Digital Object Prototypes: An Effective
Realization of Digital Object Types

Kostas Saidis', George Pyrounakis?, Mara Nikolaidou? and Alex Delis!

{saiko, forky, mara, ad}@di.uoa.gr

! Dept. of Informatics and Telecommunications
2 Libraries Computer Center
University of Athens
University Campus, Athens, 157 84, Greece

Abstract. Digital Object Prototypes (DOPs) provide the DL designer
with the ability to model diverse types of digital objects in a uniform
manner while offering digital object type conformance; objects conform
to the designer’s type definitions automatically. In this paper, we outline
how DOPs effectively capture and express digital object typing infor-
mation and finally assist in the development of unified web-based DL
services such as adaptive cataloguing, batch digital object ingestion and
automatic digital content conversions. In contrast, conventional DL ser-
vices require custom implementations for each different type of material.

1 Introduction

Several formats and standards, including METS [10], MPEG-21 [15], FOXML [7]
and RDF [11] are in general able to encode heterogeneous content. What they
all have in common is their ability to store and retrieve arbitrary specializations
of a digital object’s constituent components, namely, files, metadata, behaviors
and relationships [9]. The derived digital object typing information — that is,
which components constitute each different type of object and how each object
behaves — is not realized in a manner suitable for effective use by higher level
DL application logic including DL modules and services [13].

Our main objective is to enhance how we express and use the types of digital
objects independently of their low-level encoding format used for storage. Digital
object prototypes (DOPs) [13] provide a mechanism that uniformly resolves
digital object typing issues in an automated manner. The latter releases DL users
such as cataloguers, developers and designers from dealing with the underlying
complexity of typing manually. A DOP is a digital object type definition that
provides a detailed specification of its constituent parts and behaviors. Digital
objects are conceived as instances of their respective prototypes. DOPs enable
the generation of user-defined types of digital objects, allowing the DL designer
to model the specialities of each type of object in a fine-grained manner, while
offering an implementation that guarantees that all objects conform to their type
automatically. Using DOPs, the addition of a new digital object type requires

no custom development and services can be developed to operate directly on all
types of material without additional coding for handling “special” cases.

DOPs assist in dealing with important “every day” DL development issues
in a unified way: how to speed up and simplify cataloguing, how to automate
content ingestion, how to develop effective web interfaces for presenting and
manipulating heterogeneous types of digital objects. In this paper, we focus on
the benefits offered by the deployment of DOPs in the development of high
level services in Pergamos, the University of Athens DL. In particular, we point
out how web based services such as browsing, cataloguing, batch ingestion and
automatic digital content conversion cope with any type of DOP defined object,
while having all services reside in a single, uniform implementation.

The remainder of the paper is organized as follows. Section 2 provides a
detailed description of the current implementation of DOPs and pinpoints how
DOPs assist on the development of uniform yet effective DL services. In Section 3
we present several DOP examples originating from Pergamos collections. Finally,
Section 4 concludes the paper discussing related and future work.

2 Digital Object Prototypes in Pergamos

We have implemented DOPs in Java. As depicted in Figure la, DOPs operate
atop the repository / storage layer of the DL (in Pergamos we use FEDORA [14]).

Session

Digital Object Private Behaviors

(a) Pergamos Architecture

Protot
DL Application Logic roryee (b) DO
. - . Instance
‘Cataloglng CoIIectlon‘ ‘Browsmg Examble
module manager module P
DO Dictionary Digital

Prototype

instance

instance

Y Y Y
Stored - Stored = Stored Stored
DO i DO - DO Digital Object
: X ’ ’ Private Data
DO Rep08|tory (Files, Metadata Sets, Relations)

Fig. 1. (a) The 3-tier Pergamos architecture incorporating the “type enforcement” layer
of DO Dictionary [13] and (b) A digital object instance as composed by its respective
prototype and the underlying stored digital object

The DO Dictionary layer of Figure 1a exposes the DOPs API to high level DL
services or the application logic. The underlying repository’s “mechanics” remain

hidden, since all service functionality is directed through DOPs. We define DOPs
in terms of XML documents, that are loaded by the DO Dictionary at bootstrap
time. These XML documents provide the type specification that is translated to a
Java representation wrapped by the DOPs API. At runtime, the DO Dictionary
loads stored digital objects from the repository and generates Java artifacts
named digital object instances that conform to their respective DOP definition.
High level services operate on digital object instances; any modification occurring
in an instance’s data is serialized back to the repository when the object is saved.

In order to illustrate how DOPs effectively realize digital object types, in this
section we use examples drawn from the Senate Archive’s Session Proceedings
collection in Pergamos DL. We model Session Proceedings using Session and
Page DOPs; each Senate Session is modelled as a complex object containing
Pages. Figure 1b depicts the runtime representation of a Session digital object
instance, while Figure 2 illustrates the definition of the Session DOP, encoded
in XML. The Session instance reflects the specifications found in the Session
DOP. The instance’s behaviors are defined in the DOP the instance conforms

to, while its metadata, files and relations

digital object.

<prototype id="Session">
<MDSets><!-- Metadata definition -—>
<MDSet id="dc">
<label lang="en">Dublin Core Metadata</label>
<datastream id="DC" MDType="descriptive"
loader="gr.uoa.dl.core.xml.StandardLoader"
serializer="gr.uoa.dl.core.xml.DCSerializer"/>
<fields>
<field id="dc:date" isMandatory="true"
isRepeatable="false" isHidden="false"
validation ="gr.uoa.dl.core.validation.DateFormat">
<label lang="en">Date</label>
</field>
<field id="dc:identifier physical" isMandatory="true"
isRepeatable="false" isHidden="true">
<label lang="en">Call number</label>
</field>

</fields>

</MDSet>

<MDSet id="ead">

<label lang="en">EAD like Metadata</label>

<datastream id="EAD" MDType="descriptive"
loader="gr.uoa.dl.core.xml.StandardLoader"
serializer="gr.uoa.dl.core.xml.EADSerializer"/>

<fields>

<field id="did unitid"/>

</fields>
</MDSet>
<mappings>
<mapping id="identifier">
<from="ead.did unitid">
<to="dc.dc:identifier physical"/>
</mapping>
</mappings>
</MDSets>

are loaded from its underlying stored

<files><!-- Files definition -->
<file id="zip" type="container" datastream="ZIP">
<label lang="en">ZIP file</label>
<mime-type id="application/zip"/>
<batchIngest targetTypeId="page" targetFileId="hg"/>
</file>
</files>
<relations><!-- Relationships definition -->
<structure>
<childType>Page</childType>
</structure>
<references allowCustomURL="false" allowCustomDO="true"/>
</relations>
<behaviours><!-- Behaviours definition -->
<schemes>
<scheme id="browseView" isDefault="true">
<label lang="en">Short View</label>
<element id="MDSets.dc.dc:identifier"/>
<element id="MDSets.dc.dc:title"/>
<element id="MDSets.dc.dc:date"/>
</ scheme>
<scheme id="zipView">
<label lang="en">Short View</label>
<element id="MDSets.dc.dc:title"/>
<element id="files.zip"/>
</scheme>
<scheme id="detailView">
<label lang="en">Detail View</label>
<element id="MDSets.dc.dc:identifier"/>
<element id="MDSets.dc.dc:identifier physical"/>
<element id="MDSets.dc.dc:title"/>
<element id="MDSets.dc.dc:date"/>
</ scheme>
</schemes>
</behaviours>
</prototype>

Fig. 2. The Session prototype defined in XML terms

DOP definitions are encoded in XML as depicted by the Session DOP of
Figure 2 and are made up of four parts according to [9]: (a) metadata element set
definitions expressed in the MDSets XML section, (b) digital content specifica-
tions expressed in the files section, (c) relationships, defined in the relations
section and (d) behaviors, defined in the behaviors XML section. In the follow-
ing we provide a detailed description of each of these four definition parts, while,
in parallel, we discuss how these type definitions are interpreted at runtime. It is
worth pointing out that, although most of the examples we use herein originate
from object input scenarios, the automatic type conformance offered by DOPs
covers all aspects of digital object manipulation. The DOPs framework is not a
static digital object model. On the contrary, it can be conceived as a framework
that allows users to define their own digital object models.

2.1 Behaviors in DOPs

The behaviors of a digital object constitute the set of operations it supports.
All the instances of the same DOP share the same behaviors; for example, all
Session Proceedings behave in the same manner. This is reflected by the fact
that with DOPs, behaviors are defined only in the object’s respective prototype
and are automatically bound to the digital object instance at runtime by the
DO Dictionary.

DOPs implement digital object types by drawing on the notions of the OO
paradigm. In order to support OO encapsulation, our approach distinguishes
private from public behaviors. Private behaviors refer to operations that are
executed by the digital object instance in a private fashion, hidden from third
parties. For example, validations of metadata element values are private behav-
iors that are executed by instances according to their DOP specification, without
user intervention. Private behaviors are triggered on specific events of the digital
object instance’s lifecycle; for instance, when a DL service updates the metadata
of an object. Private behaviors are implicitly defined in the DOP, as described in
the examples presented later in this section. On the other hand, public behaviors
constitute the interface through which third parties can interact with the digital
object instance at hand. Public behaviors are explicitly defined in a DOP and
are described in Section 2.5.

2.2 Metadata Elements in DOPs

DOPs support the use of multiple metadata element sets for describing different
digital object characteristics [9,10]. There are three ways to specify a metadata
element set in a DOP: (a) as a standard element set, such as the Dublin Core
(DC) [3], (b) as a user-defined extension of a standard element set (e.g. qualified
DC) or (c) as a totally custom element set. In detail, a DOP specifies:

- the individual metadata sets contained in the objects of this type, supplied
with an identifier and a multi-lingual label and description.

- the specific elements that constitute each metadata set. Each element is
designated by an identifier, desired labels and descriptions, and additional be-
havioral characteristics expressed in terms of private behaviors.

- the possible mappings among elements of the various metadata sets.

As the MDSets section of Figure 2 illustrates, Session objects are character-
ized using a qualified DC metadata set, called dc. Due to the archival nature of
the material, we also use a second, custom element set called ead, that follows
the principles of Encoded Archival Description (EAD) [6], yet without encoding
the EAD Finding Aid in its entirety.

In what follows, we describe the metadata handling capabilities of DOPs and
provide appropriate examples drawn from the MDSets specifications found in the
Session prototype of Figure 2.

Automatic loading & serialization of Metadata sets: Loading and se-
rialization of metadata sets are private behaviors, both executed by the DOP
behind the scenes. For example, if a DL service requests the dc metadata set
values of a Session digital object instance, the DOP specified loader is used to
load the corresponding element values from the underlying stored digital object.
Respectively, whenever a DL service stores the digital object instance to the
repository, the DOP supplied serializer is used to serialize each metadata set
to the appropriate underlying format. Loaders and serializers are defined in the
datastream XML section of the MDSet definition. Each DOP is allowed to define
its custom loading / serialization plugins, given that they constitute valid imple-
mentations of the respective Loader and Serializer Java interfaces supplied by
the DO Dictionary. The Session DOP, for example, uses the StandardLoader
plugin to load the metadata of Session Proceedings objects.

Behavioral characteristics of Metadata elements: The DOPs meta-
data specification inherently offers additional behavioral characteristics for each
metadata element. These characteristics are exploited by DL services on a case
to case basis for each element. DOPs define behavioral characteristics in terms
of XML attributes of the respective field definitions appearing in the MDSet
specification. In DOPs, we support the following behavioral characteristics:

- isMandatory: the instance will throw an exception if the metadata element
is to be saved with a null value.

- isHidden: advices the UI to hide the element from end-users.

- isRepeatable: the metadata element is allowed to have multiple values.
The Ul service adjusts accordingly, by supplying the cataloguer with the ability
to insert multiple values or by displaying the values to the end-user in a list.

- validation: digital object instances apply the given validation whenever
they are called to set values to the element. The validation occurs just before
the user-supplied values are serialized and sent to the repository. DOPs support
user-defined, pluggable validations, given that they implement the Validation
interface provided by the DO Dictionary. For example, the definition of the
dc:date element in Figure 2 specifies the use of a validation that checks whether
respected values conform to the date format selected by the Senate Archive’s
cataloguing staff.

Mappings among Metadata Elements: The Session DOP of Figure 2
maps ead:unitid to dc:identifier physical. A mapping between elements
represents another example of a private behavior. Whenever the value of the
ead:unitid element is modified, the digital object propagates its new value to
the dc:identifier physical. In Session objects, the mappings are created
from selected ead elements to members of the dc metadata set. This is per-
formed in order to allow us to offer cross-collection search to our users, given
that FEDORA only supports DC metadata searches. With the use of DOP-based
mappings we supply Pergamos with such search capabilities, without having to
limit our material description requirements to DC metadata only or force our
cataloguing staff to provide redundant information for both ead and dc metadata
sets.

2.3 Digital Content in DOPs

With regard to digital content, a prototype:

- specifies the various files and their respective formats,

- provides the necessary information required for converting a primary file
format to derivatives in order to automate and speed up the ingestion process,

- enables batch ingestion of content and automatic creation of the appropriate
digital objects.

Listing 1.1 depicts the files configuration of the Senate Archive’s Page DOP.
The latter specifies that Page objects should contain three file formats, namely
a high quality TIFF image (hq), a JPEG image of lower quality for web display
(web) and a small JPEG thumbnail image for browsing (thumb). In what follows
we describe batch ingestion and content conversion capabilities of DOPs.

<files >
<file id="hq" type="primary" datastream="HQ">
<label lang="en">High Quality Image</label>
<mime-type id="image/tiff">
<conversion target="web" task="convRes" hint="scale:0.6,quality:0.7"
mimeType="image/jpeg" converter="gr.uoa.dl.core.conv.ImageConverter"/>
<conversion target="thumb" task="convRes"
hint="width:120,height :120, quality:0.6"
mimeType="image/jpeg" converter="gr.uoa.dl.core.conv.ImageConverter"/>
</mime>
</file >
<file id="web" type="derivative" datastream="WEB">
<label lang="en">Web Image</label>
<mime-type id="image/jpeg"/>
</file >
<file id="thumb" type="derivative" datastream="THUMB">
<label lang="en">Thumbnail Image</label>
<mime-type id="image/jpeg"/>
</file >
</files >

Listing 1.1. The files section of the Page prototype

Automatic Digital Content Conversions: Each file format is character-
ized either as primary or derivative. In the case of files of Senate Archive’s

Page objects, as defined in the files section of Listing 1.1, the hq file is primary,
referring to the original digitized material. The web and thumb files are treated
as derivatives of the primary file, since the prototype’s conversion behavior
can generate them automatically from the hq file. Conversion details reside in
the conversion section of each file specification. After the ingestion of the
primary file, the digital object instance executes the conversions residing in
its prototype automatically.

We support three conversion tasks, namely (a) convert, used to convert a file
from one format to another, (b) resize, used to resize a file while maintaining its
format and (c) convRes, used to perform both (a) and (b). Each task is carried
out by the Java module supplied in the converter attribute, offering flexibility
to users to provide their own custom converters. The converter is supplied with
a hint, specifying either the required width and height of the resulting image
in pixels, the scale factor as a number within (0, 1) or the derivative’s quality
as a fraction of the original. In the case of Page objects (Listing 1.1), the hq file
is converted to a web JPEG image using compression quality of 0.7 and resized
using a scale factor of 0.6. Additionally, the hq file is also converted to a thumb
JPEG image using compression quality 0.6 and dimensions equal to 120 = 120
pixels. The Page instance stores both derivatives in the FEDORA datastreams
specified in the datastream attribute of their respective file XML element.

Batch Digital Object Ingestion: We also use DOPs to automate digital
object ingestion. The files section of the Session prototype (Figure 2), depicts
that Session objects are complex entities that contain no actual digital content
but act as containers of Page objects. However, the Session prototype defines a
zip file that is characterized as container. Containers correspond to the third
supported file format. If the user uploads a file with the application/zip mime
type in a Session instance, the latter initiates a batchIngest procedure. The
Session DOP’s batchIngest specification expects each file contained in the zip
archive to abide to the hq file definitions of the Page prototype. In other words,
if the user supplies a Session instance with a zip file containing TIFF images,
as the Session zip file definition requires, the instance will automatically create
the corresponding Page digital objects. Specifically, the Session batchIngest
procedure extracts the zip file in a temporary location and iterates over the files
it contains using the file name’s sort order. If the file at hand abides to the Page’s
primary file format:

a. Creates a new Page digital object instance.

b. Adds the Page instance to the current Session instance (as required from
structural relationships described in Section 2.4).

¢. Adds the file to the Page instance at hand. This will trigger the automatic
file conversion process of the Page prototype, as outlined earlier.

Should we consider a Session comprised of 120 Page objects, then the in-
gestion automation task, supplied by DOPs, releases the user from creating 120
digital objects and making 240 file format conversions manually.

2.4 Relationships in DOPs

DOPs specify the different relationships that their instances may be allowed to
participate in. Currently, DOPs support the following relationships:

- Internal Relationships: Digital objects reference other DL pertinent objects.

- Structural Relationships: These model the “parent / child” relationships
generated between digital objects that act as containers and their respective
“children”.

- External Relationships: Digital object reference external entities, providing
their respective URLs.

A Session object is allowed to contain Page objects; this specification ap-
pears in the relations section of the Session DOP (Figure 2). The existence of
a structure specification in the Session prototype yields the following private
behavior in the participating entities:

- Every Session object instance maintains a list of all the digital object
identifiers the instance contains.

- Every Page instance uses the dc:relation_isPart0f element to hold the
identifier of its parent Session.

Finally, the references part of the relation section informs DL services
whether custom relationships are supported by this type of object. In the Session
DOP of Figure 2, the references value guides UI services to allow the cata-
loguer to relate Session instances only with DL internal objects and not with
external entities.

2.5 Public Behaviors in DOPs

We define public behaviors in DOPs using the notion of behavioral scheme. A
behavioral scheme is a selection of the entities that are part of a digital ob-
ject. Behavioral schemes are used to generate projections of the content of the
digital object. Figure 2 illustrates the behaviors section of the Session pro-
totype, which defines three behavioral schemes, namely browseView, zipView,
and detailView. The browseView scheme supplies the user with a view of the
digital object instance containing only three elements of the qualified DC meta-
data set, namely dc:identifier,dc:title and dc:date. Respectively, zipView
generates a projection containing the dc:title metadata element and the zip
file, while detailView provides a full-detail view of the object’s metadata ele-
ments. This way, the DL designer is able to generate desired “subsets” of the
encapsulated data of the digital object instance at hand for different purposes.

Execution of public behavior is performed by the invocation of a high level
operation on a digital object instance, supplying the desired behavioral scheme.
High level operations correspond to the actions supported by the DL modules.
For example, the cataloguing module supports the editObject, saveObject and
deleteObject actions, the browsing module supports the browseObject action,
while object display module supports the viewObject action. At this stage, all
Pergamos DL modules support only HTML actions:

- viewObject ("uoadl:1209", shortView): Dynamically generates HTML
that displays the elements participating in the shortView of the “uoadl:1209”
object in read-only mode. The DO Dictionary will first instantiate the object
via its respective Session DOP (Fig. 1b). The new instance “knows” how to
provide its shortView elements to the object display module.

- editObject ("uoadl:1209", zipView): Dynamically generates an HTML
form that allows the user to modify the instance’s elements that participate
in zipView. This view is used by the digitization staff in order to upload the
original material and trigger the batch ingestion process, as described earlier in
this section.

- editObject ("uoadl:1209", detailView): Generates an HTML form that
displays all the metadata elements of the given instance in an editable fashion.
This is used by the cataloguing staff in order to edit digital object’s metadata.
The cataloguing module uses the behavioral characteristics described in Section
2.2 (e.g. isMandatory, isRepeatable) to generate the appropriate, type-specific
representation of the digital object.

- saveObject ("uoadl:1209", zipView): Saves “uoadl:1209” instance back
to the repository. Only the zipView scheme elements are modified. Catalogu-
ing module knows how to direct the submission of the web form generated by
its aforementioned editObject action to saveObject. Respectively, cataloguing
deleteObject action is bound to a suitable UI metaphor (e.g. a “delete” button
of the web form). The scheme supplied to deleteObject is used to generate a
“deletion confirmation view” of the digital object.

The execution of public behaviors is governed by the particular scheme at
hand, while the DOP specifications enable DL application logic to adjust to the
requirements of each element participating in the scheme.

3 Organization of Collections in Pergamos using DOPs

Currently, Pergamos contains more than 50,000 digital objects originating from
the Senate Archive, the Theatrical Collection, the Papyri Collection and the
Folklore Collection. Table 1 provides a summary of the DOPs we generated for
modeling the disparate digital object types of each collection, pinpointing the
flexibility of our approach. It should be noted that DOPs are defined with a
collection-pertinent scope [13] and are supplied with fully qualified identifiers,
such as folklore.page and senate.page, avoiding name collisions. These iden-
tifiers apply to the object’s parts, too; folklore.page.dc metadata set is dif-
ferent from the senate.page.dc set, both containing suitable qualifications of
the DC element set for different types of objects.

a. Folklore Collection Folklore Collection consists of about 4,000 hand-
written notebooks created by students of the School of Philosophy. We modeled
the Folklore Collection using the Notebook, Chapter and Page DOPs. Note-
books are modeled as complex objects that reflect their hierarchical nature; the
Notebook DOP allows notebooks to contain Chapter objects, which in turn
are allowed to contain other Chapter objects or Page objects. Notebooks are

a. Folklore Collection

DOP Metadata Files Relationships
Notebook |dc none contains Chapter or Page
Chapter |dc none contains Chapter or Page
Page none hq, web, thumb, hq to web, hq|none

to thumb conversions

b. Papyri Collection
DOP Metadata Files Relationships
Papyrus |dc orig, hq, web, thumb, hq to|none

web, hg to thumb conversions

c. Theatrical Collection

DOP Metadata Files Relationships
Album custom — dc |zip triggers batch import contains Photo
Photo niso — dc hq, web, thumb, hq to web, hq|none

to thumb conversions

d. Senate Archive’s Session Proceedings

DOP Metadata Files Relationships
Session |ead — dc zip triggers batch import contains Page
Page none hq, web, thumb, hq to web, hq|none

to thumb conversions
Table 1. A summary of the DOPs we generated for four Pergamos collections

supplied with metadata that describe the entire physical object, while Chapter
metadata characterize the individual sections of the text. Finally, Page objects
are not supplied with metadata but contain three files, resembling the definition
of the Senate Archive’s Pages provided in Listing 1.1.

b. Papyri Collection This collection is comprised of about 300 papyri of
the Hellenic Papyrological Society. We modeled papyri using the Papyrus DOP,
consisting of a suitable DC qualification and four file formats. The orig file format
corresponds to the original papyrus digitized image, while hq refers to a processed
version, generated for advancing the original image’s readability. The orig image
is defined as primary, without conversions. The hq image, which is also defined
as primary, is the one supplied with the suitable conversion specifications that
generate the remaining two derivative formats, namely web and thumb.

c. Theatrical Collection Theatrical Collection consists of albums contain-
ing photographs taken from performances of the National Theater. Each Photo
digital object contains three different forms of the photograph and is accom-
panied by the metadata required for describing the picture, either descriptive
(dc) or technical (niso). As in the case of Senate Session Proceedings, mapping
are used to to map niso elements to dc. Albums do not themselves contain any
digital content, since they act as containers of Photo digital objects. However,
Albums are accompanied by the required theatrical play metadata, encoded in
terms of a custom metadata set, that is also mapped to dc.

d. Senate Archive The Senate Archive’s Session Proceedings has been
discussed in Section 2.

4 Discussion and Related Work

To our knowledge, DOPs provide the first concrete realization of digital object
types and their enforcement. Our approach draws on the notions of the OO
paradigm, due to its well established foundations and its well known concepts.
Approaches on the formalization of OO semantics [2, 12] show that the notion
of objects in OO languages and the notion of digital objects in a DL system
present significant similarities, yet in a different level of abstraction. [1] defines
OO systems in terms of the following requirements:

- encapsulation: support data abstractions with an interface of named oper-
ations and hidden state,

- type conformance: objects should be associated to a type,

- inheritance: types may inherit attributes from super types.

At this stage, DOPs fulfill the encapsulation and type conformance require-
ments. The inclusion of inheritance is expected to provide explicit polymorphic
capabilities to DOPs, since polymorphism is currently implicitly supported; the
high level actions residing in the DL modules, as presented in Section 2.5, are
polymorphic and can operate on a variety of types. Inheritance is also expected
to allow designers to reuse digital object typing definitions. The concept of defi-
nition reuse through inheritance has been discussed in [8], although targeted on
information retrieval enhancements.

Although DOPs are currently implemented atop the FEDORA repository,
we believe that the presented concepts are of broader interest. The core type
enforcement implementation of DOPs regarding digital object instances and
their respective behavior is FEDORA independent and only stored digital ob-
ject operations are tied to FEDORA specific functionality (e.g. getDatastream,
saveDatastream services). Taken into consideration that DOPs, conceptually,
relate to the OO paradigm and the digital object modeling approach of Kahn
and Wilensky [9], we argue that there are strong indications that DOPs can be
implemented in the context of other DL systems as well.

DOPs are complementary to FEDORA, or any other underlying repository.
FEDORA can effectively handle low-level issues regarding digital object storage,
indexing and retrieval. DOPs provide an architecture for the effective manipula-
tion of digital objects in the higher level context of DL application logic. DOPs
behaviors are divided into private and public, in order to support encapsulation,
while their definition is performed in the object’s respective prototype. FEDORA
implements behaviors in terms of disseminators, which associate functionality
with datastreams. FEDORA disseminators must be attached to each individual
digital object upon ingestion time. With DOPs, all objects of the same type
behave in the same manner; their respective behaviors are dynamically binded
to the instances at runtime, while the behaviors are defined once and in one
place, increasing management and maintenance capabilities. aDORe [4] deploys
a behavior mechanism that, although it is similar to FEDORA, it attaches be-
haviors to stored digital objects in a more dynamic fashion, upon dissemination
time, using disseminator-related rules stored in a knowledge base. Finally, DOPs

behaviors operate on digital objects in a more fine-grained manner, since they
can explicitly identify and operate upon the contents of FEDORA datastreams.

[5] enables the introspection of digital object structure and behavior. A DOP
can be conceived as a meta-level entity that provides structural and behavioral
metadata for a specific subset of base-level digital objects. Put in other terms,
a DOP acts as an introspection guide for its respective digital object instances.
DOP supplied type conformance and type-driven introspection of digital object
structure and behavior allows third parties to adjust to each object’s “idiosyn-
crasy” in a uniform manner.

References

1. L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys, 17(4):471-522, 1985.

2. W. Cook and J. Palsberg. A denotational semantics of inheritance and its cor-

rectness. In Proceedings of the ACM Conference on Object-Oriented Programming:

Systems, Languages and Application (OOPSLA), pages 433—444, New Orleans,

Louisiana, USA, 1989.

DCMI Metadata Terms. Dublin Core Metadata Initiative, January 2005.

4. H. Van de Sompel, J. Bekaert, X. Liu, L. Balakireva, and T. Schwander. adore:
A modular, standards-based digital object repository. The Computer Journal,
48(5):514-535, 2005.

5. N. Dushay. Localizing experience of digital content via structural metadata. In
Proceedings of the Joint Conference on Digital Libraries, pages 244-252, Portland,
Oregon, USA, 2002.

6. Encoded Archival Description (EAD). Library of Congress, 2006.

Introduction to Fedora Object XML. Fedora Project.

8. N. Fuhr. Object-oriented and database concepts for the design of networked in-
formation retrieval systems. In Proceedings of the 5th international conference
on Information and knowledge management, pages 164-172, Rockville, Maryland,
USA, 1996.

9. R. Kahn and R. Wilensky. A Framework for Distributed Digital Object Services.
Corporation of National Research Initiative - Reston, VA, 1995.

10. METS: An Overview & Tutorial. Library of Congress, Washington, D.C., 2006.

11. Resource Description Framework (RDF). World Wide Web Consortium.

12. U.S Reddy. Objects as closures: Abstract semantics of object-oriented languages.
In Proceedings of the ACM Conference on Lisp and Functional Programming, pages
289-297, Snowbird, Utah, USA, 1988.

13. K. Saidis, G. Pyrounakis, and M. Nikolaidou. On the effective manipulation of
digital objects: A prototype-based instantiation approach. In Proceedings of the
9th European Conference on Digital Libraries, pages 26-37, Vienna, Austria, 2005.

14. T. Staples, R. Wayland, and S. Payette. The fedora project: An open-source digital
object repository management system. D-Lib Magazine, 9(4), April 2003.

15. T. Staples, R. Wayland, and S. Payette. Using mpeg-21 dip and niso openurl for
the dynamic dissemination of complex digital objects in the los alamos national
laboratory digital library. D-Lib Magazine, 10(2), February 2004.

w

=

