.

Definition 6. Let Q be an un-ordered set of n requirements, n > 0, with k different priority
levels (see Definition 5) and adv be an advertisement which Q is checked against. Then,
the degree of match dm for Q is calculated with the use of the following formula:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+−
⋅+⋅⋅

⋅
= ∑ ∑
∑

−

= +=

=

1

1 1

1

1
1

1 k

i

k

ij j

ji
kk

i

i

m
n

D

ik

Di
Dk

in
d . (6)

In the above definition, we have ∑
=

=
in

j

ji dD
1

, where ni > 0 is the number of

requirements having i priority level and dj is the degree of match of the jth requirement
in subset Qi. It can be proven that 0 ≤ dm ≤ 1, however, due to lack of space we omit
the proof in this paper.

A closer look at equation (6) reveals that the defined formula abides by the
intuitive conditions which were set previously. Indeed, if all requirements with the
highest priority are not met (i.e. Dk = 0), then the resulting degree of match for Q
diminishes towards zero. Also, the significance of the degrees of match of lower-
prioritized requirements in calculating the overall matching degree is affected the
degrees of match of the higher-prioritized ones. In other words, the higher the priority
of a requirement is, the more its degree of match determines the overall calculation.

3.3 Matchmaking Against Multiple Advertisements

Up to now, we have provided definitions for the calculation of the matching degrees
of simple and complex requirements against a given advertisement. Since a service
request is basically a set of requirements, it can also be considered as a complex
requirement and, thereby, equation (6) is used for the calculation of the overall degree
of match of a service. Nevertheless, in practice, service requests are commonly
checked against a number of service advertisements. To accommodate this fact, we
need to reshape equation (6) with the use of matrices. First, we provide a generic
definition of what a matchmaker is:

Definition 7. Let Q = {q1, q2, ..., qn} be an unordered set of n requirements, and A =
{a1, a2, ..., am} be an unordered set of m advertisements. We define a matchmaker M as

DAQM 6×: . (7)

 Quantified Matchmaking of Heterogeneous Services 151

where D = [dj1], 0 ≤ dj1 ≤ 1, j = 1..m is a 1×m matrix containing the resulting degrees
of match of the advertisements.

In general, when nk requirements with the same priority level k are checked against
m advertisements, we can make use of an m × nk matrix Rk = [dij], i=1..m, j=1..n, for
displaying the resulting degrees of match. Each element dij in this matrix is the
resulting degree of match of the jth requirement, checked against the ith
advertisement, and has been produced with the use of the appropriate formula, from
the ones defined in equations (2), (3), (4) and (6). Then, the summaries of the degrees

of match of all nk requirements per advertisement (∑
=

kn

x

xd
1

) are collectively calculated

as follows:

knkk URS ⋅= . (8)

where knU is a nk × 1 matrix, whose elements are all equal to 1, and knS is the
resulting m × 1 matrix.

Definition 8. Let Q be an un-ordered set of n requirements, n > 0, with k different
priority levels (see Definition 5). Given the equations (6), (7) and (8), the degrees of
match for a number of m advertisements contained in an unordered set A = {a1, a2, ...,
am} are calculated as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−

⋅+⋅
+⋅⋅

⋅
== ∑

∑

∑

−

=

+=

=

1

1

1

1

1
1

),(
k

i

k

ij j

j
ii

kk

i

i

m
ik

n

S
DSSi

Sk
in

DAQM . (9)

where:

− Dm is the resulting m × 1 matrix containing the matching degrees of the m service
advertisements

− DSx , x=1..k, is an m × m diagonal matrix, immediately produced by Sx as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

m

x

m

x

d

d

d

DS

d

d

d

S

...00

......

0...0

0...0

.

2

1

2

1

. (10)

This concludes the definition of the matchmaker.

4 Evaluation

The experiment described in this section provides some preliminary results regarding
the precision of the proposed matchmaking algorithm. Going back to the scenario

152 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

described in Section 1, we will apply matchmaking against a number of alternative
services for the “get second opinion” task (see Fig. 1). For the purposes of this early
experiment, we implemented two web services (ws1 and ws2) and a JXTA p2p
service (ps3) with similar functionality, yet distinguished by certain syntactic,
semantic and QoS characteristics. Both web services have been described with the use
of WSDL-S (see http://www.w3.org/Submission/WSDL-S/), regarding their interface
and semantics, and WS-QoS (see http://www.wsqos.net), with respect to their QoS
offers. For the p2p service, we used WSDL and OWL-S (see http://www.w3.org/
Submission/OWL-S/) to describe it syntactically and semantically. Finally, the same
ontology that was used for semantically annotating all services was also employed in
the formulation of our query. The following table summarizes the three services and
their properties:

Table 1. Services used for the evaluation of the matchmaking algorithm

Service Provider Domain Description Operation
ws1 Medisystem Healthcare %second

opinion%
Capability:
GetSecondOpinion
Input: EpisodeId:string
Output: Diagnosis:string
Availability: 99.95%

ws2 eHealth PrivateClinicServices %second
opinion%

Capability:
GetSecondOpinion
Input: EpisodeFile:file
Output: SecondOpinion:file
Availability: 99.96%

ps3 Medisystem CardiologyServices %second
opinion%

Capability:
GetSecondOpinion
Input: EpisodeDesc:string
Output: Diagnosis:string
Availability: 99.899%

Precision. We used USQL to formulate a query for a “get second opinion” service in
the domain of Cardiology, which is a sub-domain of Healthcare, provided by
Medisystem, offering an operation with capability semantically described as
“GetSecondOpinion”. The requested operation should accept an episode file as input,
and return the diagnosis as output. Moreover, its availability should be equal or
greater than 99.9%. From the above requirements, the operation and domain were
given high priority. The USQL request was produced according to these requirements
and can be found in http://cgi.di.uoa.gr/~michaelp/usql-request-wise06.usql.

The application of the matchmaker formula, defined in equation (9), along with the
use of formulas (2), (3), (4), and (6), produced the following degrees of match:

Table 2. Results of the matchmaking algorithm

Service Degree of Match
ws1 77.42 %
ws2 41.14 %
ps3 91.31 %

 Quantified Matchmaking of Heterogeneous Services 153

According to the results, the p2p service (ps3) was found to be closer to our
requirements. However, this should not come as a surprise: a closer look at Table 1
shows that, only the operation input and availability were not fully compliant with the
requested ones.

5 Comparison with Related Work

A large number of research efforts have been conducted over the years, dealing with
the problem of similarity measuring. Many of these approaches were adapted to
service matchmaking, with special attention paid at semantic similarity between
ontology classes and/or their properties [6], [7]. In [8], a novel service retrieval
approach was proposed, that captures service semantics via process models, and
applies a pattern-matching algorithm to locate desired services. An ontological
approach was proposed in [11] which, like our matchmaking algorithm, also considers
user assigned priorities in matchmaking. Following a different direction, a set of
algorithms were developed in [9] which enable searching for web service operations
that are similar to a given one. The underlying idea of their search engine is the
grouping of inputs and outputs into semantically meaningful concepts. Thus, syntactic
information in service advertisements attains semantics and can be exploited in a
more fruitful manner. Many proposals have also emerged to deal with QoS
matchmaking. In [10], a matchmaking framework was described, which maps QoS
requirements of consumers with the published QoS information of providers, also
accommodating QoS-Constraints.

As opposed to the above mentioned approaches, which are restricted to performing
matchmaking against either syntactic, semantic, or QoS search criteria, our
matchmaker is capable of blending all these types of criteria in calculating the service
degree of match, thus supporting the specification of syntactic, semantic, as well as
QoS requirements within a service query. The calculation of the degree of match of a
service remains independent of the way in which the degree of match of each one of
the constituent requirements is calculated. Thus, the matchmaker can be extended
with as many types of requirements and their related matchmaking mechanisms as
needed. In this regard, existing advanced matchmaking mechanisms like the ones
mentioned above can be seamlessly embedded in our approach. The LARKS
framework [12] also combines syntactic and semantic matchmaking, yet its main
drawback lies in that it supports a rather static service description schema. Our
matchmaker overcomes this shortcoming as it abides by a high-level conceptual
model which complies with most service-oriented technologies and standards, such as
WSDL, WSDL-S, OWL-S, WS-QoS, etc. Due to the abstraction of the underlying
model, it is expected that the matchmaking algorithm can be applied to a wide range
of heterogeneous service-oriented environments, ranging from UDDI and ebXML
registry lookups to service discovery within p2p networks and/or grid virtual
organizations. Other important features of our proposed matchmaking algorithm are
its intuitiveness and scalability provided by its own definition (see equation (9)).
Hence, it becomes possible to apply the matchmaking algorithm to any number of
service advertisements in a parallel manner.

154 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

The matchmaking algorithm presented here has been fully implemented by the
specification of USQL [1] and a USQL-enacting service search engine prototype [13].
The matchmaker, the USQL language, and its associated search engine have been
developed in the context of the SODIUM project [14] and form part of its provided
platform [13]. Within the context of SODIUM, the presented matchmaking algorithm
has been applied in a number of use cases accruing from applications in the domains
of Healthcare and Crisis Management, where the ultimate selection of the most
appropriate service for a given task was significantly facilitated.

6 Discussion

In this paper, we presented a service matchmaking algorithm capable of assessing
complex service requests against a number of service advertisements and ranking the
returned results. Furthermore, we evaluated the matchmaking algorithm’s precision
with the conduction of a preliminary experiment. Among the matchmaker’s novelties
is its applicability to any type of services, provided that their descriptions are
compliant with the matchmaker’s underlying service model. Also, as opposed to most
of the related work that we have looked at, our matchmaking algorithm considers
syntactic, semantic, and quality requirements in calculating the overall matching
degree of a service. All in all, we believe that, the main contribution of our approach
is the provision of an intuitive, unified matchmaking approach, in terms of service and
requirements heterogeneity, which is capable of dealing with complex service
requests. Our matchmaker alleviates users from the cumbersome task of separately
matching syntactic, semantic, and QoS requirements and manually combining the
results.

In the future, we aim at selectively accommodating in our matchmaking algorithm
the most promising among the aforementioned efforts, by exploiting the fact that its
definition remains independent from the way individual degrees of match are
produced. This will allow us to conduct more extended experiments, which we expect
to give interesting results. Finally, our immediate plans include extending the USQL
language to support more than two priority levels for service requirements, so that we
have the opportunity to better evaluate the matchmaking algorithm.

Acknowledgement. This work is partially supported by the Special Account of
Research Funds of the National and Kapodistrian University of Athens under contract
70/4/5829 and by the European Commission under contract IST-FP6-004559 for the
SODIUM project [14].

References

1. Tsalgatidou, A., Pantazoglou, M., Athanasopoulos, G. (2006) Specification of the Unified
Service Query Language. Technical Report, http://cgi.di.uoa.gr/~michaelp/TR/usql-1.0-
spec.pdf

2. Tsalgatidou, A., Athanasopoulos, G., Pantazoglou, M., et al. (2006) Generic Service
Model Specification. Technical Report, http://cgi.di.uoa.gr/~gathanas/TR/gesmo-1.0-
report.pdf

 Quantified Matchmaking of Heterogeneous Services 155

3. W3C Working Group (2004) Web Services Architecture. Note 11 February 2004,
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

4. Eiter, T. et al. (2001) Matchmaking for Structured Objects. In Proc. of the Third
International Conference on Data Warehousing and Knowledge Discovery, Lecture Notes
In Computer Science, Vol. 2114, 186-194

5. Srinivasan, N., Paolucci, M., and Sycara, K. (2004) An Efficient Algorithm for OWL-S
Based Semantic Search in UDDI. Semantic Web Services and Web Process Composition:
First International Workshop (SWSWPC), San Diego, CA, USA

6. Li Kuang, Shuiguang Deng et al. (2005) Exploring Semantic Technologies in Service
Matchmaking, Third European Conference on Web Services (ECOWS’05), 226-234

7. Bramantoro, A. et al. (2005) A Semantic Distance Measure for Matching Web Services. In
Proc. of the Web Information Systems Engineering – WISE 2005 Workshops: WISE 2005
International Workshops, New York, NY, USA, 217-226

8. Klein, M., Bernstein, A. (2004) Towards High-Precision Service Retrieval. IEEE Internet
Computing, 8 (1), 30-36, Jan/Feb, 2004.

9. Xin Dong, Alon Halevy, et al. (2004) Similarity Search for Web Services. In Proc. of
VLDB, Canada

10. Taher, L. et al. (2005) Establishing Association between QoS Properties in Service
Oriented Architecture. In Proc. of the International Conference on Next Generation Web
Services Practices (NWeSP'05), 163-168,

11. Ribeiro, C. et al. (2006) An Ontological Approach for Personalized Services. 20th
International Conference on Advanced Information Networking and Applications, Vol. 2,
729-733,

12. Sycara, K. et al. (1999) Dynamic service matchmaking among agents in open information
environments. ACM SIGMOD Record 28 (1), Special Issue on Semantic Interoperability
in Global Information Systems, 47–53

13. Tsalgatidou, A. et al. (2006) Developing Scientific Workflows from Heterogeneous
Services. SIGMOD Record, Vol. 35 (2), 22-28

14. SODIUM Project, http://www.atc.gr/sodium
15. Mehran Sahami, Vibhu Mittal et al. (2004) The Happy Searcher: Challenges in Web

Information Retrieval. Trends in Artificial Intelligence, 8th Pacific Rim International
Conference on Artificial Intelligence (PRICAI)

16. Lin, D. (1998) An information-theoretic definition of similarity, in International
Conference on Machine Learning

	Introduction
	Basic Concepts
	The Matchmaking Algorithm
	Matching Simple Requirements
	Matching Complex Requirements
	Matchmaking Against Multiple Advertisements

	Evaluation
	Comparison with Related Work
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

