
Towards a Unified Runtime Model for Managing
Networked Classes of Digital Objects⋆

Kostas Saidis and Alex Delis
{saiko,ad }@di.uoa.gr

Department of Informatics
University of Athens, 157 84, Athens, Greece

Abstract. In this paper we propose a unified runtime model for managing diverse
and heterogeneous digital material in terms of network classes/types of digital ob-
jects. Our proposal aims to offer a general-purpose, reusable system that may act
as a common runtime layer for the development of any digital library. We iden-
tify the fundamental requirements that such a runtime layershould fulfill, namely
(a) storage independence, (b) service neutrality and (c) digital object modeling
capabilities. Then we present how our proposal meets these requirements, while
offering a great deal of expressiveness and ease of use to theDL application de-
veloper.

1 Introduction

Digital Libraries (DLs) need to provide the infrastructurefor enabling users to access
a broad range of intellectual works originating from various interconnected and hetero-
geneous sources. DL development can be viewed from many perspectives including but
not limited to information retrieval and integration, web information and data manage-
ment, human/computer interaction and software engineering. Apart from this plethora
of disciplines involved in DL development, modern DL systems have to cope with di-
verse uses and deployment scenarios. For example, two DL systems may: (a) employ
different storage solutions, (b) operate on different types of intellectual works, (c) may
use different metadata schemes to document such works and finally, (d) may synthe-
size digital object information in diverse service provision environments, governed by
different protocols, services and user interfaces. These variations depend on the rules
and constraints of the particular DL-specific environment.In this paper we elaborate on
the essential features that should be offered by a DL Management System (DLMS)[1].
Our objective is to realize such a system to act as the “core” for developing any DL
regardless of the variations that may occur in the deployment environment of DLs.

We view the DLMS as an intermediate runtime layer between (a)the services em-
ployed by a DL and (b) the sources of material managed by a DL. We supply the DLMS
with a unified foundation, identifying the critical requirements that should be met by the
DLMS runtime layer and its underlying logical model. We alsofocus on the abstractions
and expressiveness the DLMS should offer to the DL service developer. For example,

⋆ This work was supported by a European Social Funds and National Resources Pythagoras
Grant with No. 56-90-7410 and the Univ. of Athens Research Foundation.

32 K. Saidis and A. Delis

databases offer a great deal of expressiveness to application developers through the use
of a domain-specific language, namely SQL. As a domain-specific language can pro-
vide the ultimate abstraction of a problem [2], in practicalterms, a developer can view
a database as an interpreter of SQL statements, assisting her to realize complex data
management tasks with a little effort. Unfortunately, a corresponding analogy is not
available in DL service development; DL developers have to realize complex digital
material management tasks “manually”. The DLMS should not only offer an effective
unified representation of networked, semantically diverseand heterogeneously stored
digital material but it should also empower DL developers with expressiveness and
ease of use. Thus, we need to supply the DLMS with a language pertinent to the digital
object management domain. Such a language will automatically “translate” incompat-
ible physical/storage representations into the DLMS’ unified runtime model, abstract-
ing high-level services from the diversity and heterogeneity of underlying networked
sources of material.

The remainder of this paper is organized as follows. In Section 2 we elaborate on
the design of a DLMS and the essential requirements of its unified model. In Section
3 we propose an approach to implement the DLMS using a domain-specific embed-
dable language [3] of network classes/types of digital objects. Finally, in section 4 we
conclude the paper.

2 Requirements of a Unified Model for Digital Object
Management

Various terms and concepts have been used in the literature to refer to DL material
including but not limited tocontent, digital object, information objectand data ob-
ject [1,4,5,6,7,8,9,10]. To narrow down the ambiguity, we use a single term,digital
object, to refer to any digital artifacts managed by DLs such as e-prints, digital assets,
archival material and so forth, independently of the particular representations and mech-
anisms involved in storing such artifacts. We call the storage artifact astored digital ob-
ject and we use the termdigital object store(DO store) to refer to any system that can
hold stored digital objects. As a database system constitutes a reusable, general-purpose
tool for managing data in terms of tuples, respectively, we need to realize a DLMS as
a reusable, general-purpose system that can be used to manage data in terms of digital
objects. In the remainder of this section, we elaborate on the design of a unified runtime
model for the DLMS, identifying the requirements that such amodel should fulfill.
• Storage Independence:A storage-independent logical model of digital objects will
allow the DLMS –and the higher-level DL services– to operateatop any DO stores such
as custom database solutions or XML-based repositories. The digital object represen-
tations employed by the DLMS should be independent of any physical digital object
storage representations as the latter may differ between a DO store and another. More-
over, as it often occurs in practice, digital objects may need to be moved from one DO
store to another and the DLMS should be able to effectively cope with such a need.

The challenge is to enable the DLMS to actually supply high level services with a
unified logical view of any kind of digital objects originating from any underlying DO
stores. Given that the DLMS should be (re)usable in any DL deployment context, no

Managing Network Classes of Digital Objects 33

assumption can be made about whether such DO stores will either be local/remote or
heterogeneous/homogeneous.Therefore, the DLMS should operate atop any physical/s-
torage digital object model without requiring any modifications to be performed in the
latter. Finally, in terms of digital object integration/interoperation, the DLMS should
assist us to make any DLs to appear as remote DO stores for eachother, effectively
wrapping any source of digital objects in an inexpensive manner.

• Service Neutrality: The DLMS will employ appropriate structures to stage digital
object information at runtime based on its unified model. It will also allow high-level
services to manage this information through an API. We believe that the DLMS API
should be exposed to higher-level services in a service neutral manner, allowing DL
services to synthesize digital object information in any service provision environment
of choice. Should we consider that the DLMS exposes its API interms of web services,
although such a decision best fits to an heterogeneous networked environment such as
the WWW, it will probably be inefficient for developing a personal digital library sys-
tem, for example. Moreover, in the case of a DL system used in aprivate intranet –acting
as a document management system, for example– the organization should be allowed
to use its proprietary communication protocols and existing service infrastructure for
reasons of backward compatibility with legacy applications.

Similar service-neutrality exists in databases, where theresult set returned by an
SQL query is made available to the calling application through appropriate data struc-
tures that wrap involved database table/field data. In the context of a database system,
no assumptions are made about the actual usage of data at the application level. An
application may use this data to dynamically render a web page, feed a web service
response or generate a PDF report, for example. Respectively, the DLMS API should
only pertain to supplying high-level DL services with access to runtime representations
of digital object information, as the latter is internally held by the DLMS runtime struc-
tures. The particular communication protocols and mechanisms involved in exposing
digital object information to other systems and/or users should be designated by the
higher-level DL application logic and its services.

• Digital Object Modeling Capabilities: The DLMS unified digital object model
should support the fundamental requirement to represent semantically diverse digital
objects in a unified manner. Such a model should supply DL designers with a common
“language” for expressing a variety of digital object structural arrangements. In this con-
text, we believe that the DLMS model should allow the DL designer to use all four es-
tablished abstraction principles, namely aggregation/decomposition, grouping/individ-
ualization, classification/instantiation and generalization/specialization [11,12,13] tran-
scending network and digital library boundaries. More specifically, the DLMS unified
model should allow DL designers to express the aggregation nature of digital objects,
while at the same time it should allow services to effectively decompose such aggre-
gations for their service provision needs. Support for grouping/individualization will
allow “incompatible” objects to be grouped together –i.e.,for realizing a collection of
digital objects or for linking two objects with each other. Classification/instantiation
will allow the DLMS to make individual digital objects comply with their structural
and behavioral specifications automatically. Finally, generalization/specialization will

34 K. Saidis and A. Delis

allow the DL designer to reuse and/or refine digital object specifications across varying
DO sources.

3 Our Approach

In our approach to deal with the DLMS requirements we view a digital object as an
identifiable unit of information which may contain various types of digital content and
multiple metadata schemes. It may also develop several relationships with other objects
and it may expose behavior in terms of logical views of the above. As Figure 1 shows,
we view a digital object as any combination of the following set of attributes:Meta-
data Set, Metadata Field, Stream, Relation ContextandBehavior Scheme. Any digital
object, at any point in time, may contain zero or moreMetadata Sets, each one con-
taining one or moreMetadata Fields. The latter can hold multiple multi-lingual values.
A digital object may also contain zero or moreStreamattributes, used as handles for
the underlying locally or remotely stored digital content including files, bitstreams or
URIs. Moreover, a digital object may contain zero or moreRelation Contexts, each one
outlining a particular relationship between the object andothers. ARelation Context,
at any point in time, may contain zero or more members, referenced using their unique
identifiers. Finally, a digital object may contain zero or more Behavior Schemes, each
one providing a different view of the object’s structure.

Fig. 1. The Logical View of a Digital Object and its Attributes

Each attribute type is used by the DL designer to model a particular component of a
digital object, regardless of each component’s storage representation employed by un-
derlying DO stores. Consider two heterogeneous DLs hostingbooksandarticlesdigital
objects respectively. Articles full text is available in terms of PDF documents, while
books’ pages are digitized and made available in terms of digital images. Moreoever,
different descriptive metadata are used to document each type of material. Finally, con-
sider thatarticlesoriginate from a custom database solution, whilebooksandpagesare
stored in terms of a less-rigid XML format. Figure 2 shows therepresentation of such
article, book and pagedigital objects, displaying the ability of our proposed model
to generate logical views of the information held in a digital object, regardless of the
digital object storage details.

By exploiting the above logical views that transcend network and DL boundaries,
the DL designer can combine various attribute specifications to generate a definition

Managing Network Classes of Digital Objects 35

Fig. 2. Articles, Books and Pages digital objects

of the structure and behavior of a digital object. We call such digital object definitions
digital object prototypes. With prototypes, the DL designer is able to express diverse
classes of digital material containing numerous kinds of digital content, metadata and
relationships such as thebooksandarticles of Figure 2, while also supporting excep-
tional cases in which digital objects may contain (a) metadata values only, acting as
metadata records, (b) the members of single relationship, acting as “relationship” ob-
jects (c) streams of bytes, acting as “file” objects. Formally, a digital object prototype
outlines a namespace of identifier/attribute bindings. Forexample, thearticle prototype
definition provides the following hierarchical namespace:
a r t i c l e : p r o t o t y p e(

descMD: Metada taSe t(t i t l e : MetadataF ie ld, c rea to r : MetadataF ie ld,...),
PDF: Stream,
r e f e r e n c e s: R e l a t i o n C o n t e x t)

We treat each different prototype’s namespace as generating a different digital ob-
ject class and/or type [14]. At runtime, we guarantee that any two objects created via the
same prototype will be of the same type by making them containan identical names-
pace of identifier/attribute pairs. Supporting the classification/instantiation abstraction,
we call a runtime representation of a digital object,which automatically complies with
its prototype, digital object instance. Digital object instantiation represents the ultimate
abstraction of our proposal. This refers to the process of “translating” an object’s phys-
ical/storage representation into the logical model definedby the object’s prototype at
runtime1. Such a process is automatically carried out by our framework “behind the
scenes”, making a digital object instance appear to high-level services as being loaded
automatically. Digital object instances are exposed to high-level services through the
DLMS API which realizes our unified digital object model and “knows” of Metadata
Set, Metadata Field, Stream, Relation Contextattributes.

Figure 3 presents the overall picture of our proposed architecture of the DLMS.
Each layer in the Figure abstracts its upper level from specific details, advancing sep-

1 Our simple XML notation for defining prototypes is not presented herein due to space limita-
tions. The XML syntax of the prototypes “language” is described in [15].

36 K. Saidis and A. Delis

aration of concerns and modularity [16]. In particular, thedistribution of knowledge
among these layers is as follows. Underlying DO stores internally “know” how to store
digital object information. The DLMS “knows” how to generate a unified logical view
of the diverse and heterogeneous digital objects held beneath. Finally, the DL appli-
cation logic “knows” the details of the particular DL deployment context and uses the
DLMS’ logical view to implement service provision.

To “translate” any underlying physical/storage digital object model into the DLMS
unified model, we use theDO store connectivity/drivermechanism, as Figure 3 shows.
The DLMS defines a DO store connectivity interface, providing the signatures of the
operations it requires to access and/or modify underlying digital object information in
terms of our proposed logical model. Consequently, each participating DO store in a
DL should provide its own driver, offering an appropriate implementation of the DLMS
connectivity interface that “knows” the details of the underlying stored digital object
information. For example: (a) a DO store driver for an XML-based digital object repos-
itory will use the particular repository protocol to realize the DLMS interface, (b) a
driver for a DO store that employs a relational database willuse the appropriate SQL
queries to realize the DLMS interface and so forth.

Fig. 3. Our proposal for realizing the DLMS

To manage the information of a stored digital object at runtime, a high-level service
needs to acquire its corresponding digital object instance. To do so, the service provides
the object’s unique identifier which can follow any local or global naming scheme. Our
runtime will then identify the stored artifact and retrievethe name of its prototype. It
will then use the prototype’s definition to create a corresponding digital object instance.

Managing Network Classes of Digital Objects 37

Lastly, the instance –being a runtime structure that holds stored object’s data in terms of
the DLMS prototype-based unified model– is returned to the service, hiding all digital
object identification, location and storage details. For example, a book digital object
instance will automatically load metadata values from the database and place them into
its respectiveMetadata SetandMetadata Fieldattributes. Respectively, an article digi-
tal object instance will load its XML-encoded metadata intoits ownMetadata Setsand
Metadata Fields, hiding from services DO store heterogeneity.

We finally useBehavior Schemesto realize digital object behavior in a storage-
independent and service-neutral manner. As Figure 3 shows,all books, pages and ar-
ticles instances contain their own behavior schemes such asmetadataView, detailView
andshortView. In practical terms, a behavior scheme defines a projection/view of an
object’s namespace and can contain any subset of an object’sidentifiable attributes,
including any combination of the object’sMetadata Sets, Metadata Fields, Streams,
Relation Contextsand their members. For example, Figure 4 shows the executionof
the shortViewbehavior scheme of a book instance, providing the book’s title, creator
and publisher along with the thumbnail of the book’s first page. In general, a behav-
ior scheme supplies the calling service with access to a subset of the digital object
instance’s runtime structures, offering an effective service-neutral view of the encap-
sulated digital object information. The service can then process the data held in these
structures according to the particular service provision requirements – i.e., generate a
web page, feed a web service or create an XML document.

Fig. 4. An example of a behavior scheme

Behavior schemes are (a) defined in the context of a digital object’s prototype, al-
lowing the DL designer to provide the views that such a type ofobjects will generate at

38 K. Saidis and A. Delis

runtime, (b) attached to digital object instances at runtime, during the prototype-based
instantiation process. In this way, we enable digital object behavior to retain storage
independence by being part of the DLMS unified model. To this effect, DL designers
model digital object behavior independently of any physical/storage details of the ob-
jects held beneath. Furthermore, such storage independence permits objects to maintain
their type-specific views when moved between different DO stores.

4 Summary

In this paper we presented our proposal to realize a unified runtime layer for the DLMS
using a domain-specific “language” of network classes and/or types of digital objects.
We have also discussed how our approach can be used as the foundation for making the
DLMS a reusable integral component for realizing any DL.

References

1. Candela, L., Castelli, D., Pagano, P., Thanos, C., Ioannidis, Y., Koutrika, G., Ross, S., Schek,
H.J., Schuldt, H.: Setting the Foundations of Digital Libraries: The DELOS Manifesto. D-
Lib Magazine13(3/4) (March/April 2007) [doi:10.1045/march2007-castelli].

2. Hudak, P.: Building domain-specific embedded languages.ACM Computing Surveys
28(4es) (1996)

3. M. Mernik and J. Heering and A.M. Sloane: When and how to develop domain-specific
languages. ACM Computing Surveys37(4) (2005) 316–344

4. R. Kahn and R. Wilensky: A Framework for Distributed Digital Object Services. Interna-
tional Journal on Digital Libraries6(2) (2006) 115–123

5. Arms, W.Y., Blanchi, C., Overly, E.A.: An architecture for information in digital libraries.
D-Lib Magazine3(2) (February 1997)

6. Gonçalves, M., Fox, E., Watson, L., Kipp, N.: Streams, Structures, Spaces, Scenarios, Soci-
eties (5s): A Formal Model for Digital Libraries. ACM Transactions on Information Systems
(TOIS)22(2) (2004) 270–312

7. Consultative Committee for Space Data Systems (CCSDS): Reference Model
for an Open Archival Information System (OAIS) Blue Book, Issue 1,
http://public.ccsds.org/publications/archive/650x0b 1.pdf .

8. Nelson, M.L., Maly, K., Zubair, M., Shen, S.N.T.: SODA: Smart Objects, Dumb Archives.
In: ECDL ’99: Proceedings of the 3rd European Conference on Digital Libraries. (1999)
453–464

9. de Sompel, H.V., Bekaert, J., Liu, X., Balakireva, L., Schwander, T.: aDORe: A Modular,
Standards-Based Digital Object Repository. The Computer Journal48(5) (2005) 514–535

10. T. Staples and R. Wayland and S. Payette: The Fedora Project: An Open-source Digital
Object Repository Management System. D-Lib Magazine9(4) (April 2003)

11. Borgida, A., Mylopoulos, J., Wong, H.K.T.: Generalization/Specialization as a Basis for
Software Specification. In: On Conceptual Modelling: Perspectives From Artificial Intelli-
gence, Databases and Programming Languages, Springer Verlag (1982) 87–117

12. Mattos, N.M.: Abstraction concepts: The basis for data and knowledge modeling. In: Pro-
ceedings of the Seventh International Conference on Entity-Relationship Approach, North-
Holland Publishing Co. (1989) 473–492

13. Taivalsaari, A.: On the notion of inheritance. ACM Computing Surveys28(3) (1996) 438–
479

Managing Network Classes of Digital Objects 39

14. Saidis, K., Delis, A.: Type-consistent Digital Objects. D-Lib Magazine13(5/6) (May/June
2007) [doi:10.1045/may2007-saidis].

15. Saidis K.: Digital Object Prototypes Frameworkhttp://www.dops-framework.net .
16. Parnas, D.: On the criteria to be used in decomposing systems into modules. Communica-

tions of the ACM15(12) (1972) 1053–1058

