Towards a Unified Runtime Model for Managing
Networked Classes of Digital Object$

Kostas Saidis and Alex Delis
{saiko,ad }@di.uoa.gr

Department of Informatics
University of Athens, 157 84, Athens, Greece

Abstract. Inthis paper we propose a unified runtime model for managiveyse
and heterogeneous digital material in terms of networkselsiypes of digital ob-
jects. Our proposal aims to offer a general-purpose, réeisgbtem that may act
as a common runtime layer for the development of any digivahty. We iden-
tify the fundamental requirements that such a runtime lakeuld fulfill, namely
(a) storage independence, (b) service neutrality and @idatliobject modeling
capabilities. Then we present how our proposal meets tieeggrements, while
offering a great deal of expressiveness and ease of use BlLthpplication de-
veloper.

1 Introduction

Digital Libraries (DLs) need to provide the infrastructdoe enabling users to access
a broad range of intellectual works originating from vadgaoterconnected and hetero-
geneous sources. DL development can be viewed from mangemiges including but
not limited to information retrieval and integration, wetidrmation and data manage-
ment, human/computer interaction and software engingefipart from this plethora
of disciplines involved in DL development, modern DL sysgehave to cope with di-
verse uses and deployment scenarios. For example, two Dénsgsnay: (a) employ
different storage solutions, (b) operate on different sypkintellectual works, (c) may
use different metadata schemes to document such works aily,fiid) may synthe-
size digital object information in diverse service progisienvironments, governed by
different protocols, services and user interfaces. Thasations depend on the rules
and constraints of the particular DL-specific environmbnthis paper we elaborate on
the essential features that should be offered by a DL ManageBystem (DLMS)[1].
Our objective is to realize such a system to act as the “caetiéveloping any DL
regardless of the variations that may occur in the deploymevironment of DLs.

We view the DLMS as an intermediate runtime layer betweemh@}ervices em-
ployed by a DL and (b) the sources of material managed by a . sWgply the DLMS
with a unified foundation, identifying the critical requinents that should be met by the
DLMS runtime layer and its underlying logical model. We disous on the abstractions
and expressiveness the DLMS should offer to the DL servieeldper. For example,

* This work was supported by a European Social Funds and N#tResources Pythagoras
Grant with No. 56-90-7410 and the Univ. of Athens ResearamBation.

32 K. Saidis and A. Delis

databases offer a great deal of expressiveness to appficiivelopers through the use
of a domain-specific language, namely SQL. As a domain-fipéahguage can pro-
vide the ultimate abstraction of a problem [2], in practieaims, a developer can view
a database as an interpreter of SQL statements, assistinig tealize complex data
management tasks with a little effort. Unfortunately, aresponding analogy is not
available in DL service development; DL developers haveetdize complex digital
material management tasks “manually”. The DLMS should mdy offer an effective
unified representation of networked, semantically divensé heterogeneously stored
digital material but it should also empower DL developerthwixpressiveness and
ease of use. Thus, we need to supply the DLMS with a languatjeqet to the digital
object management domain. Such a language will automigtitednslate” incompat-
ible physical/storage representations into the DLMS’ exifiuntime model, abstract-
ing high-level services from the diversity and heteroggnei underlying networked
sources of material.

The remainder of this paper is organized as follows. In $ac? we elaborate on
the design of a DLMS and the essential requirements of itSeghinodel. In Section
3 we propose an approach to implement the DLMS using a dospgguoific embed-
dable language [3] of network classes/types of digital cisje-inally, in section 4 we
conclude the paper.

2 Requirements of a Unified Model for Digital Object
Management

Various terms and concepts have been used in the literaiuefdr to DL material
including but not limited tocontent digital object information objectand data ob-
ject [1,4,5,6,7,8,9,10]. To narrow down the ambiguity, we usénals term,digital
object to refer to any digital artifacts managed by DLs such asietgrdigital assets,
archival material and so forth, independently of the patticrepresentations and mech-
anisms involved in storing such artifacts. We call the gierartifact astored digital ob-
jectand we use the terigital object store(DO store) to refer to any system that can
hold stored digital objects. As a database system coretituteusable, general-purpose
tool for managing data in terms of tuples, respectively, wecto realize a DLMS as
a reusable, general-purpose system that can be used to endatagn terms of digital
objects. In the remainder of this section, we elaborate enlésign of a unified runtime
model for the DLMS, identifying the requirements that suah@del should fulfill.
e Storage IndependenceA storage-independent logical model of digital objectd wil
allow the DLMS —and the higher-level DL services—to opeeatg any DO stores such
as custom database solutions or XML-based repositories digital object represen-
tations employed by the DLMS should be independent of anysiphl digital object
storage representations as the latter may differ betwedd atBre and another. More-
over, as it often occurs in practice, digital objects maydeebe moved from one DO
store to another and the DLMS should be able to effectivepeanith such a need.
The challenge is to enable the DLMS to actually supply higkllservices with a
unified logical view of any kind of digital objects originag from any underlying DO
stores. Given that the DLMS should be (re)usable in any DUayepent context, no

Managing Network Classes of Digital Objects 33

assumption can be made about whether such DO stores willrdithlocal/remote or
heterogeneous/homogeneous. Therefore, the DLMS shoatdigmtop any physical/s-
torage digital object model without requiring any modifioas to be performed in the
latter. Finally, in terms of digital object integrationt@moperation, the DLMS should
assist us to make any DLs to appear as remote DO stores forotiaeh effectively
wrapping any source of digital objects in an inexpensive mean

e Service Neutrality: The DLMS will employ appropriate structures to stage digita
object information at runtime based on its unified model.ilt also allow high-level
services to manage this information through an API. We belibat the DLMS API
should be exposed to higher-level services in a serviceraemanner, allowing DL
services to synthesize digital object information in angi&e provision environment
of choice. Should we consider that the DLMS exposes its ARdrims of web services,
although such a decision best fits to an heterogeneous rietgvenvironment such as
the WWW, it will probably be inefficient for developing a persl digital library sys-
tem, for example. Moreover, in the case of a DL system usegiivate intranet —acting
as a document management system, for example— the organighbuld be allowed
to use its proprietary communication protocols and exgstarvice infrastructure for
reasons of backward compatibility with legacy applicasion

Similar service-neutrality exists in databases, whereréiselt set returned by an
SQL query is made available to the calling application tigtoappropriate data struc-
tures that wrap involved database table/field data. In timest of a database system,
no assumptions are made about the actual usage of data gifleation level. An
application may use this data to dynamically render a wele pisgd a web service
response or generate a PDF report, for example. RespgctiveDLMS API should
only pertain to supplying high-level DL services with acc&sruntime representations
of digital object information, as the latter is internallgltl by the DLMS runtime struc-
tures. The particular communication protocols and meamasiinvolved in exposing
digital object information to other systems and/or usersutthbe designated by the
higher-level DL application logic and its services.

¢ Digital Object Modeling Capabilities: The DLMS unified digital object model
should support the fundamental requirement to represemarstically diverse digital
objects in a unified manner. Such a model should supply Dlgdes$ with a common
“language” for expressing a variety of digital object stural arrangements. In this con-
text, we believe that the DLMS model should allow the DL dasigto use all four es-
tablished abstraction principles, namely aggregatia@ud®osition, grouping/individ-
ualization, classification/instantiation and generaioraspecialization [11,12,13] tran-
scending network and digital library boundaries. More ffjadly, the DLMS unified
model should allow DL designers to express the aggregattura of digital objects,
while at the same time it should allow services to effectividcompose such aggre-
gations for their service provision needs. Support for giog/individualization will
allow “incompatible” objects to be grouped together —ifer,realizing a collection of
digital objects or for linking two objects with each othefaSsification/instantiation
will allow the DLMS to make individual digital objects compWith their structural
and behavioral specifications automatically. Finally, gyatization/specialization will

34 K. Saidis and A. Delis

allow the DL designer to reuse and/or refine digital objeetc#irations across varying
DO sources.

3 Our Approach

In our approach to deal with the DLMS requirements we viewgitali object as an
identifiable unit of information which may contain varioypés of digital content and
multiple metadata schemes. It may also develop severgineships with other objects
and it may expose behavior in terms of logical views of thevabés Figure 1 shows,
we view a digital object as any combination of the followirgj sf attributesMeta-
data Set, Metadata Field, Stream, Relation ContaxdBehavior Scheme\ny digital
object, at any point in time, may contain zero or mbtetadata Setseach one con-
taining one or mordetadata FieldsThe latter can hold multiple multi-lingual values.
A digital object may also contain zero or mdséreamattributes, used as handles for
the underlying locally or remotely stored digital contemtluding files, bitstreams or
URIs. Moreover, a digital object may contain zero or mBedation Contextseach one
outlining a particular relationship between the object attters. ARelation Context
at any point in time, may contain zero or more members, rate@ using their unique
identifiers. Finally, a digital object may contain zero ornmBehavior Schemesgach
one providing a different view of the object’s structure.

1 * -_— *

1 1 1 —_————————
{ Metadata Set Attrbute ————— Metadata Fleld Attribute |

| | 0.* |

g ——--—\‘ Stream Attribute |
(Digital Object /| © s . .
N i .— | Relation Context Attribute :——-—- | Member Attribute_|

- *

IR

| Behavior Scheme AttribLts |

Fig. 1. The Logical View of a Digital Object and its Attributes

Each attribute type is used by the DL designer to model aquaati component of a
digital object, regardless of each component’s storageesemtation employed by un-
derlying DO stores. Consider two heterogeneous DLs hobtiogsandarticlesdigital
objects respectively. Articles full text is available inrtes of PDF documents, while
books’ pages are digitized and made available in terms dfadlignages. Moreoever,
different descriptive metadata are used to document epehafymaterial. Finally, con-
sider thatarticlesoriginate from a custom database solution, whiteksandpagesare
stored in terms of a less-rigid XML format. Figure 2 shows thpresentation of such
article, book and pagedigital objects, displaying the ability of our proposed rebd
to generate logical views of the information held in a dibdhbject, regardless of the
digital object storage detalils.

By exploiting the above logical views that transcend neknamd DL boundaries,
the DL designer can combine various attribute specificationgenerate a definition

Managing Network Classes of Digital Objects 35

| MetadataField

/| ttitle)
| | MetadataField | MetadataField
/| tereator) /| titie)
MetadataSet || | MetadataField f |'_ Tl
K— | MetadataField
/| (descMD) |\ | (abstract) "|(creator)
(ks I :::::;htaﬁeld MetadataSet 1}7 MetadataField
e (descMD) ". {descriptien)
| MetadataField N | -
_) ; 5 || MetadataField
{ N o | | | tpublisher)
[Digital Object || | Stream (Digital Object \ \ |_ -
| (Article) | | (PDFY (Book) /A | MetadataField B
N _/" \ e A > | | () \ Stream
= 7 —~ e | i N | (TIFR
| Digital Object ‘ | _|pigital Object o [
| Relationcontext | / 1(_A_Article)___ A | RelationContext ‘.‘] (Page} [D'g'(t:;::;’e“ ~—} (5;;::;;

| (structure) |

; .
references) [} | Digital Object

| | Digital Object | -
| Booky

| (Page)

Stream
(JPEG Thumbnail)

Fig. 2. Articles, Books and Pages digital objects

of the structure and behavior of a digital object. We callrsdigital object definitions
digital object prototypesWith prototypes, the DL designer is able to express diverse
classes of digital material containing numerous kinds gftdi content, metadata and
relationships such as thmoksandarticles of Figure 2, while also supporting excep-
tional cases in which digital objects may contain (a) metmdalues only, acting as
metadata records, (b) the members of single relationsbimgpas “relationship” ob-
jects (c) streams of bytes, acting as “file” objects. Forpalldigital object prototype
outlines a namespace of identifier/attribute bindings.example, tharticle prototype
definition provides the following hierarchical namespace:

article: prototype(
descMD: MetadataSe(title: MetadataField, creator: MetadataField,...),
PDF. Stream,
references RelationContex}

We treat each different prototype’s namespace as gengiatiifferent digital ob-
ject class and/or type [14]. At runtime, we guarantee thatan objects created via the
same prototype will be of the same type by making them corataiidentical names-
pace of identifier/attribute pairs. Supporting the clasatfon/instantiation abstraction,
we call a runtime representation of a digital objeehich automatically complies with
its prototype digital object instance. Digital object instantiatiopresents the ultimate
abstraction of our proposal. This refers to the processrah¥lating” an object’s phys-
ical/storage representation into the logical model defimgthe object’s prototype at
runtimé'. Such a process is automatically carried out by our framiewloehind the
scenes”, making a digital object instance appear to higékkervices as being loaded
automatically. Digital object instances are exposed tt#éyel services through the
DLMS API which realizes our unified digital object model arlchbws” of Metadata
Set, Metadata Field, Stream, Relation Contgixtibutes.

Figure 3 presents the overall picture of our proposed achite of the DLMS.
Each layer in the Figure abstracts its upper level from $jgedétails, advancing sep-

L Our simple XML notation for defining prototypes is not presehherein due to space limita-
tions. The XML syntax of the prototypes “language” is desed in [15].

36 K. Saidis and A. Delis

aration of concerns and modularity [16]. In particular, thstribution of knowledge
among these layers is as follows. Underlying DO storesiiatgr “know” how to store
digital object information. The DLMS “knows” how to genegad unified logical view
of the diverse and heterogeneous digital objects held bienEmally, the DL appli-
cation logic “knows” the details of the particular DL deplognt context and uses the
DLMS' logical view to implement service provision.

To “translate” any underlying physical/storage digitajestt model into the DLMS
unified model, we use thHeO store connectivity/drivemechanism, as Figure 3 shows.
The DLMS defines a DO store connectivity interface, prowdine signatures of the
operations it requires to access and/or modify underlyiggal object information in
terms of our proposed logical model. Consequently, eacticgeating DO store in a
DL should provide its own driver, offering an appropriatgiementation of the DLMS
connectivity interface that “knows” the details of the urigimg stored digital object
information. For example: (a) a DO store driver for an XMLsbd digital object repos-
itory will use the particular repository protocol to reaithe DLMS interface, (b) a
driver for a DO store that employs a relational databasewsd the appropriate SQL
queries to realize the DLMS interface and so forth.

DL Application Logic
DLMS API
Book Instance Page Instance Article Instance
‘ Stream shortView MetadataSet metadataView
' . '
descMD shortView FF detailView descMD shortView
1 i
detailView ‘ detailView
- - Stream
Metadatafield MetadataRietd MetadataField [MetadataField
title IS —
Relation ‘ Stream Stream
Context |
structure [Relation | | THUMB PDF
Prototype Prototype Prototype
DLMS
Digital Object Store Connectivity API
Books Digital Object Store Driver Articles Digital Object Store Driver ‘

o a3

r XML Repository ') Database
Books & Pages Articles
Stored Digital Objects Stored Digital Objects

Fig. 3. Our proposal for realizing the DLMS

To manage the information of a stored digital object at mmtia high-level service
needs to acquire its corresponding digital object instafizelo so, the service provides
the object’s unique identifier which can follow any local dolgal naming scheme. Our
runtime will then identify the stored artifact and retriethe name of its prototype. It
will then use the prototype’s definition to create a correstiog digital object instance.

Managing Network Classes of Digital Objects 37

Lastly, the instance —being a runtime structure that hdtsted object’s data in terms of
the DLMS prototype-based unified model- is returned to theice hiding all digital
object identification, location and storage details. Faregle, a book digital object
instance will automatically load metadata values from thtaldase and place them into
its respectiviMetadata SeandMetadata Fieldattributes. Respectively, an article digi-
tal object instance will load its XML-encoded metadata iitgmwn Metadata Setand
Metadata Fieldshiding from services DO store heterogeneity.

We finally useBehavior Schemet® realize digital object behavior in a storage-
independent and service-neutral manner. As Figure 3 shaliuspoks, pages and ar-
ticles instances contain their own behavior schemes suotetadataView, detailView
andshortView In practical terms, a behavior scheme defines a projeweteaw/of an
object's namespace and can contain any subset of an ohjgetitifiable attributes,
including any combination of the objectdetadata Sets, Metadata Fields, Streams,
Relation Contextand their members. For example, Figure 4 shows the execotion
the shortViewbehavior scheme of a book instance, providing the boolés tireator
and publisher along with the thumbnail of the book’s first @alg general, a behav-
ior scheme supplies the calling service with access to aesudisthe digital object
instance’s runtime structures, offering an effective semneutral view of the encap-
sulated digital object information. The service can thercpss the data held in these
structures according to the particular service provisgguirements — i.e., generate a
web page, feed a web service or create an XML document.

| MetadataField |
/1 titte }

| | MetadataFietd
(| (creator)

|] eld

/ wescMD) ||| (description)

| | MetadataField
metadataView | (publisher)
| \

MetadataField
()

| '4Ennk Instance |/
7\ (10.4233mookt) /|

| (TIFF)

| ‘ Page Instance L_‘ Stream
| (10.1234ipage) || | (JPEG)

‘ Stream |

|| RelationContext | (Thumb)

‘ {structure) | \

‘ Stream
/| (TIFF}

||| stream
| (JPEG)

' | Page Instance
| (10.1234ipage2)

} Stream
| {Thumhb}

Fig. 4. An example of a behavior scheme

Behavior schemes are (a) defined in the context of a digit@lcte prototype, al-
lowing the DL designer to provide the views that such a typelgécts will generate at

38 K. Saidis and A. Delis

runtime, (b) attached to digital object instances at ruatiduring the prototype-based
instantiation process. In this way, we enable digital obhavior to retain storage
independence by being part of the DLMS unified model. To tffexce DL designers
model digital object behavior independently of any phyléitarage details of the ob-
jects held beneath. Furthermore, such storage indepeagentits objects to maintain
their type-specific views when moved between different DiDest.

4 Summary

In this paper we presented our proposal to realize a unifietihne layer for the DLMS
using a domain-specific “language” of network classes artgifes of digital objects.
We have also discussed how our approach can be used as tdafionrfor making the
DLMS a reusable integral component for realizing any DL.

References

1. Candela, L., Castelli, D., Pagano, P., Thanos, C., lalisr., Koutrika, G., Ross, S., Schek,
H.J., Schuldt, H.: Setting the Foundations of Digital Litbea: The DELOS Manifesto. D-
Lib Magazinel3(3/4) (March/April 2007) [doi:10.1045/march2007-cak}el

2. Hudak, P.: Building domain-specific embedded languag@€M Computing Surveys
28(4es) (1996)

3. M. Mernik and J. Heering and A.M. Sloane: When and how toettgy domain-specific
languages. ACM Computing Surve$g(4) (2005) 316-344

4. R. Kahn and R. Wilensky: A Framework for Distributed DaiObject Services. Interna-
tional Journal on Digital Librarie§(2) (2006) 115-123

5. Arms, W.Y., Blanchi, C., Overly, E.A.: An architecturerfimformation in digital libraries.
D-Lib Magazine3(2) (February 1997)

6. Gongalves, M., Fox, E., Watson, L., Kipp, N.: Streams&ures, Spaces, Scenarios, Soci-
eties (5s): A Formal Model for Digital Libraries. ACM Trar#ns on Information Systems
(TOIS)22(2) (2004) 270-312

7. Consultative Committee for Space Data Systems (CCSDS): efer@hce Model
for an Open Archival Information System (OAIS) Blue Book, sus 1,
http://public.ccsds.org/publications/archive/650x0b 1.pdf .

8. Nelson, M.L., Maly, K., Zubair, M., Shen, S.N.T.: SODA: 8riObjects, Dumb Archives.
In: ECDL '99: Proceedings of the"3 European Conference on Digital Libraries. (1999)
453-464

9. de Sompel, H.V., Bekaert, J., Liu, X., Balakireva, L., ®#ehder, T.: aDORe: A Modular,
Standards-Based Digital Object Repository. The Computem#l48(5) (2005) 514-535

10. T. Staples and R. Wayland and S. Payette: The FedoracBréje Open-source Digital
Object Repository Management System. D-Lib Magagi@ (April 2003)

11. Borgida, A., Mylopoulos, J., Wong, H.K.T.: GeneralipatSpecialization as a Basis for
Software Specification. In: On Conceptual Modelling: Perdives From Artificial Intelli-
gence, Databases and Programming Languages, Springeg \(ῶ) 87-117

12. Mattos, N.M.: Abstraction concepts: The basis for dah knowledge modeling. In: Pro-
ceedings of the Seventh International Conference on ER&tationship Approach, North-
Holland Publishing Co. (1989) 473492

13. Taivalsaari, A.: On the notion of inheritance. ACM Cornipg Surveys28(3) (1996) 438—
479

Managing Network Classes of Digital Objects 39

14. Saidis, K., Delis, A.: Type-consistent Digital Objeci3-Lib Magazinel3(5/6) (May/June

2007) [doi:10.1045/may2007-saidis].
15. Saidis K.: Digital Object Prototypes Framewatls://www.dops-framework.net
16. Parnas, D.: On the criteria to be used in decomposingregsinto modules. Communica-

tions of the ACM15(12) (1972) 1053—1058

