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The Goal

m Develop a general-purpose, reusable
system that can act as a common
runtime for developing any DL

m In DELOS terms, we discuss how to
develop a DL Management System!




m \What? Why? How?



The DLMS
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Highway to Hell

m Do we develop DLs in the COBOL way?



The COBOL Way

m Ad-hoc, tailor-made solution to
specific use cases and scenarios

m Build a DL that supports a specific:
m storage solution
m set of digital material types
m Service provision environment

m Rebuild the DL when any of these

change (new user requirement, new
technology, etc)




Stairway to Heaven

m A Unified Runtime Model for DLs




A Unified DL Runtime Model

m Handle DL-specific deployment /
development variations uniformly

m Operate atop heterogeneous storage
solutions

m Handle semantically diverse types of
material in a uniform manner

m Allow DL Application Logic to
synthesize digital object information

IN any service provision environment
of choice




How to get there

m We identify the critical attributes of

1.

an effective DL Runtime Model:

It should be based on a storage-
Independent logical model

It should operate in a service-neutral
manner

It should provide powerful conceptual
modeling capabilities to the DL
designer

It should be expressive and easy to
use (productive) for the DL developer




1. Storage Independence

m A storage-independent Logical
Model:

m Allow DLMS to operate atop any DO
Stores (databases, XML repositories,
etc)

m Offer a unified Logical View of
heterogeneously stored DOs (local,
remote, whatever)

m Move DOs between DO Stores
m DO Interoperation/Integration-ready!




Our Proposed Log. Model
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Masking Out Storage Variations

m \We use the DO Store Driver notion

m “Translate” Diverse Physical Models
Into a unified Logical Model

DLMS
DO Store Driver API

DO Store Driver A DO Store Driver B

XM




DO Store Driver API

interface DOStore:
boolean objectExists(dold);
DOStore ACCESS APL | 1115 adavenno (doprd, dord)

1 String addNewDO (dopId);
(1) DOStore Interface String qetboPId(dold);

MultilingualValue[] loadMetadataSet (dold,mdSetId);

2) DOStore DI'IVEI' vold saveMetadataSet (doId,mdSetId, f1eldValues);
String[] loadRelationMembers (dold,relld);
I vold saveRelationMembers (doId, relld,ids);
InputStream loadStreamContent (doId, streamld);

.. : vold saveStreamContent (dold, streamld, stream, MIME);
Dlgltﬂ' ObJECt Store vold saveStreamURL (doId, streamId,url);

String getStreamURL (doId, streamld);

String getStreanmMIMEType (dold, streamld);

long getStreamLength (doId,streamld);




2. Modeling Power

m Represent semantically diverse DOs
IN a uniform manner (using a single
“language’)

m Allow DL designer to use all four
established abstraction principles:

m Aggregation/Decomposition
m Grouping/Individualization

m Classification/Instantiation

m Generalization/Specialization




DO Classes/Types

m DOs as compound entities comprised of
metadata sets, streams, relation contexts
and behavior schemes

m A self-contained definition of these
attributes, viewed as DO meta-

Information, provides a DO Class/Type
Digital Object Prototypes (ECDL 2005 & 2006, DLIB 5-6/2007)

m At runtime, DOs are treated as instances
of DO Classes (automatically)

m Support Aggregation, Grouping,
Classification/Instantiation
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3. Service Neutrality

B A Runtime Environment that realizes
the Logical Model:

m Employ appropriate structures to stage
DO information/data at runtime

m ExXpose an APl to access/modify such
runtime structures

m Cycle: Load / Wrap / Access & Modify /
Unwrap / Serialize

m Let the services decide the service
provision details (e.g. protocols, user
Interfaces, etc)




Service Neutral DO Behavior

m Behavior Schemes: Projections on a DO’s
structure/namespace
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4. Expressiveness

m Do more with less!

m A domain-specific DO Management
“language”

m RDBMS acts as an SQL Interpreter
(for the DB application developer)

m DLMS should be a DOML Interpreter
(for the DL application developer)
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Programming Example

DOInstance palnting = DOPs.getInstance("painting™,"1000",palntingDriver)
MetadataSet mdSet = painting.getMetadataSet ("descMD™)

MetadataField title = mdSet.getField("title™)

String value = title.getValue("en")

DOInstance book = DOPs.getInstance ("book”,"10.1234/bookl”,bookDriver)
RelationContext relation = book.getRelationContext ("structure™)
foreach(id in relation.relationMembers())

DOInstance page = DOPs.getInstance("page”,id,bookDriver)



Our Proposal for the DLMS

DL Application Logic
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Discussion

m Ref. Model

m DLs should be viewed as applications build with the
DLMS

m The model will be finalized not when there is nothing
more to add but when there is nothing more to take
away

m DO Classes/Types

m Think of them as guides to load/manage/store data at
runtime — A DOP is not a way to store things

m A stored digital object can have multiple types at
runtime
m Future Work

m DO Integration/Interoperation: DO Store Drivers can
make DLs appear as remote sources of each other

m Indexing / searching contradicts storage-independence
m DOPs Inheritance — Reuse and Polymorphism




Thank God 1t’s Over!

m Thank you for your patience!
@ Comments? Questions?

m Email: saiko@di.uoa.gr

m An older version of our approach In
action: http://pergamos.lib.uoa.gr/

m Public Release of DOPs framework:
http://www.dops-framework.net




