Towards a Unified Runtime

Model for Managing Networked
Classes of Digital Objects

Kostas Saidis and Alex Delis
{saiko,ad}@di.uoa.gr

Department of Informatics & Telecommunications
University of Athens

2"d DELOS Workshop on Foundations of Digital Libraries
ECDL 2007, Budapest, Hungary, September 20t 2007

The Goal

m Develop a general-purpose, reusable
system that can act as a common
runtime for developing any DL

m In DELOS terms, we discuss how to
develop a DL Management System!

m \What? Why? How?

The DLMS

DL Services DL Application Logic
Usage DO Model

DLMS
Logical/Runtime DO Model

DOStore
Sources of PhysicaliStorage DO Model
Material

Highway to Hell

m Do we develop DLs in the COBOL way?

The COBOL Way

m Ad-hoc, tailor-made solution to
specific use cases and scenarios

m Build a DL that supports a specific:
m storage solution
m set of digital material types
m Service provision environment

m Rebuild the DL when any of these

change (new user requirement, new
technology, etc)

Stairway to Heaven

m A Unified Runtime Model for DLs

A Unified DL Runtime Model

m Handle DL-specific deployment /
development variations uniformly

m Operate atop heterogeneous storage
solutions

m Handle semantically diverse types of
material in a uniform manner

m Allow DL Application Logic to
synthesize digital object information

IN any service provision environment
of choice

How to get there

m We identify the critical attributes of

1.

an effective DL Runtime Model:

It should be based on a storage-
Independent logical model

It should operate in a service-neutral
manner

It should provide powerful conceptual
modeling capabilities to the DL
designer

It should be expressive and easy to
use (productive) for the DL developer

1. Storage Independence

m A storage-independent Logical
Model:

m Allow DLMS to operate atop any DO
Stores (databases, XML repositories,
etc)

m Offer a unified Logical View of
heterogeneously stored DOs (local,
remote, whatever)

m Move DOs between DO Stores
m DO Interoperation/Integration-ready!

Our Proposed Log. Model

- . *
{Metadata 56t Attribute} {Metadata Fleld Attributell

— [Stream Attributef\
Digital Object - WE
— [Relatioﬂ CantextAttributeJ' : |Ll\llemberAttribute]

o
l

Benavior Scheme Attribute]

Masking Out Storage Variations

m \We use the DO Store Driver notion

m “Translate” Diverse Physical Models
Into a unified Logical Model

DLMS
DO Store Driver API

DO Store Driver A DO Store Driver B

XM

DO Store Driver API

interface DOStore:
boolean objectExists(dold);
DOStore ACCESS APL | 1115 adavenno (doprd, dord)

1 String addNewDO (dopId);
(1) DOStore Interface String qetboPId(dold);

MultilingualValue[] loadMetadataSet (dold,mdSetId);

2) DOStore DI'IVEI' vold saveMetadataSet (doId,mdSetId, f1eldValues);
String[] loadRelationMembers (dold,relld);
I vold saveRelationMembers (doId, relld,ids);
InputStream loadStreamContent (doId, streamld);

.. : vold saveStreamContent (dold, streamld, stream, MIME);
Dlgltﬂ' ObJECt Store vold saveStreamURL (doId, streamId,url);

String getStreamURL (doId, streamld);

String getStreanmMIMEType (dold, streamld);

long getStreamLength (doId,streamld);

2. Modeling Power

m Represent semantically diverse DOs
IN a uniform manner (using a single
“language’)

m Allow DL designer to use all four
established abstraction principles:

m Aggregation/Decomposition
m Grouping/Individualization

m Classification/Instantiation

m Generalization/Specialization

DO Classes/Types

m DOs as compound entities comprised of
metadata sets, streams, relation contexts
and behavior schemes

m A self-contained definition of these
attributes, viewed as DO meta-

Information, provides a DO Class/Type
Digital Object Prototypes (ECDL 2005 & 2006, DLIB 5-6/2007)

m At runtime, DOs are treated as instances
of DO Classes (automatically)

m Support Aggregation, Grouping,
Classification/Instantiation

Example

MetadataField
(| ttitle) , /1 title)
[¢ . : [l
| | MetadataField II | MetadataField
[| (ereator) | /| {ereator)
ol 3 — , o 4
{ h:zt:;dJBaSet h::t;f:::ﬂeld | MetadataSet || | MetadataField
() |) : /| (descMD} {description)
|' |"~._ MetadataField o II '., MetadataField
| . o 3 X etadataFie
date -
| '. :(} : ;/T _ _ . | l. {publisher)
Il || MetadataField (Digital Object)/ e :
e —— (_,_} I'." {Bnuk} I-'I- b I'._x Metad ataFIEId
| A | |
;/ A | ~ b | (..}
| Digital Object || Stream . . ' : -
. (Article} | {PDF) | . Digital Object
- | ' | RelationContext |\' (Page)
b | Digital Object (Lerusture) I\ Digital Object
\ | Relationcontext | [| (Article) g{page}J
(references) | T : .
' | Digital Object { Stream
(Book) /,.#---—- ~ / (TIFF)
l-'“fDigitaI Dbje-:t\ Stream
\ (Page)) | | UPEG)
e

MetadataField

Stream
(JPEG Thumbnail)

3. Service Neutrality

B A Runtime Environment that realizes
the Logical Model:

m Employ appropriate structures to stage
DO information/data at runtime

m ExXpose an APl to access/modify such
runtime structures

m Cycle: Load / Wrap / Access & Modify /
Unwrap / Serialize

m Let the services decide the service
provision details (e.g. protocols, user
Interfaces, etc)

Service Neutral DO Behavior

m Behavior Schemes: Projections on a DO’s
structure/namespace

| MetadataField
(title)

II i

|~

MetadataField
{creator)

MetadataSet MetadataField
/| (descMmD) (description)

| | MetadataField
[metadata\ﬂew] | {publisher)

- ‘| mMetadataField
ff--"’ |)

Eluuk Instance

(detainsiew) {1u 1234/book 1) , %
_/ | | Stream

~ | {TIFF)

— | Page Instance ! Stream
..-" (101234 'page1) | {JPEG)

shortwview [

| Stream
(Thumb)

w N
' | RelationContext |(
II

{structure) | Stream |

| /| ATIFF)

‘| Page Instance /| Stream
{(10.1234page2) || | (JPEG)
. I L)

"x___ Stream
{ Thumhb)

4. Expressiveness

m Do more with less!

m A domain-specific DO Management
“language”

m RDBMS acts as an SQL Interpreter
(for the DB application developer)

m DLMS should be a DOML Interpreter
(for the DL application developer)

s W N =

o =1 v 0N

Programming Example

DOInstance palnting = DOPs.getInstance("painting™,"1000",palntingDriver)
MetadataSet mdSet = painting.getMetadataSet ("descMD™)

MetadataField title = mdSet.getField("title™)

String value = title.getValue("en")

DOInstance book = DOPs.getInstance ("book”,"10.1234/bookl”,bookDriver)
RelationContext relation = book.getRelationContext ("structure™)
foreach(id in relation.relationMembers())

DOInstance page = DOPs.getInstance("page”,id,bookDriver)

Our Proposal for the DLMS

DL Application Logic

Page

Prototype

Article

Prototype

DLMS API
Book Instance Page Instance Article Instance
1 |
MetadataSet [metadata\liewJ Stream [shortView] MetadataSet [metadata\a'ie\nr}
descMD [shortView] TEE [detailView] descMD [shortView]
1 1
/\ [detailView] [detailView J
Stream
MetadataField |MetadataField MetadataField |MetadataField
title == S title
Relation Stream Stream
Context
cture [Relation] THUMB PDF

DLMS

Digital Object Store Connectivity API

Books Digital Object Store Driver

Articles Digital Object Store Driver

o &

XML Repository
| Books & Pages
Stored Digital Objects

o &

Stored Digital Objects

Database
Articles

Discussion

m Ref. Model

m DLs should be viewed as applications build with the
DLMS

m The model will be finalized not when there is nothing
more to add but when there is nothing more to take
away

m DO Classes/Types

m Think of them as guides to load/manage/store data at
runtime — A DOP is not a way to store things

m A stored digital object can have multiple types at
runtime
m Future Work

m DO Integration/Interoperation: DO Store Drivers can
make DLs appear as remote sources of each other

m Indexing / searching contradicts storage-independence
m DOPs Inheritance — Reuse and Polymorphism

Thank God 1t’s Over!

m Thank you for your patience!
@ Comments? Questions?

m Email: saiko@di.uoa.gr

m An older version of our approach In
action: http://pergamos.lib.uoa.gr/

m Public Release of DOPs framework:
http://www.dops-framework.net

